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An increasing body of evidence highlights the strong potential for a diet rich in fruit and
vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic,
neurological, and musculoskeletal conditions, and certain cancers. A possible protective
component, glucosinolates, which are phytochemicals found almost exclusively in
cruciferous vegetables, have been identified from preclinical and clinical studies. Current
research suggests that glucosinolates (and isothiocyanates) act via several mechanisms,
ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review
summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates
in relation to the specified health conditions. Although there is evidence that consumption of a
high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale
placebo-controlled human trials including standardized glucosinolate supplements are needed.
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INTRODUCTION

A poor diet with low amounts of fruits, vegetables, whole grains, seeds, and nuts, and excessive
consumption of foods such as ultra-processed grains and sugar-sweetened beverages is the leading
contributor to chronic disease risk (Afshin et al., 2019). There is increasing evidence that higher
consumption of fruit and vegetables plays a central role in the prevention of non-communicable
diseases (Liu, 2013). Vegetables contain a variety of different compounds that have beneficial health
effects, including fiber, vitamins, minerals, and phytochemicals.

Research has shown that some types of vegetables may have greater health benefits than others for
certain health conditions, such as diabetes, cardiovascular disease, and cancer (Cooper et al., 2012;
Aune et al., 2017). This may be due to the presence of unique bioactive phytochemicals with potent
health-related effects. Therefore, targeted recommendations surrounding the intake of specific types
of vegetables with protective health benefits could assist in the reduction of non-communicable
diseases.
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Cruciferous vegetables include arugula (rocket), bok choy,
broccoli, Brussels sprouts, cabbage, cauliflower, collard greens,
daikon, horseradish, kale, kohlrabi, radish, turnips, wasabi, and
watercress and are commonly consumed globally (International
Agency for Research on Cancer, 2004). A number of
epidemiological studies have investigated the health impact of
cruciferous vegetables in humans and indicated that higher
intakes of these vegetables are associated with a reduced risk
of cardiometabolic diseases, musculoskeletal conditions, and
cancer (Zhang et al., 2011; Liu et al., 2012; Wang et al., 2016;
Aune et al., 2017; Blekkenhorst et al., 2017a; Sim et al., 2018).
Although these vegetables contain a range of nutrients known to
have beneficial health properties, studies have focused on the
health effects of glucosinolates that are found almost exclusively
in cruciferous vegetables.

Glucosinolates are phytochemicals that are proposed to be an
important contributor to the health benefits of these vegetables
(Manchali et al., 2012; Miękus et al., 2020). Glucosinolates (and
their isothiocyanates) found in commonly consumed cruciferous
vegetables include glucoraphanin (sulforaphane), sinigrin (allyl
isothiocyanate), glucobrassicin, glucoraphasatin, and glucoiberin
(Favela-González et al., 2020). Historically, a major research focus
has been the anticancer effect of glucosinolates. However, there

has been increasing evidence in recent years for the impact of
cruciferous vegetables in cardiometabolic, neurological, and
musculoskeletal conditions (Figure 1). Animal studies are
important in identifying possible mechanisms responsible for
health outcomes and provide the groundwork for future human
trials. There is currently a lack of randomized controlled trials in
this area, highlighting the importance of using animal data to
inform trials investigating similar outcomes in humans.
Therefore, the aim of this review was to provide an update of
the current body of knowledge concerning the health effects of
cruciferous vegetables and their glucosinolates, with a focus on
cardiometabolic, neurological, and musculoskeletal conditions,
and certain cancers. Electronic databases (PubMed, MEDLINE,
Embase, and Google Scholar) were searched for peer-reviewed
articles concerning glucosinolates and the specified health
outcomes. The search was inclusive of all study designs
given that this is an emerging area of research. Search terms
included glucosinolates, isothiocyanates, cruciferous vegetables,
cardiometabolic, hypertension, hyperglycemia, diabetes,
dyslipidemia, neurological, psychiatric, musculoskeletal,
muscle, bone, and cancer. Each subsection provides an
overview of the epidemiological, preclinical, and clinical
evidence.

FIGURE 1 | Potential benefits of glucosinolate consumption on cardiometabolic, neurological and psychiatric, and musculoskeletal conditions, and cancer.
*Human study #Animal study.
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GLUCOSINOLATES IN CRUCIFEROUS
VEGETABLES

Cruciferous vegetables belong to the family Brassicaceae (also
known as Cruciferae) within the order Brassicales. Within this
order, almost all plants contain secondary plant metabolites
known as glucosinolates, with commonly consumed plants
belonging to the Brassicaceae, Capparaceae, and Caricaceae
families (Shakour et al., 2021). Glucosinolates are responsible
for the bitter taste and pungent odor found in these vegetables
(Barba et al., 2016).

The type of glucosinolate determines the compounds formed;
different sidechains result in the production of different end
products (Barba et al., 2016). More than 130 glucosinolates have
been identified (Blažević et al., 2020), although not all are found
in plants commonly consumed by humans. Glucosinolates have
been commonly classified under three categories: Aliphatic,
indole, and aromatic glucosinolates. However, this
classification has also been disputed in a recent review where
the type of degradation end product was proposed to be a more
useful classification method (Blažević et al., 2020).

Upon damage to plant tissue (i.e., by chewing, cutting, or
mixing), the hydrolysis of glucosinolates via enzymatic activity of
myrosinases occurs due to cellular breakdown. This results in the
formation of products, including isothiocyanates, nitriles, and
thiocyanates (Kissen et al., 2009). Metabolism of glucosinolates
can also occur by gut microbiota (Luang-In et al., 2014). If
myrosinase is denatured, when ingested, glucosinolates could
be partially absorbed in the stomach and the remaining intact
glucosinolates transit to the small intestine and colon where they
may be hydrolyzed by intestinal microbiota and absorbed as
isothiocyanates (Barba et al., 2016).

The glucosinolate profile of these vegetables is an important
determinant of the ultimate biological action when consumed by
humans, with the beneficial health properties of these compounds
largely linked to the actions of isothiocyanates (Maina et al., 2020;
Shakour et al., 2021). A number of factors influence the type and
concentration of glucosinolates found in these vegetables, such as
genotype, cultivar, cultivation site, growth conditions (e.g.,
temperature, nutrient availability, water content), plant stage,
plant tissue analyzed, storage conditions, and preparation and
cooking methods (Maina et al., 2020).

The plant genotype determines the specific glucosinolates that
are present in a particular type of cruciferous vegetable. However,
the interaction between these plant genetic factors and the
environment can affect the concentration of glucosinolates
found within a specific sample (Björkman et al., 2011; Raiola
et al., 2017). Environmental factors include sulfate and nitrogen
content of the soil, water availability or drought, and seasonality
(Björkman et al., 2011). Furthermore, the developmental stage
and specific plant tissue also influences the concentration of
glucosinolates. For example, it has been found that 3-day old
broccoli and cauliflower sprouts contain 10–100 times higher
glucoraphanin levels per gram compared to their mature plant
forms (Fahey et al., 1997).

Seasonal variation in glucosinolate content has been recorded,
with the majority of studies indicating that plants with the highest

glucosinolate concentration are typically grown in spring in
intermediate temperatures with high light intensity, longer
days, and dry conditions (Björkman et al., 2011). However,
there is variation among plants and exceptions to this. The
diurnal cycle may also impact the glucosinolate profile of
cruciferous vegetables. For example, Casajús and coworkers
found that glucosinolate levels were optimized during
postharvest storage if broccoli were harvested close to noon
(Casajús et al., 2020).

Typically, cruciferous vegetables are not consumed
immediately after harvesting. Therefore, the storage and
processing of such vegetables have a significant impact on
glucosinolate content and the health benefit of consumption
(Björkman et al., 2011; Barba et al., 2016). This is variable
depending on the cultivar, plant tissue, and growth stage of
the plant (Galgano et al., 2007). Freezing has been shown to
result in higher retention of glucosinolates compared to
refrigeration. Storage of broccoli at 6°C for 35 days resulted in
a sulforaphane loss of 29%, compared to losses of approximately
13% after freezing at −18°C for 60 days. Moreover, the reduction
in glucosinolates measured after freezing was associated with
steam-blanching prior to freezing (Galgano et al., 2007). Storage
in darkness has been shown to decrease the content of aliphatic
glucosinolates (Casajús et al., 2020).

Cooking denatures the myrosinase found in cruciferous
vegetables, with high temperature (>80°C) and long cooking
time increasing the intensity of denaturation (Barba et al.,
2016; Raiola et al., 2017). Therefore, steaming is the preferable
cooking method to maximize glucosinolate yield compared to
boiling, microwaving, and pressure cooking (Shakour et al.,
2021). These other methods are all associated with significant
glucosinolate losses up to more than 90% (Barba et al., 2016;
Wang Z. et al., 2020; Shakour et al., 2021).

GLUCOSINOLATES FROM CRUCIFEROUS
VEGETABLES AND HUMAN HEALTH

Many studies on the health effects of glucosinolates found in
cruciferous vegetables have been based on laboratory or animal
models. However, the number of studies involving humans is
increasing. This review will focus on cardiometabolic,
neurological, and musculoskeletal disorders in addition to
providing a summary of the most recent literature on the
effect of glucosinolates in certain cancers. Figure 1 provides
an overview of the potential impact of glucosinolates on these
conditions.

Cardiometabolic Disorders
Cardiometabolic disorders are a collection of interrelated
conditions, mainly dyslipidemia, insulin resistance, impaired
glucose tolerance, hypertension, and central adiposity (Kirk
and Klein, 2009). To date, investigations into the effects of
cruciferous vegetables and their glucosinolates have largely
focused on hyperglycemia and diabetes, hypertension, and
dyslipidemia. Epidemiological studies have indicated a
potential beneficial association between cruciferous vegetables
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and such conditions (Zhang et al., 2011; Blekkenhorst et al.,
2017a; Chen et al., 2018; Lapuente et al., 2019; Zurbau et al.,
2020). The antioxidant and anti-inflammatory properties of
glucosinolates have been proposed to account for some of the
observed health benefits associated with cruciferous vegetable
intake and cardiometabolic disorders (Esteve, 2020). The anti-
inflammatory effects of sulforaphane and other isothiocyanates
for these conditions may involve increased Nrf2 activity and
inhibition of NF-κB (Esteve, 2020).

Hyperglycemia and Diabetes
There is increasing interest in the impact of glucosinolates on
glycemic control. Isothiocyanates, such as raphasatin and
sulforaphane, may prevent or reduce glycemic-related
complications in animal and human studies (Maina et al.,
2020). Sulforaphane was found to prevent diabetes-induced
hypertension and cardiac dysfunction in a study including
hyperglycemic mice treated with or without sulforaphane
(0.5 mg/kg daily for 5 days/week) for 3 months and with
3 months of further observation (Bai et al., 2013).

A number of observational studies have investigated
associations between cruciferous vegetable intake and glucose
metabolism and risk of type 2 diabetes. A meta-analysis including
11 prospective studies (754,729 participants, 58,297 incident type
2 diabetes cases) found a 13% lower risk of type 2 diabetes with
high cruciferous vegetable intake (Chen et al., 2018). Unlike other
studies, in a large prospective cohort study including 200,907
adults from the United States, self-reported total cruciferous
vegetable consumption was significantly associated with the
development of type 2 diabetes (HR: 1.16; 95% CI: 1.07, 1.25;
Ptrend: < 0.001) (Ma et al., 2018). Participants in the highest
quintile of glucosinolate intake had a 19% higher risk of type 2
diabetes than those in the lowest intake quintile (Ma et al., 2018).
This differing outcomemay be a result of other differences in diet,
as the meta-analysis included European and Asian populations
(Chen et al., 2018) in addition to studies from the United States
(Ma et al., 2018). Differences in other foods or beverages
consumed with cruciferous vegetables as part of the diet may
differ greatly between these populations. However, potential
faults in the measurement of glucosinolates in the study by
Ma and coworkers have been noted (Oliviero et al., 2018),
which may have also affected the results (e.g., the effect of
vegetable processing and preparation was not considered in
the food frequency questionnaire and use of total
glucosinolates instead of the bioactive isothiocyanates).

Several human intervention trials have also been performed.
In a 4-week parallel, randomized, double-blind placebo-
controlled study including 81 human participants with type 2
diabetes, 10 g/day broccoli sprout powder (225 μmol
sulforaphane daily) decreased fasting serum insulin and
insulin resistance by 18.2 and 14.2%, respectively (Bahadoran
et al., 2012). Positive results were also seen in a randomized
double-blind placebo-controlled study including 97 Scandinavian
patients with type 2 diabetes. In this study, patients consumed
broccoli sprout extract (150 μmol sulforaphane/day) or a placebo
over a 12-week period. The glucoraphanin-rich broccoli sprout
extract improved both fasting glucose and HbA1c (7.38–7.04%)

in obese patients with dysregulated diabetes (BMI >30 kg/m2;
HbA1c > 50 mmol/mol) (Axelsson et al., 2017). The authors
noted that this reduction in HbA1c was likely to reflect a clinically
meaningful effect, as an HbA1c of 7% is the treatment goal of the
American Diabetes Association (Axelsson et al., 2017). In a recent
12-week randomized controlled parallel intervention trial, 92
patients with type 2 diabetes were randomized to one of three
different diets: 500 g/day bitter and strong-tasting root vegetables
and cabbages, 500 g/day mild and sweet-tasting root vegetables
and cabbages, or 120 g/day mild and sweet-tasting root vegetables
and cabbages (normal diet) (Thorup et al., 2021). Improvements
in glycemic control were noted in both groups with increased
vegetable intake; however, consumption of bitter and strong-
tasting vegetables (including kale and cabbage) had the greatest
improvements to fasting glucose (4-fold), total cholesterol (2-
fold), and body fat mass (2-fold) (Thorup et al., 2021).

Hypertension
Positive effects of glucosinolates in relation to blood pressure
have also been found in animal models (Wu et al., 2004). Dried
broccoli sprouts (200 mg/day; ∼12 μmol glucoraphanin/g dry
weight) administered daily to spontaneously hypertensive
stroke-prone (SHRSP) rats resulted in significantly decreased
measures of oxidative stress [increased glutathione (GSH) and
decreased oxidized glutathione (GSSG); GSH/GSSG ratio
10.6–14.0 compared with 4.0–7.2 with SHRSP rats on control
diet], which was correlated with significantly lower blood
pressure (20 mmHg lower compared to control) and improved
endothelial function (Wu et al., 2004). Sulforaphane, the
metabolite of glucoraphanin, was considered responsible for
these changes. 10 μmol/kg body weight sulforaphane
administered to SHRSP rats over a 4-month period resulted in
reduced blood pressure and prevented hypertension-associated
vascular remodeling (Senanayake et al., 2012). It has also been
hypothesized that erucin, an analog of sulforaphane, may play a
role in the antihypertensive effect seen with arugula (Eruca
sativa) (Salma et al., 2018). A significant reduction in mean
arterial pressure was reported in salt-induced hypertensive rats
administered 10 and 30 mg/kg E. sativa extract (40.33 ± 1.15 and
59.43 ± 0.77% mmHg, respectively) (Salma et al., 2018).

Eighty-six adults with type 2 diabetes and a positive H. pylori
stool antigen test were included in a 4-week study and
randomized to one of three groups: standard triple therapy
(twice daily 20 mg omeprazole, 500 mg clarithromycin,
1,000 mg amoxicillin for 14 days), broccoli sprout powder (6 g/
day), or a combination of broccoli sprout powder and standard
triple therapy. Whilst there was a reduction in systolic and
diastolic blood pressure in all groups, this was only significant
from baseline in the group who received the standard triple
therapy and broccoli sprout powder combination (14 and
9.4 mmHg reduction in systolic and diastolic blood pressure,
respectively) (Mirmiran et al., 2014). In another 4-week study
including 40 individuals with hypertension found that daily
ingestion of 10 g dried broccoli sprouts did not improve
endothelial function (Christiansen et al., 2010). Conversely,
although statistically non-significant (p � 0.05), a trend
towards a ∼10% decrease in diastolic blood pressure was
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reported in pregnant women with preeclampsia during a recent
dose escalation study of activated broccoli extract (equivalent to
32 or 64 mg sulforaphane), regardless of sulforaphane dose
(Langston-Cox et al., 2021). A current randomized controlled
crossover trial is investigating whether regular consumption of
cruciferous vegetables results in short-term improvement in
cardiometabolic measures, such as ambulatory blood pressure
and glycemic control (Connolly et al., 2020).

Dyslipidemia
Most of the research investigating the effects of glucosinolate
consumption on lipids has been undertaken in animal models.
The sprout extract of Tuscan black cabbage, a type of kale, was
found to be protective against a high-fat diet in rats, restoring
antioxidant and phase II enzyme levels and lowering serum lipids
(total cholesterol, triacylglycerides, non-esterified fatty acids)
(Melega et al., 2013). Similarly, glucosinolates may contribute
to the anti-inflammatory and cholesterol-lowering effects of red
cabbage. Red cabbage microgreens (equivalent to 200 g
vegetables/day/person) lowered circulating LDL cholesterol,
liver cholesterol, and inflammatory cytokines in a rodent
model of a high fat diet (Huang et al., 2016). A systematic
review and meta-analysis of rodent models found consistent
significant decreases in total serum cholesterol with
sulforaphane doses of more than 0.5 mg/kg/day, and a
reduction in LDL cholesterol has also been identified (Du
et al., 2021). Glucosinolates have also been demonstrated to
reduce the formation and progression of atherosclerotic lesions
in rabbit models of atherosclerosis. Rabbits fed a high cholesterol
diet and 0.25 mg/kg/day sulforaphane over 4-week had improved
measures of endothelial function and resistance to the
development of atherosclerosis, compared to rabbits fed only a
high cholesterol diet (Shehatou and Suddek, 2016). Additionally,
phenethyl isothiocyanate, the product of the glucosinolate
gluconasturtiin, was shown to lower atherosclerotic plaque
formation and hepatic lipid accumulation in C57BL/6 mice fed
a high fat/cholesterol diet with 30 or 75 mg/kg/day phenethyl
isothiocyanate (Gwon et al., 2020).

Few studies have been conducted in humans. In a phase I
study conducted in Japan including 12 human participants
(20–36 years), daily consumption of 100 g fresh broccoli
sprouts was shown to improve HDL by 7.6% in female
participants and reduce total cholesterol by 10% in male
participants from baseline measurements (Murashima et al.,
2004). Similarly, glucoraphanin-rich broccoli (400 g/week)
consumed over a 12-week period was found to significantly
reduce plasma LDL-C compared to consumption of standard
broccoli in two randomized, double-blind parallel studies
including 130 adults aged ≥50 years at risk of cardiovascular
disease (Armah et al., 2015).

Neurological and Psychiatric Disorders
Preclinical evidence suggests that glucosinolates and their
metabolites, particularly sulforaphane, exhibit several biological
properties that may be relevant to neurological and psychiatric
conditions (Wu et al., 2016; Panjwani et al., 2018). A number of
potential mechanisms include the modulation of the

hypothalamic-pituitary-adrenal axis, oxidative stress, and
inflammatory pathways. Sulforaphane may diminish
neuroinflammation (by reducing NF-κB and TNF-α, and
increasing IL-10) (Folkard et al., 2014; Santín-Márquez et al.,
2019), reduce beta-amyloid and tau production (Kim, 2021),
increase brain derived neurotrophic factor (Kim et al., 2017),
postsynaptic density protein 95, AMPA receptor 1 (GluA1),
dendritic spine density (Zhang et al., 2017), and blood brain
barrier integrity (Li et al., 2013). Recently, sulforaphane has
revealed epigenetic properties by inhibiting DNA
methyltransferases in addition to preserving proteome
homeostasis, influencing increased cellular lifespan and
neurodegenerative prevention (Santín-Márquez et al., 2019).
Furthermore, a sulforaphane intervention study in a cohort of
healthy participants augmented peripheral and brain glutathione
(Sedlak et al., 2017), an antioxidant readily implicated in various
neurological functions (Dwivedi et al., 2020). At present, it
remains unclear whether there are numerous key mechanisms
involved across various disorders or whether mechanisms are
disorder specific.

Psychiatric Disorders
Due to the supportive mechanistic data, animal models and
clinical trials have begun to evaluate the use of sulforaphane
interventions for psychiatric outcomes, including depression,
schizophrenia, and autism (Panjwani et al., 2018). Acute and
chronic consumption of sulforaphane consumption ameliorated
anxiety and depressive-like behaviours in ICR and C57BL/6
mouse models (assessed using the novelty suppressed feeding
test, open field and tail suspension tests) (Wu et al., 2016; Yao
et al., 2016). Notably, C57BL/6 male mice that received
sulforaphane in conjunction with depression-inducing
lipopolysaccharide, exhibited lower depressive behaviours on
the tail-suspension test and forced swimming test compared to
those that did not receive sulforaphane (Zhang et al., 2017).

These results are supported by a recent randomized placebo
controlled trial, which demonstrated that a 6-week sulforaphane
intervention (30 mg/day) safely improved depressive symptoms,
as measured by the Hamilton Rating Scale for Depression, in 66
participants with a history of a cardiac procedure and presence of
mild to moderate depression (Ghazizadeh-Hashemi et al., 2021).
In addition, an ongoing randomized controlled trial is examining
whether sulforaphane may be utilized as an adjuvant treatment in
bipolar depressive disorder (Wu et al., 2020). A small (n � 10)
open label study demonstrated that an 8-week sulforaphane
intervention improved cognitive function in a cohort of
participants with schizophrenia (Shiina et al., 2015).
Conversely, a more recent 16-week randomized controlled trial
(n � 58) reported that sulforaphane (approximately 45 mg/day)
failed to change the severity of psychotic symptoms compared to
placebo using the total Positive and Negative Syndrome Scale
(Dickerson et al., 2021). A recent review identified three double
blind, randomized placebo controlled trials and two open-label
trials examining the effects of sulforaphane on symptoms
associated with Autism spectrum disorder (McGuinness and
Kim, 2020). Collectively, study results were suggestive of a
significant improvement in behavioral phenotypes such as
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irritability and motivation, alongside social and cognitive scores
during sulforaphane interventions (Singh et al., 2014; Bent et al.,
2018).

Neurological Disorders
Similar to psychiatry, various animal models have suggested the
efficacy of sulforaphane interventions in the treatment of
neurodegenerative disease; however, clinical trials are currently
lacking (Schepici et al., 2020; Kim, 2021). Various pre-clinical
animal studies have demonstrated improved cognitive ability and
reduced learning/memory deficits following sulforaphane
interventions in Alzheimer’s disease models (Kim et al., 2013;
Lee et al., 2018). Further, administration of sulforaphane in adult
mice induced a variety of cognitive changes associated with
memory consolidation and spatial learning (Sunkaria et al.,
2018). In vitro investigations have highlighted the potential of
sulforaphane to prevent the loss of oligodendrocytes and axonal
damage in multiple sclerosis, by modulating neuroinflammation
and oxidative stress (Lim et al., 2016). Sulforaphane
administration in mice exposed to 6-hydroxydopamine has
also been shown to improve motor deficits, while dietary
intake of sulforaphane preserved dopaminergic neurons
following induced dopaminergic neurotoxicity in mice
(Morroni et al., 2013; Pu et al., 2019). The protective effects of
sulforaphane have further been implicated in acute
neurodegenerative conditions, such as acute ischemic brain
injury and traumatic brain injury, amongst mice models
(Tarozzi et al., 2013). Given the promising results in animal
studies, clinical studies are required to evaluate the effect of
sulforaphane on neurological outcomes in humans.

Musculoskeletal Disorders
Current epidemiological evidence suggests that cruciferous
vegetables play a key role in muscle and bone health, possibly
due to the presence of glucosinolates and isothiocyanates. For
example, in a large cohort of older community-dwelling women
(n � 1,468, ≥70 years), women with the highest cruciferous
(>44 g/day) and allium (>11 g/day) vegetable intake had 28
and 34% lower relative hazards for a fracture-related
hospitalization over 14.5 years, respectively (Blekkenhorst
et al., 2017b). Similarly, greater cruciferous and allium
vegetable intake was associated with 22 and 26% lower relative
hazard ratio for an injurious fall-related hospitalization over this
time, respectively (Sim et al., 2018). Although not specifically
examining the role of glucosinolates, these studies demonstrate
the potential importance of a diet rich in glucosinolates for
musculoskeletal health.

Muscle
When considering the role of glucosinolates for musculoskeletal
health, sulforaphane has been studied most extensively in animal
models. Historically, the understanding of the effects of
glucosinolates on skeletal muscle comes from trials of their
application in animal production settings, with results
indicating that although growth performance may be affected,
muscle had an improved antioxidant status and fatty acid profile
(Drażbo et al., 2019; Skugor et al., 2019). When sulforaphane was

provided to male Wistar rats for 3 days prior to performing
exhaustive exercise, sulforaphane served as an indirect
antioxidant in skeletal muscle, as measured by decreased tissue
total antioxidant capacity in the vastus lateralis muscle. It was
concluded that sulforaphane plays a vital role in modulating the
muscle redox environment; ultimately creating favorable effects
on muscle (Malaguti et al., 2009). It was reported that type 2
diabetic mice receiving sulforaphane injections over 4 week had
greater grip strength, lean mass, and gastrocnemius mass (Wang
M. et al., 2020). These diabetic mice also presented with improved
skeletal muscle fiber organization after sulforaphane treatment. It
was proposed that sulforaphane may downregulate the
expression of inflammatory and apoptotic associated proteins.
Sulforaphane was also suggested to play a role in regulating
mRNA levels of anti-inflammatory and oxidative related genes.
Collectively, it was concluded that sulforaphane treatment could
be protective against skeletal muscle disease in mice with type 2
diabetes.

Similar favorable results have also been reported in muscular
dystrophy mice models, where sulforaphane treatment alleviated
muscle inflammation in dystrophin-deficient mdx mice (Sun
et al., 2015b). Three studies (from the same research group)
investigated administration of sulforaphane to mdx dystrophic
mice, the most widely utilised murine model of Duchenne
muscular dystrophy (Swiderski and Lynch, 2021). Although
there was some variation between the studies, the overall
conclusion was that sulforaphane improved aspects of the
dystrophic phenotype (Sun CC. et al., 2015; Sun et al., 2015c;
Sun et al., 2016). Oral administration of sulforaphane (2 mg/kg/
day) to 4-week-old mdx mice increased muscle mass, force
production, and running distance compared to untreated mdx
mice. These effects were associated with decreased expression of
markers of muscle inflammation and fibrosis (Sun CC. et al.,
2015; Sun et al., 2015c; Sun et al., 2016).

In the context of addressing aspects of sarcopenia or age-
related impairments in skeletal muscle, 21-22-month-old mice
were administered either a regular chow diet or the same diet
supplemented with sulforaphane for 12 week (Bose et al., 2020).
Skeletal muscle and heart function, mitochondrial function, and
Nrf2 activity were assessed at the end of sulforaphane treatment.
Compared to a young group of 2-month-old control mice, aged
mice showed impairments in skeletal muscle and cardiac function
and a decrease in Nrf2 activity. These parameters were all restored
in the old mice receiving sulforaphane treatment. It was
concluded that sulforaphane could be a safe and effective
approach to protect against age-related impairments in skeletal
muscle and the heart (Bose et al., 2020).

Bone
Sulforaphane has also been proposed to protect against
osteoclastic bone destruction in vitro (Luo et al., 2021).
Sulforaphane can support osteoblast differentiation (via
epigenetic mechanisms) and expression of the osteoclast
activator receptor activator of nuclear factor-κB ligand
(RANKL) in osteocytes (Thaler et al., 2016). Here, after
sulforaphane was provided over 5 week, the aforementioned
effects correlated to a 20% greater bone volume in both
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normal and ovariectomized mouse models. Of note, no shifts in
bone mineral density distribution were recorded. Ultimately, this
led the authors to suggest that sulforaphane should be studied
further due to its potential to counteract osteoporosis.
Sulforaphane has also been studied for its potential benefits in
osteoarthritis due to its reported antioxidant and anti-
inflammatory properties. When a synthetic form of
sulforaphane was orally supplemented to mice over 3 months,
osteoarthritis-related gait asymmetry was recorded in vehicle-
treated STR/Ort mice but not in sulforaphane treated mice
(Javaheri et al., 2017). Sulforaphane treated mice also
presented with improvements in trabecular and cortical bone,
key indicators for bone strength. Noteworthy, favorable effects on
bone turnover markers, such as C-terminal crosslinking
telopeptide of type-I collagen (CTX-I; bone resorption marker)
and total procollagen type 1 N-terminal propeptide (P1NP-bone
formation marker), were recorded.

Cancer
Epidemiological studies provide evidence that a diet rich in
broccoli reduces cancer risk and progression (Yagishita et al.,
2019; Le et al., 2020). Much of this link has been associated with
isothiocyanates, including sulforaphane (Miękus et al., 2020; Gu
et al., 2021). Sulforaphane is commonly recognized for its
antioxidant, anti-inflammatory, and chemo-preventive effects
with numerous types of cancer, including prostate, breast,
liver, and colon (Soundararajan and Kim, 2018; Livingstone
et al., 2019; Mahn and Castillo, 2021).

Prostate Cancer
Sulforaphane has been indicated to have multiple roles in a
variety of key metabolic pathways involved in prostate cancer
development including inhibition of angiogenesis and cell
proliferation and initiating apoptosis (Traka et al., 2014;
Soundararajan and Kim, 2018; Livingstone et al., 2019).
Treatment with sulforaphane significantly reduced
expression of key glycolytic genes, including hexokinase II
and pyruvate kinase M2, in prostate cancer cell lines, LNCaP,
22RV1, and PC-3, and in transgenic mouse models, TRAMP
and Hi-Myc (Singh et al., 2019). Sulforaphane also induced
S-phase and G2/M-phase cell cycle arrest, enhanced histone
acetylation, and up-regulated cell cycle proteins in the prostate
cancer cell lines, DU145 and PC-3 (Rutz et al., 2020),
suggesting that sulforaphane treatment leads to reduced cell
proliferation activity.

There have been numerous human studies investigating the
influence of sulforaphane on prostate cancer. Traka and
coworkers evaluated the effect of a once-a-week consumption
of broccoli soups with increasing concentration of glucoraphanin
in a prostate cancer cohort on active surveillance. They indicated
a dose-dependent suppression in gene expression and pathways
associated with the development and progression of prostate
cancer (Traka et al., 2019). Consistent with this study, Zhang
and coworkers assessed the influence of daily consumption of
either 200 µmol broccoli sprout extract or placebo in men
scheduled for prostate biopsy and demonstrated changes in
gene expression with the downregulation of genes associated

with prostate cancer progression (AMACR and ARLNC1)
(Zhang et al., 2020).

Breast Cancer
Previous cell-based and human studies have indicated that
sulforaphane exposure is associated with decreased breast
cancer progression, including initiating cell cycle arrest and
apoptosis (Kuran et al., 2020). Sulforaphane treatment led to
the inhibition of cell proliferation of breast cancer cells lines,
MCF-7 and MDA-MB-231 and provoked cytotoxic activity by
changing cysteine residues of the promyelocytic leukemia
protein, known to promote proliferation of the MCF-7 breast
cancer cell line (Alhazmi et al., 2020). Sulforaphane has also been
shown to modify cell migration and expression of epithelial
mesenchymal transition markers that play a large role in
breast cancer metastasis (Bagheri et al., 2020).

There are limited human studies that have evaluated the role
of sulforaphane on breast cancer. Atwell and coworkers evaluated
the effect of either a supplement containing standardized
concentration of glucoraphanin with myrosinase enzyme
(BroccoMax) or placebo for a minimum of 2-week in women
with abnormal mammograms and booked for breast biopsies.
They indicated that BroccoMax supplementation significantly
reduced the tissue biomarkers, Ki-67 and HDAC3, in benign
tissue but not in ductal carcinoma in situ (DCIS) or invasive
ductal carcinoma breast tissues (Atwell et al., 2015). Zhang and
coworkers evaluated the interaction between cruciferous
vegetable intake and biomarkers in women scheduled for
breast biopsies and found a negative association with total
cruciferous vegetable intake and cell proliferation in DCIS
breast tissue (Zhang et al., 2016), suggesting a role of
sulforaphane in chemoprevention against breast cancer.

Liver Cancer
Treatment with sulforaphane significantly reduced migration and
adhesion and inhibited expression of key molecules in
angiogenesis, VEGF, STAT3, and HIF-1α, in liver cancer cell
line, HepG2 (Liu et al., 2017). Sulforaphane exposure led to
reduction in cell growth, by significantly downregulating key
cell cycle-related genes in HepG2 and Huh7 cell lines, and also
within a xenograft mouse model (Sato et al., 2018). Sulforaphane
decreased secretion of the pro-inflammatory cytokine,
interleukin-6, and was not linked with cellular toxicity in
HepG2 cells (Al-Bakheit and Abu-Qatouseh, 2020), suggesting
that sulforaphane could have anti-inflammatory properties and
may modulate liver carcinogenesis.

Whilst there is much cell-based evidence for the role of
sulforaphane on liver cancer, there are limited animal and no
human studies. Chen and coworkers assessed the effect on mice
given diethylnitrosamine before being placed on a Western diet
or Western diet supplemented with 10% w/w freeze-dried
broccoli powder. The broccoli diet decreased liver damage and
fatty liver progression but did not reduce liver cancer
development (Chen et al., 2016a). However, in another study,
mice were given a control or Western diet with or without the
addition of 10% w/w freeze-dried broccoli before being treated
with diethylnitrosamine. The initiation and progression of liver
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cancer was reduced in mice receiving the freeze-dried broccoli
(Chen et al., 2016b). Thus, further animal and human studies are
required to delineate the effect of sulforaphane on liver cancer.

Colon Cancer
Colon cancer incidence is heavily associated with dietary habits;
diets rich in red meat are associated with an increased risk, whilst
those high in fruit and vegetables are associated with a reduced
risk (Veettil et al., 2021). In human colon cancer cell lines,
HCT116 and SW480, sulforaphane diminished cell growth in
a dose-dependent way, and increased apoptosis induced by
Lactobacillus through the TNFα pathway (Yasuda et al., 2019).
Sulforaphane treatment also led to suppression of key colorectal
cancer stem cell markers, such as CD44 and CD133 in HCT116
and SW480 spheroids, facilitated by the TAp63α/Lgr5/β-catenin
pathway (Chen et al., 2020), suggesting that exposure to
sulforaphane could lead to lowered cell proliferation activity.
On the contrary, sulforaphane treatment (<10 µM) led to
increased cell proliferation and also lowered expression of key
apoptotic proteins Bcl-2 and Bax, but concentrations of greater
than 10 µM caused cell death in p53-wild-type HCT116 cells
(Wang et al., 2021). There are few animal or human studies that
have assessed the role of sulforaphane on colon cancer. However,
Suzuki and coworkers found that sulforaphane intake led to
reduced development of microscopic aberrant crypt foci and
macroscopic tumors in mice or patients with colon cancer
(Suzuki et al., 2019), suggesting that consumption of broccoli
could prevent colon cancer progression.

CONCLUSION AND FUTURE DIRECTIONS

The evidence presented in this review suggests that glucosinolates
and their isothiocyanate metabolites found in cruciferous
vegetables are important components in the prevention and
treatment of multiple chronic diseases. Studies indicate that
cruciferous vegetables and their glucosinolates may have an
impact on a number of cardiometabolic disorders. Of note,
improvements in glycemic control, blood pressure, and lipid
profile have been identified, which may lead to a reduction or
delay in disease progression. Likewise, glucosinolate metabolites,
particularly sulforaphane, may exert a beneficial effect on
neurological and psychiatric conditions, such as depression,
schizophrenia, autism, Alzheimer’s disease, and multiple
sclerosis. Sulforaphane has also been indicated as an important
dietary component for musculoskeletal disorders, with studies
reporting improvements in measures for both muscle and bone.
To date, however, most of the aforementioned results have come
from animal models, with limited human randomized controlled
trials. Although there are limitations in the extrapolation of
animal data directly to humans, animal studies provide an
important insight into the mechanisms by which
glucosinolates may also exert outcomes in humans.

Moreover, cruciferous vegetables also contain a variety of
other nutrients known to have important health effects (e.g.,
vitamin C, vitamin K, carotenoids, and flavonoids) (Manchali
et al., 2012). As such, it is difficult to separate the action of

glucosinolates from these other compounds when determining
the results of food-based cruciferous vegetable interventions.
Further, when these vegetables are consumed as part of a
particular dietary pattern, there may be other factors
influencing the effect of glucosinolates consumed (e.g.,
influences on metabolism and gut microbiota). This idea is
also relevant to observational studies, where other diet
components could influence the observed associations between
glucosinolate-rich vegetables and particular health outcomes.
Therefore, future large-scale human trials utilizing
standardized, reproducible protocols, and appropriate
glucosinolate doses that reflect realistic habitual intake are
needed to further elucidate the benefits of cruciferous
vegetables and related compounds.

Whilst there is also evidence that sulforaphane reduces cancer
development, future research on the underlying molecular
mechanisms is also warranted to further understand the role
of sulforaphane in the metabolic rewiring of cancer progression.
Interestingly, recent studies have indicated that sulforaphane
treatment in conjunction with anti-cancer treatments such as
chemotherapy, increases cancer cell sensitivity (Jabbarzadeh
Kaboli et al., 2020), lessens their toxic side effects (Calcabrini
et al., 2020), and inhibits key survival pathways in cancer
progression (Mokhtari et al., 2021). This suggests that
sulforaphane could not only be a potential drug candidate but
also be used in combination with current anti-cancer treatments.

A number of different factors can influence the glucosinolate
content of vegetables (e.g., cultivar, growth conditions, storage,
and cooking method), and this variation in glucosinolate content
may be partially responsible for differing results from studies
utilizing the same vegetables (e.g., broccoli) across different
locations and with varying preparation and cooking methods.
Further studies are also needed to determine and utilize the
optimal dose and delivery of sulforaphane for treating
different aspects of the dystrophic pathology and for its
potential future application as a nutraceutical for treating
neuromuscular disorders. Additionally, future studies should
examine whether sulforaphane could address different aspects
of age-related impairments in skeletal muscle function, including
injury susceptibility, fatigue, and muscle regenerative capacity.

Given the positive actions of glucosinolates are largely related
to anti-inflammatory and antioxidant mechanisms, the
consumption of cruciferous vegetables and their glucosinolates
may also have beneficial outcomes on other health conditions.
Although there are few studies investigating the impact of certain
cruciferous vegetables on other chronic conditions, such as
obesity, future studies are needed to further investigate the
role of glucosinolates.
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