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The cytokine interleukin 1 (IL-1) is an evolutionary innovation of ver-
tebrates. Fish and amphibian have one IL1 gene, while mammals have
two copies of IL1, IL1A and IL1B, with distinct expression patterns and
differences in their proteolytic activation. Our current understanding of
the evolutionary history of IL-1 is mainly based on phylogenetic analysis,
but this approach provides no information on potentially different functions
of IL-1 homologues, and it remains unclear which biological activities ident-
ified for IL-1α and IL-1β in mammals are present in lower vertebrates. Here,
we use in vitro and in vivo experimental models to examine the expression
patterns and cleavage of IL-1 proteins from various species. We found that
IL-1 in the teleost medaka shares the transcriptional patterns of mammalian
IL-1α, and its processing also resembles that of mammalian IL-1α, which is
sensitive to cysteine protease inhibitors specific for the calpain and cathepsin
families. By contrast, IL-1 proteins in reptiles also include biological proper-
ties of IL-1β. Therefore, we propose that the duplication of the ancestral IL1
gene led to the segregation of expression patterns and protein processing
that characterizes the two extant forms of IL-1 in mammals.
1. Introduction
The interleukin-1 (IL-1) family of cytokines orchestrates the immune response
by mediating intercellular communication between many different cell types.
Activated IL-1 has a range of inflammatory effects from fever induction to hae-
matopoiesis and antibody synthesis (summarized in [1]). Like other immune-
related cytokine genes, IL1 genes are fast-evolving, driven by the need of the
immune system to adapt to constantly changing threats.

IL1 gene has evolved from a common ancestor approximately 420 Ma
around the emergence of the gnathostomes because this gene is missing in
the genomes of invertebrates and jawless vertebrates [2,3]. Only one IL1 gene
is found in the genomes of most anamniotes (fishes and amphibians), although
some teleost species such as rainbow trout [4] and carp [5] have two copies,
probably due to species-specific gene duplication events. The presence of
IL1A and IL1B genes in all mammals and their localization on the same chromo-
some suggest that a tandem gene duplication event has occurred in their
common ancestor [6,7].
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The biological activities of IL-1α and IL-1β have been
extensively analysed in mice and humans. The two cytokines
share a common transduction pathway but differ in their
expression patterns and activation processes [8]. At the tran-
scriptional level, IL1A is constitutively expressed in a variety
of cell types of haematopoietic and non-haematopoietic
origin, such as keratinocytes, endothelial cells and the muco-
sal epithelium [9,10], whereas IL1B expression is
predominantly induced in haematopoietic cells in response
to inflammation [1]. IL1B is also strongly expressed in various
cancer cell types [11]. The IL-1α protein is biologically active
both in its full-length and cleaved forms, while the IL-1β full-
length protein needs to be enzymatically cleaved to become
active. The processing of the two IL-1 paralogues is regulated
by distinct mechanisms. Both IL-1α and IL-1β can be pro-
cessed by multiple proteases [12]. However, IL-1β is
processed most efficiently by Caspase-1 [13], which, after its
activation by the inflammasome [14], cleaves IL-1β at two dis-
tinct sites [15]. Caspase-1-mediated processing also results in
the most bioactive form of IL-1β [12]. By contrast, Caspase-1
cannot process the IL-1α protein [15], which can instead be
cleaved by Calpain proteases [16,17] and Granzyme B [18].
To what extent, the biological activities of mammalian IL-
1α and IL-1β are conserved in anamniotes is not known.

Thus far, the single IL1 gene found in the genomes of
lower vertebrates has been interpreted as being most closely
related to mammalian IL1B and is therefore seen as a func-
tional homologue. This assumption is mainly based on
phylogenetic analysis [3,19]. However, the overall low conser-
vation of IL-1 proteins between species justifies a
reassessment of this interpretation and the consideration of
other characteristic factors, such as gene expression patterns
and protein processing mechanisms, to support a definite
assignment. Here, we compare characteristics other than pep-
tide sequences between IL-1 proteins of anamniotes and
mouse IL-1α and IL-1β. We have created a reporter for in
vivo visualization of the expression patterns and processing
of IL-1 in transgenic medaka (Oryzias latipes) and tested in
vitro the dependence of cleavage of IL-1 proteins from var-
ious anamniote species on Caspase-1. Our results show that
the medaka orthologue is expressed and processed in a
manner similar to mammalian IL-1α and that a conserved
Caspase-1 cleavage site is already present in amniotes.
2. Results and discussion
2.1. Evolution of interleukin-1 in vertebrates
Comparing nucleotide or amino acid sequences between
species is a common method to elucidate evolutionary
relationships. However, the comparison of fast-evolving
genes across longer evolutionary times can be difficult,
especially if pressures to diversify are active. In a phylogenetic
tree of IL-1 proteins from lower and higher vertebrates, teleost
IL-1 proteins form a separate cluster and share a branch point
with clusters for mammalian IL-1α and IL-1β (figure 1a), indi-
cating that the amino acid sequences of IL-1α and IL-1β are
equally distant from teleost IL-1, mostly consistent with
what has been shown by other studies [2,3,19,20]. This is
also true for avian and amphibian IL-1 proteins, which
together form a separate cluster. Therefore, an accurate assign-
ment of IL-1 proteins in lower vertebrates as homologues to
either IL-1α or IL-1β on the basis of phylogenetic analysis is
not possible. Another criterion that can help assign ancestral
relationships of genes is the comparison of their genomic local-
ization, i.e. synteny of neighbouring genes across longer
genomic stretches. The regions of vertebrate genomes in
which the IL1 genes are located are overall highly conserved,
but this provides no helpful information because mammalian
IL-1α and IL-1β are located next to each other within the same
synteny group due to a tandem duplication event [3]. We
therefore examined the conservation of characteristic amino
acid sequences for IL-1α or IL-1β proteins that are relevant
for their proteolytic processing. Alignment of IL-1 proteins
from mammals, amphibians, reptiles, birds, teleosts and carti-
laginous fishes showed that known cleavage sites in
mammalian IL-1α and IL-1β are poorly conserved in lower
vertebrates (figure 1b). Although all IL-1 proteins have the
same structure in which the N- and the C-terminal domains
are separated by a linker that contains potential cleavage
sites (figure 1c), many lower vertebrates lack the conserved
aspartic acid residue as a Caspase-1 cleavage sites in this
linker as well as the conserved β-trefoil fold that is character-
istic for mammalian IL-1β (figure 1b). Previous studies
showed that the zebrafish IL-1 protein can be cleaved by Cas-
pase A and Caspase B in transfected HEK cells [21–23].
However, only one of the three aspartic acid residues identified
as potential substrates of Caspase-1 homologues (Caspa and
Caspb) in zebrafish IL-1 [19,23] can be cleaved by Caspase-
1 in the sea bass [24]. This aspartic acid residue in zebrafish
IL-1 can be found in avian IL-1 but not in mammalian IL-1β.
Besides the Caspase-1 site, the potential cleavage sites for
other proteases such as Calpains, Cathepsins or Elastase are
poorly conserved in IL-1 homologues (figure 1b). Therefore,
protein alignments are not sufficient to assign IL-1 genes in
lower vertebrates as direct ancestors of either IL-1α or IL-1β
in mammals or even to deduce the function of an IL-1
common ancestor. Also, to what extent the biological activity
of IL-1 proteins in anamniotes depends on their processing
is still unknown.
2.2. Expression of medaka il1 in naive and upon
infection or local injury

To better understand the evolutionary history of IL-1, we per-
formed a comprehensive comparative analysis. One aspect
that distinguishes mammalian IL-1α and IL-1β is their distinct
expression profiles. IL1A is constitutively expressed at high
level in various cell types, including epithelial and haemato-
poietic cells, while IL1B expression is weak but strongly
inducible in monocytic cells in response to inflammation
[1,25]. To determine the expression activity of the il1 gene
in lower vertebrates, we use medaka as a model. We per-
formed whole-mount in situ hybridization (WISH) with a
probe for the il1 full-length transcript but could not detect
expression in naive embryos. However, in embryos injected
with E. coli, il1was strongly expressed (electronic supplemen-
tary material, figure S1), which is consistent with previous
observations in zebrafish [26]. Because it was not clear
whether the absence of il1 staining in naive embryos is due
to insufficient sensitivity of the WISH, we created an il1 trans-
genic reporter fish, in which a 6.9 kb long il1 promoter drives
the transcription of a t2a-based bi-cistronic mRNA [27]
encoding GFP and medaka full-length il1 tagged with a
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Figure 1. Phylogenetic analysis of IL-1 in vertebrates. (a) A rooted tree calculated by neighbour-joining obtained from a Clustal W alignment of IL-1 full-length
proteins. Calculated distance values are indicated for each branch. The accession numbers of genes used in this analysis are listed in the electronic supplementary
material, table S1. Abbreviations: Am, Alligator mississippiensis; Ap, Anas platyrhynchos; Cc, Coturnix coturnix; Cc, Cyprinus carpio; Cl, Columba livia; Cp, Chrysemys
picta bellii; El, Epinephelus lanceolatus; Dr, Danio rerio; Ga, Gasterosteus aculeatus; Gg, Gallus gallus; Hs, Homo sapiens; Lc, Lynx canadensis; Ml, Myotis lucifugus; Mm,
Mus musculus; Sc, Siniperca chuatsi; Sc, Scyliorhinus canicula; Ss, Sus Scofa; Ss, Salmo salar; Oa, Ornithorhynchus anatinus; Ol, Oryzias latipes; Pc, Physeter catodon; Ua,
Ursus americanus; Xl, Xenopus laevis; Xt, Xenopus tropicalis. (b) An alignment of full-length IL-1 amino acid sequences from 28 species, showing the linker region
(brown; corresponding to amino acids of linker as predicted by three-dimensional structure of human IL-1β) and surrounding sequences. Experimentally confirmed
IL-1 cleavage sites are marked with boxes as indicated. (c) Three-dimensional structures of medaka IL-1 compared to human IL-1α and IL-1β as predicted by
RaptorX.
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haemagglutinin (HA) peptide at the C-terminus (figure 2a).
This reporter allowed us not only to reveal the spatial
expression patterns of il1 gene but also to assess the proces-
sing of the IL-1 protein under various conditions using an
HA-specific antibody. The GFP signal was detectable as a
weak fluorescence signal in the epidermis of live embryos
at 1 day post-fertilization (dpf) (figure 2b; electronic sup-
plementary material, figure S2). At later stages, the GFP
signal became restricted to the epithelial compartment of
the skin, gills and thymus as well as the neuromasts of the lat-
eral line (figure 2c). Similar to our observation, zebrafish il1 is
expressed in the skin, gills and thymus [28,29]. Furthermore,
human IL1A is expressed in keratinocytes and thymic epi-
thelial cells [30]. These findings suggest that il1 expression
in the epithelial compartment, which is characteristic for
mammalian IL1A, is conserved among vertebrates.
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We also analysed the il1 expression in the adult haemato-
poietic cells and performed flow cytometry of isolated cells
from blood, kidney and spleen (figure 2c). As negative control,
blood of non-transgenic fish was used. Eight per cent of blood
cells, 57.8% of kidney cells, and 40.7% of spleen cells were
GFP-positive. The constitutive expression of medaka il1 in hae-
matopoietic cells is consistent with zebrafish il1 [28,29] and
mouse IL1a [31]. This result further supports the notion that
regulatory elements controlling the constitutive expression of
IL1A are also conserved in lower vertebrates.

Besides their constitutive expression, il1 genes in lower
vertebrates are inducible by inflammatory stimuli [28,29].
Our WISH analysis further confirms this observation (elec-
tronic supplementary material, figure S1). To distinguish
whether il1 inducibility is restricted to epithelial compart-
ments or haematopoietic cells, we performed local injury
and subcutaneous injection of bacteria in the transgenic
fish. The GFP signal increased substantially in the epidermis
when 50 µM lipopolysaccharide (LPS) was injected into the
muscle tissue (figure 3a) or when the tail fins of transgenic
larvae were injured (figure 3b,c) indicating that il1 expression
can be induced in non-haematopoietic cells. Next, we subcu-
taneously injected bacterial debris conjugated with Alexa
Fluor 594 into adult transgenic fish and analysed haemato-
poietic cells, isolated from blood, kidney and spleen using
flow cytometry 16 h-post-injection. We identified cells that
expressed il1 and had engulfed bioparticles by their com-
bined red and green fluorescence (6.5%, 47.7% and 39.1%
GFP+/RFP+ cells in blood, kidney and spleen, respectively;
data from two independent experiments). The presence of
GFP+/RFP+ cells in the blood and spleen (figure 3d; elec-
tronic supplementary material, figure S3) indicated that that
all myeloid cells that had engulfed bioparticles also expressed
the il1 gene. Whether il1 expression was induced in them
locally and they then migrated into the spleen, as a secondary
lymphoid organ, to initiate the adaptive immune response
cannot be deduced from this data. Taken together, our results
reveal that il1 is constitutively expressed in various epithelial
tissues and can be upregulated in keratinocytes and myeloid
cells upon infection or local injury. Therefore, the expression
pattern of medaka il1 resembles that of mammalian IL1A
which is both constitutive and inducible [32–34].
2.3. Processing of medaka interleukin-1 by proteases
in vivo

To investigate the processing of medaka IL-1 in response to
inflammatory stimuli, we used an anti-HA antibody to
detect the transgenic, C-terminally tagged IL-1 in whole-fish
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lysates on Western blots (WB). To prime immune cells,
freshly hatched transgenic larvae were first exposed to LPS
for 150 min (figure 4a). In a second treatment, we added
either nigericin or ionomycin for an additional 45 min
before lysates from whole larvae were prepared. Nigericin
acts as a potassium ionophore that activates the NLRP3
inflammasome [35], which is required for the Caspase-1-
dependent cleavage and secretion of mammalian IL-1β
(reviewed in: [36]). By contrast, ionomycin is a membrane-
permeable calcium ionophore that increases intracellular cal-
cium levels triggering Calpain activation and mature IL-1α
release [37,38]. The IL-1 pro-peptide is estimated to be
around 29 kDA, and the C-terminal cleavage products are
expected to be between 16.8 and 19.8 kDa if the precursor
is cleaved within the linker region between the N- and C-
terminal domains (the predicted products are schematically
depicted in figure 4b). WB analysis showed several bands
for IL-1 (figure 4c). In the control group, we detected HA-
positive proteins around 29 and 58 kDa. The latter product
is probably a read-through of the GFP-T2A-Il1 open reading
frame that occurs when T2A-induced ribosome skipping is
not complete, as is the case for around 10–20% of peptides
in zebrafish [39]. We do not expect the read-through to influ-
ence the cleavage of IL-1 since the detected HA-tag is located
at the C-terminus while GFP is linked to the N-terminus. An
additional protein fragment with a size around 20 kDa was
detected when larvae were treated with ionomycin (in this
case 50 µM for 20 min or 20 µM for 45 min) (figure 4c,d).
This peptide was not detected upon treatment with LPS
alone or LPS with the potassium ionophore nigericin, a com-
monly used inflammasome activator. LPS treatment alone did
not affect cleavage of IL-1 (electronic supplementary material,
figure S4) and was therefore used as a control treatment.

The 20 kDa IL-1 protein was still present when larvae
were treated with the Caspase-1 inhibitor Ac-YVAD-cmk.
By contrast, when larvae were treated with cysteine protease
inhibitors MDL-28170 and CA-074 prior to and during iono-
mycin treatment (20 µM), the 20 kDa protein was not
detectable. The effect of ionomycin is dose, time and batch-
dependent. While 50 µM affects fish health and IL-1 cleavage
after approximately 20 min, a lower dose affects fish less
severely but still leads to efficient IL-1 cleavage after approxi-
mately 45 min (e.g. in electronic supplementary material,
figure S4). In the experiments comparing ionomycin to niger-
icin, which is a direct potassium ionophore, we used a high
dose of 50 µm. However, for the inhibitor treatments, we
used a lower dose of 20 µM of Ionomycin to avoid rapid leth-
ality and increase exposure time to inhibitors. Together, our
result indicates that medaka IL-1 can be processed by cysteine
proteases from one or both of these protein families because
MDL-28170 and CA-074 inhibit Calpains and proteases of the
Cathepsin family [40,41].

We also assessed the spatial expression patterns of cal-
pains and their small subunit capns1 as well as cathepsin B,
L and S in medaka embryos. WISH analysis showed that
calpain2, capns1b and cathepsin L2 and S are all expressed in
the skin and gut, with enhanced expression in neuromasts
(electronic supplementary material, figure S5). Their colocali-
zation with il1 expression makes them potential candidates
for IL-1 processing enzymes in medaka.

Although our results show that medaka IL-1 is processed
in response to increased intracellular Ca2+ levels, we can
only speculate on the way it is released from the cell. IL-1 is
a leaderless cytokine, secreted in an ER/Golgi-independent
manner. Gasdermin (GSDM) pores have been shown to be
important for unconventional secretion of IL-1 [42,43], and
Gasdermin activation must be tightly controlled to avoid pyr-
optotic cell death induction [44]. Although the role of GSDM
appears to be conserved [45], it remains elusive whether they
play a role in IL-1 secretion in lower vertebrates. It is worth
noting that teleost fishes possess a homologue of Gasdermin
E (GSDME) but not GSDMD. In mammals, the latter protein
is cleaved by Caspase-1 downstream of the classical inflamma-
some cascade and IL-1 secretion [46]. Nevertheless, zebrafish
Caspa and Caspb proteins are able to in vitro cleave the
human GSDMD [47] and zebrafish Gasdermin E [22,48].

2.4. Processing of medaka interleukin-1 in vitro
To further test our conclusion that medaka IL-1 is processed
in a similar manner as mammalian IL-1α, we compared the
processing of medaka IL-1 and mouse IL-1α and IL-1β in a
cell-based assay using the pro-IL-1b-Gaussia luciferase
(iGLuc) fusion assay [49]. In this assay, pro-IL-1-dependent
formation of protein aggregates renders the Gaussia lucifer-
ase (GLuc) inactive, and this can be reversed if the cytokine
is cleaved, leading to recovery of luciferase activity
(figure 5a). We transfected mouse J774 macrophages with
constructs containing full-length cDNAs of medaka il1,
mouse IL1a or mouse IL1b fused with the Gluc reporter.
Transfected macrophages were then treated in a similar pro-
tocol as in the in vivo experiments (figure 4a). In vitro, LPS
alone was not sufficient to induce luciferase activity in macro-
phages transfected with any of the three IL-1 constructs.
However, luciferase became activated when transfected cells
were treated with nigericin or ionomycin. Consistent with
our previous study [49], luciferase was activated up to 50-
fold when cells transfected with mouse IL1β-Gluc were trea-
ted with nigericin (figure 5b), but not with ionomycin. The
effect of nigericin on cleavage of mouse IL-1α and medaka
IL-1 was lower. Conversely, ionomycin treatment resulted in
a strong luciferase activity in cells transfected with mouse IL-
1α-Gluc or medaka IL-1-Gluc constructs (figure 5b). The clea-
vage of medaka IL-1 protein upon ionomycin treatment was
further confirmed by WB analysis (electronic supplementary
material, figure S6).

Mouse IL-1α has been reported to be cleaved by cysteine
proteases. To determine whether this is also true of medaka
IL-1, we additionally applied the cysteine protease inhibitor
MDL-28170 along with LPS and ionomycin (figure 5c) and
LPS and nigericin (figure 5d ). Here, we found a dosage-
dependent decrease of luciferase activity for constructs carry-
ing medaka IL-1 or mouse IL-1α after ionomycin and MDL-
28170 treatment (figure 5c), suggesting that the cleavage of
medaka IL-1 also depends on cysteine proteases and further
confirming our in vivo observations. It has also been reported
that pyroptosis induces calpain activation downstream of
GSDMD and GSDME pore formation [53,54]. We therefore
also tested whether MDL-28170 treatment could inhibit
nigericin-induced medaka IL-1 and mouse IL-1α cleavage
(figure 5d ). In our experimental set-up, medaka IL-1 and
mouse IL-1α responded similarly at minimal effect. To test
whether Caspase-1 can cleave medaka IL-1, we co-transfected
293 T cells with plasmids carrying either medaka or human
Caspase-1. We found that human Caspase-1 was only able
to cleave mouse IL-1β but not mouse IL-1α or medaka IL-1
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(figure 5e). Medaka Caspase-1 was not able to cleave any of
the tested IL-1 proteins. Together, these results indicate that
medaka IL-1 and mouse IL-1α can be processed by cysteine
proteases of the calpain or cathepsin family.
ietypublishing.org/journal/rsob
Open

Biol.12:220049
2.5. Caspase-1 mediated interleukin-1 cleavage in
vertebrates

The processing of IL-1β by Caspase-1 seen in mammals does
not appear to occur in medaka IL-1. However, zebrafish IL-1
can be processed by zebrafish Caspase A (also named Casp1)
and Caspase B (also named Casp19a) in transfected HEK
cells [21–23] and primary zebrafish leucocytes [23]. It is
worth nothing that the zebrafish inflammatory Caspases (Cas-
pase A, Caspase b, Caspase 19b and Caspase 23) differ from
mammalian Caspase-1 and the Caspase-1 found in other teleost
species: while the latter have a Caspase recruitment domain at
their N-terminus, zebrafish Caspases A, B and 19b have a Pyrin
(PYD) domain instead. Moreover, the mutually dependent
activity of Caspase A and B necessary for cleavage of zebrafish
IL-1 is not conserved in other vertebrates, and the aspartic acid
residues identified by [23] as Caspase-A and Caspase-B-specific
cleavage sites are not conserved Caspase-1 cleavage sites in
mammals. Therefore, it is likely that zebrafish has indepen-
dently acquired the ability to be cleaved by caspases. The
alignment of IL-1 proteins in vertebrates shows that the N-
terminal mammalian IL-1β Caspase-1 cleavage site is conserved
in amniotes (figure 6a). To determine whether Caspase-1-
mediated IL-1 cleavage is characteristic for amniotes, we
tested IL-1 proteins from different amniotes (reptiles: alligator
and turtle) and anamniotes (fish: shark; amphibian: Xenopus).
By co-transfecting IL-1 constructs with human Caspase-1, we
found that both turtle and alligator IL-1 are cleaved at a site
close to the N-terminus, estimated by the product size of
around 30 kDa, similar to the intermediate cleavage product
of mouse IL-1β (figure 6b). By contrast, IL-1 of Xenopus and
shark could not be cleaved by human Caspase-1. Taken
together we show that, first, the expression patterns and protein
cleavage of IL-1 in medaka resemble the mammalian IL-1α,
and second, the cleavage of IL-1 by Caspase-1 observed has
evolved in amniotes. Therefore, a designation of IL-1 in ana-
mniotes as homologue of IL-1β is currently not justified.
Additional experimental models will be needed to elucidate
the extent to which the cleavage of IL-1 proteins by calpains
in anamniotes is necessary for their activity.
3. Material and methods
3.1. Bioinformatic analysis
Sequences were retrieved using BLASTP searches (http://www.
ncbi.nlm.nih.gov/ or http://www.ensembl.org) with default
parameters using human and mouse IL-1 proteins. In our
phylogenetic tree analysis, we included IL-1 protein sequences
from nine mammals, two reptiles, four birds, eight teleosts
and one cartilaginous fish. All genes are listed in the
electronic supplementary material, table S1. Sequence alignment
and phylogenetic trees were done with the Geneious (version 3)
software.
3.2. Fish
Adult medaka (Oryzias latipes) were kept under a 14 h light–
10 h dark cycle at 26°C. Embryos were collected and kept in
embryonic rearing medium (ERM). Freshly hatched yolksac
transgenic larvae were used for most of three experiments.
Generation of medaka transgenic reporter lines, and all
experimental protocols were performed in accordance with
relevant institutional and national guidelines and regulations
and were approved by the EMBL Institutional Animal Care
and Use Committee (IACUC nos. 2019-03-19ML).
3.3. Generation of transgenic fish
To generate transgenic il1:gfp-t2a-il1-HA reporter fish, a frag-
ment containing GFP and full-length of medaka il1 cDNA
separated by t2a, a short viral sequences, were cloned into
a vector containing 6.9 kb upstream region of the il1 gene
(figure 2a). The plasmid at 10–25 ng µl−1 concentration
together with 1 µl I-SceImeganuclease and NEB buffer (New-
England BioLabs) was co-injected into the blastomere at one-
cell stage embryos. F0 larvae with GFP signal were selected
for breeding.
3.4. Immunohistochemistry
Larvae were fixed with 4% paraformaldehyde in 0.1% Tween
PBS (1 x PTW). After three washes, larvae were incubated in
30% sucrose/PTW for 24 h followed by 50% tissue freezing
medium/30 %Sucrose/PTW for another day. Samples were
mounted and sectioned at 20 µM on a cryostat (Leica Biosys-
tems CM2050S). Sections were rehydrated for 20 min with 1 x
PTW and blocked with 10% NGS/PTW for 2 h. They were
incubated with 1 : 500 mouse-anti-GFP (Sigma) and 1 : 500
Rb-anti-HA antibody (Cell Signaling) in 1% NGS/PTW
over night at 4°C. After several washing steps in PTW, sec-
tions were stained with anti-Rabbit-Alexa 647 and anti-
mouse-Alexa488 in 1% NGS/PTW with 1 : 1000 diluted
DAPI for 2 h at 37°C. Slides were washed 3 x 10 min with
PTW and then mounted with Vectra shield (Vectra labs). A
Zeiss 780 confocal microscope with a 40 x water objective
was used for imaging of stained sections.
3.5. Flow cytometry
Cells were isolated from spleen, kidney and blood from adult
transgenic fish. To avoid blood coagulation, ice cold 0.57 x
PBS with 30 mM EDTA was used to collect blood from fish.
Cells were disaggregated using a cell strainer (40 µm
Nylon, BD Falcon) and collected in FACS buffer (5 mM
EDTA, 10 U ml−1 Heparin in 1 x PBS). The BD LSR Fortessa
Cell Analyzer (BD Biosciences) was used for flow cytometry
analysis.
3.6. Whole-mount in situ hybridization
Whole-mount RNA in situ hybridization (WISH) was per-
formed as described previously [55]. Probes used in this
study are listed in the electronic supplementary material,
table S2.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org
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3.7. Wounding assay
The wounding assay was adapted from de Oliveira et al. [56].
Briefly, freshly hatched yolksac larvae were anaesthetized in
40 µg ml−1 ethyl-m-aminobenzoate methansulfonate (tri-
caine) in ERM. The caudal fin of larvae was cut using
sterile surgical blades. Larvae were then immediately
mounted in 1% low-melting agarose containing 40 µg ml−1

tricaine and live imaged overnight using confocal micro-
scopes (Zeiss 780 NLO or Leica SP8). The fluorescence
intensity over time was calculated using SUM intensity pro-
jections, background subtraction; intensity was measured
along the line of the cut side or along the rim of the fin in
uninjured fins. After background subtraction, the fold-
change was calculated from signal intensity at tx divided by
initial (t0) fluorescence intensity (t = time).
3.8. Injection of lipopolysaccharide and bacteria
Anaesthetized larvae were subcutaneously injected with
50 µg ml−1 LPS (Sigma) using a glass needle. Anaesthetized
adults were injected with PBS containing 20 µg of Staphy-
lococcus aureus BioParticles Alexa Fluor 594 conjugate
(ThermoFisher) in 50 µl. No fish died as a result of the injection.
Adult fish were then kept separately in tanks for 16 h before
euthanization and sample preparation for flow cytometry.
3.9. In vivo interleukin-1 cleavage assay
Freshly hatched yolksac larvae were incubated in 3–4 ml
ERM substituted with different combinations of compounds
in a six-well plate as shown in figure 4a. Larvae were first
treated with 50 µg ml−1 LPS for 2.5 h followed by 20–50 µm
ionomycin (Cayman Chemicals) or 50 µm nigericin (Sigma)
for additional 20–60 min. The treatment was terminated
when larvae showed clear signs of exposure (immobility).
Inhibitors MDL-28170 (Santa Cruz), CA-74 (Cayman
Chemicals) and Ac-YVAD-cmk (Sigma) were added directly
to the LPS containing medium, and the concentration was
kept constant after adding ionomycin into the medium.
After treatment, each larva was transferred into a 1.5 ml
tube on ice for subsequent protein extraction. Thirty microli-
tres of protein extraction buffer (10 mM HEPES, 100 mM KCl,
2 mM MgCl2, 0,1 mM CaCl2, 5 mM EGTA, pH = 8.0, 0.9 mM
TritonX, 1 mM NaF, 1 mM Na3VO4 and proteinase inhibitor)
was then added to the tube. Samples were squished using a
pestle. The suspension was kept on ice for 20 min and then
centrifuged for 20 min 4°C at 10.000 r.p.m. The supernatant
was transferred into a new tube and stored at −20°C. To
detect proteins, heat-denatured larval suspension were run
on a 15% SDS-PAGE and then transferred into a 0.45 µM
nitrocellulose membrane by semi-dry electroblotting for
35 min at 13 V. Blots were incubated with 1 : 1000 anti-HA
antibody (rabbit, Cell Signaling), 1 : 20 000 anti-GFP (mouse,
Sigma) and 1:20 000 anti-actin (rabbit, Sigma).
3.10. In vitro interleukin-1 cleavage assay
For lentiviral overexpression in J774 macrophages, murine
IL1a-GLuc, murine IL1b Gluc andmedaka IL1were subcloned
into third-generation lentivector pLenti6-EF1alpha-IRES-EGFP
(a derivative of Invitrogen pLenti6, kindly provided by Jonas
Doerr, Institute of Reconstructive Neurobiology, University of
Bonn) via SalI/NotI fusion. Lentiviruses were generated
using calcium-phosphate transfection of HEK293T, and J774
macrophages were spin transduced, as described in [57] and
sorted for GFP expression. For inflammasome experiments,
the luciferase signal was measured directly from the super-
natant after the addition of the Gaussia luciferase substrate
coelenterazine as performed in [49].

For transient transfection, murine IL1a-GLuc, murine
IL1b Gluc and medaka IL1 were subcloned into the
mammalian expression vector pEFBOS containing a C-term
FLAG-tag via XhoI/BamHI fusion. Medaka caspase-1 and
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human caspase-1 were subcloned into pLenti6-EF1alpha-
IRES-EGFP. HEK293T cells were transfected with the
indicated plasmids using TransIT-LT1 (Mirus Bio). Cells
were lysed with SDS-sample buffer 24 h after transfection
and prepared for immunoblotting. To detect proteins, heat-
denatured samples were run on a 12% SDS-PAGE and then
transferred into a 0.2 µM nitrocellulose membrane using
wet transfer (50 min, 100 V). Blots were incubated with 1 :
1000 Monoclonal ANTI-FLAG® M2- HRP antibody (mouse,
Sigma) or 1 : 1000 anti-cleaved Caspase-3 #9661 (rabbit, Cell
Signaling Technology), followed by 1 : 3000 goat anti-rabbit
HRP 1706515 (BioRad).

3.11. Statistical analysis
Wilcoxon–Mann–Whitney test was used to calculate signifi-
cant differences where indicated. A p-value less than 0.05
was considered statistically significant. The numbers of bio-
logical samples (N ) for experiments are indicated in each
figure. Data in bar graphs are shown as an absolute
number with means ± s.d. noted. All data were analysed in
GraphPad Prism software (version 9).
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