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Best practices for analyzing large-scale health data from
wearables and smartphone apps
Jennifer L. Hicks1, Tim Althoff2, Rok Sosic3, Peter Kuhar 4, Bojan Bostjancic4, Abby C. King5,6, Jure Leskovec3,7 and Scott L. Delp1,8

Smartphone apps and wearable devices for tracking physical activity and other health behaviors have become popular in recent
years and provide a largely untapped source of data about health behaviors in the free-living environment. The data are large in
scale, collected at low cost in the “wild”, and often recorded in an automatic fashion, providing a powerful complement to
traditional surveillance studies and controlled trials. These data are helping to reveal, for example, new insights about
environmental and social influences on physical activity. The observational nature of the datasets and collection via commercial
devices and apps pose challenges, however, including the potential for measurement, population, and/or selection bias, as well as
missing data. In this article, we review insights gleaned from these datasets and propose best practices for addressing the
limitations of large-scale data from apps and wearables. Our goal is to enable researchers to effectively harness the data from
smartphone apps and wearable devices to better understand what drives physical activity and other health behaviors.
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INTRODUCTION
Commercial wearable devices and smartphone apps for monitor-
ing health-related behaviors have proliferated rapidly. In 2013,
69% of U.S. adults reported tracking one or more health indicators,
such as weight or exercise, and 21% of those used technology,
such as an app or device,1 while others monitored these health
indicators “in their heads” or on paper. The mobile health market
is projected to grow to $500 billion worldwide by 2025.2 Apps and
devices are available to monitor a wide range of health behaviors
and indicators, such as physical activity, sedentary behavior,
weight, diet, heart rate, blood pressure, and sleep. Data can be
collected via self-report in the app, through integrated sensors
(e.g., accelerometers), or through integration with other devices,
like digital scales and blood pressure cuffs.
Analyzing the data generated by commercial wearables and

apps has the potential to alter how we study human behavior and
how we intervene to improve health. These datasets are orders of
magnitude larger than traditional research studies and can be
accessed by researchers at relatively low cost. Since much of the
data are collected automatically, they can reveal behavior in the
natural environment and reach individuals who do not typically
enroll in research studies and who have not altered their behavior
because they are being monitored in a research study. Modifiable
health behaviors like physical activity,3 sedentary behavior,4 and
sleep5 have a significant impact on many aspects of cardiovas-
cular, musculoskeletal, and mental health, but until the advent of
modern wearables we have had limited tools to study these
interrelated behaviors at scale. Changing health behaviors has
been challenging,6 but the large-scale data from apps and
wearables can help uncover the environmental, social, and

personal factors that motivate healthy behaviors and identify
new ways to promote sustained behavior change.
In spite of the promise of mobile apps and devices and the

massive amounts of data they are collecting, analysis has been
limited by several challenges. Effectively analyzing these data
requires expertise in both data science and health behaviors, and
few researchers are dually trained, often making collaboration and
communication between disciplines difficult. A lack of trust also
presents a major challenge: consumers question if privacy will be
protected, researchers question if results are valid, and companies
question how academic partnerships will affect their business.
These challenges motivate this article. Our goal is to foster

confidence in using large-scale datasets from consumer apps and
wearables to better understand the relationships among physical
activity and other health behaviors and health outcomes. We hope
this article encourages data sharing between academia and
industry by highlighting productive examples. We also hope to
bridge the divide between health researchers and data scientists
by establishing a common knowledge base. We first highlight
several example studies that have used observational data from
consumer apps and wearable devices to study human health.
From these studies, we identify both novel insights and common
challenges. We outline best practices for analyzing data from
consumer apps and wearables and conclude with a summary of
areas where additional research is needed.
This article focuses on studies that have analyzed large-scale

data (e.g., thousands of individuals) collected through routine use
of commercial wearables and smartphone apps by consumers. We
include apps and devices that monitor health behaviors and
indicators, including physical activity, weight, diet, sleep, seden-
tary behavior, blood pressure, and heart rate. There is excellent
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research using commercial devices in small scale studies7,8 and
studies that have focused on validating the use of these devices in
a variety of populations.9,10 This work is valuable but is not the
focus of the present article.

HIGHLIGHTS FROM THE LITERATURE: INSIGHTS AND
CHALLENGES
Several studies have used data from commercial apps and
wearables to characterize health behaviors and their potential
influence on health indicators, like weight and cognitive
performance. For example, our group has analyzed data from
over 700,000 users of a smartphone app (Argus, Azumio, Inc.) for
tracking physical activity.11 We analyzed minute by minute step
counts estimated automatically using the smartphone’s onboard
inertial measurement unit (IMU) in individuals from over 100
different countries. This analysis revealed that inequality in how
physical activity is distributed between individuals in a country
(i.e., the Gini coefficient12 applied to step counts) is a stronger
predictor of obesity rates than average activity levels in a country
(Fig. 1). By connecting activity tracking results to a database of city
walkability scores, we also showed that higher walkability scores
are associated with lower activity inequality in U.S. cities.
Sleep is another important and modifiable health behavior.

Walch and colleagues13 analyzed sleep schedule, light exposure,
and other data from 8000 users of a free sleep-tracking
smartphone app. They used these data to help untangle how
social factors, light exposure, and the circadian rhythm influence
sleep, demonstrating that social pressures delay bedtime,
attenuating or overriding biological pressure for sleep. Althoff
et al.14 connected wearable-determined sleep metrics with
performance measured through the individual’s interaction with
a search engine (e.g., keystroke time and time to click on a
resulting page), showing that two consecutive nights with less
than 6 h of sleep is associated with decreased performance for a
period of 6 days.

Variability in blood pressure is predictive of future cardiovas-
cular disease and morbidity, but has been challenging to
characterize with traditional studies, particularly in real-world
settings (as opposed to clinical settings which can influence vital
signs). Kim et al.15 analyzed blood pressure readings from over
50,000 individuals (with 17 million measurements) using a wireless
blood pressure monitor. They characterized blood pressure
variability and how it changes with season of the year, day of
the week, and time of day, for example, showing that variability is
higher during weekdays, particularly for females. Researchers also
have quantified how holidays affect weight gain using data from
digital scales16 and examined how factors like geographic location
and body mass index (BMI) are related to the taste profile (salty,
sweet, etc.) of the meal an individual selects and reports in a diet
tracking app.17

Many apps include features like a social network, challenges, or
competitions, which are intended to motivate healthy behavior
and usage of the app or device. Researchers have used large-scale
app data to understand how these features influence physical
activity and other behaviors. Aral and Nicolaides18 analyzed
exercise patterns in a global social network of 1.1 million runners,
demonstrating “contagion” of exercise that varies based on
gender and relative levels of activity. For example, they found
that both men and women influence the activity levels of men,
but only women influence other women. Althoff et al.19 used the
dataset from the Argus smartphone app to identify a natural
experiment and show that forming new social connections in the
app increases daily step count by an average of ~400 steps
per day. In this dataset, women receiving friendship requests from
other women recorded greater increases in activity than women
who received requests from men or men who received requests
from either gender. The Argus app also includes games where
groups of people compete to record the greatest number of steps
over a specified period of time; these competitions were found to
increase physical activity by 23% during the time of the
competition.20 The success of the competition varied according
to the composition of the group. Competitions where teams had

Fig. 1 Datasets from apps and wearables are helping researchers identify novel worldwide trends in activity and health. Our team has
analyzed data from 717,527 users of the Argus app for tracking physical activity and other health metrics.11 This analysis revealed worldwide
inequality in levels of physical activity that varied from country to country. In the map, country area is scaled by the country’s obesity rate, as
calculated from the app-reported BMI of users. The countries are shaded according to activity inequality, where warm colors (reds and
oranges) indicate high levels of activity inequality (some people are very active and some people are minimally active) and cool colors (blues)
indicate low levels of activity inequality (individuals within the country get similar levels of activity). Countries with larger than normal areas
(indicative of high obesity) also tend to be shaded with warm colors (indicative of high activity inequality). The map was generated using the
Scape Toad software63 and the world borders dataset from the Thematic Mapping API64
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an even gender split had the largest increases in activity. Wang
et al.21 analyzed data from 10 million users of the BOOHEE app to
determine the influence of a social network on weight status, and
found that users were more likely to lose weight when they had
more network friends of the opposite sex. Pokemon Go
experienced a period of widespread usage during which Althoff
et al.22 showed that engaged Pokemon Go users increased their
activity by nearly 1500 steps per day (a 25% increase). This work
demonstrates the promise of combining multiple datasets—the
researchers quantified the effect of Pokemon Go on activity by
combining data from internet searches (to predict who was using
the Pokemon Go app) and a smartwatch (to quantify physical
activity).
Large-scale data have also enabled researchers to build

predictive models of health and behavior. For example, Shameli
et al.20 developed a model to predict whether a competition will
increase physical activity of participants, reporting an area under
the receiver operating characteristic curve (known as AUC; a
common measure of model classification accuracy) of 0.75 for a
model using factors such as participant demographics and
previous amounts of physical activity. Althoff et al.19 also built a
model to predict whether a future in-app social network link will
lead to increased physical activity, with an AUC of 0.78 for a model
using similar types of features. Kurashima et al.23 built a model to
predict actions (e.g., going for a run, drinking water, recording
weight, going to sleep) and the timing of actions in the Argus
data, along with a similar model using data from Under Armour’s
MyFitnessPal app (with data from 12 million users). The models
predicted whether an action would occur with 50–60% accuracy
and predicted action timing with a mean absolute error of
<150min, which improved on the performance of existing models
by up to 150%.
Researchers have used these large-scale datasets to identify

clusters of similar users based on their behavior and health status.
Serrano and colleagues24,25 mined data from approximately 1
million users of the LoseIt! App to identify subgroups based on
weight loss. They identified what they categorized as occasional,
basic, and “power” users of the app, with the power users showing
the greatest weight loss. With their MyHeartCounts app,
McConnell et al.26 studied the relationship between physical
activity and self-reported cardiovascular disease in nearly 50,000
individuals. They found that a subgroup of individuals who
transitioned frequently between activity and inactivity had similar
self-reported levels of cardiovascular disease as a second group
with higher overall activity levels but fewer transitions.
For apps and devices to successfully change behavior, users

must engage for a sustained period of time. Researchers have
analyzed these datasets to determine who engages, how users
engage, and factors that promote engagement. Lin et al.27 have
used the Azumio dataset to explore patterns and cycles of app
usage. They found that the majority (75%) of users re-engaged
with the app after extended periods of dormancy and that upon
re-engagement, user behavior and health status (e.g., weight
levels) appeared as they did when they were first using the app,
rather than picking up where they left off. In addition, Park et al.28

examined the traits of individuals who share their exercise app
data often and for an extended period; these individuals tended to
have a fitness-focused network of friends and, surprisingly, less
popular tweets. Sperrin et al.29 showed that smart scale users who
weighed themselves often were more likely to lose weight and
that users were more likely to weigh themselves after a recent
reduction in weight, suggesting that further research is needed to
understand whether close monitoring drives weight loss or
vice versa.

Summary of insights
Analyzing data from consumer users of apps and wearables has
allowed researchers to characterize health indicators, such as
blood pressure variability,15 and points to promising new avenues
of research, such as focusing physical activity interventions on the
activity poor segment of a population.11 We also see that external
factors, such as the walkability of a city11 and social pressures
preventing sleep,13 can have a strong influence on health
behaviors. This supports the findings of previous, more traditional
studies and with the larger subject numbers in consumer app
datasets, we can quantify associations between external factors
and health behaviors across different age and gender groups.
Analyzing these large datasets can also help improve the design
of apps and wearables. Multiple studies show that social influence
and gamification are associated with increases in healthy
behavior18–20,22 and that gender is an important covariate.
Predictive models could help apps that promote physical activity
become more effective by, for example, guiding friendship
recommendation algorithms19 or creating effective groups for
activity competitions.20 Users’ goals and how individuals use
health apps can be variable, but the data available about a user’s
interactions with an app (even in the first few days) can predict
much of this variation.24,25,27–29 Using this knowledge, app
designers could create more engaging and personalized apps
that are more effective in achieving behavior change.

Summary of challenges
Reviewing this literature and reflecting on our own experience
analyzing these large-scale datasets reveal several common
challenges and potential sources of error. Since these datasets
are not generated to test a specific hypothesis, the data is almost
always “messy” and difficult to analyze for a variety of reasons.
Measurement error can arise from the inaccuracy of sensors in
estimating quantities of interest (e.g., steps or sleep) and such
errors can be systematic (e.g., wearables for tracking physical
activity can systematically underestimate steps for slow walking30).
Kim and colleagues15 use a device that has been validated
according to established protocols. Some of the studies analyzing
sleep, steps, and physical activity, conduct their own experi-
ments,26 cite validation studies in the scientific literature,11 and/or
compare values and trends to previous literature and data-
sets.11,13,14 Missing data is another challenge, since individuals do
not always wear their device or carry their phone. Selection bias
can also occur, as individuals who use apps and wearables may
not represent the gender, age, geographic location, socioeco-
nomic status, and/or race/ethnicity of the population of interest.
Most studies acknowledge these issues and several conduct
sensitivity or robustness testing. Handling very large datasets can
also be challenging with a typical computer and traditional
methods, particularly for researchers with limited expertise in
machine learning and data science. Forming academic-industry
data sharing partnerships has also been a major limiting factor in
the number of studies conducted thus far.

BEST PRACTICES: AN ITERATIVE PROCESS
In response to the challenges described above, we propose the
following iterative process for designing a study, analyzing the
data, and reporting the results (Fig. 2).

Step 1: identify your research question and dataset(s)
The first step is to identify your research question and the data
needed to address the question. This phase is vital to ensure that
the work will be high impact, advance science, and lead to robust
conclusions. By approaching a dataset of interest with specific
questions or hypotheses, investigators reduce the risk of Type I
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(false positive) errors. Combining expertise from data science and
health research can help researchers navigate the planning phase
successfully.
You should begin by identifying a question that will have an

impact on health, based on gaps in knowledge. For example,
some of the key needs include quantifying geographic differences
and the role of environmental factors in health behaviors and
delineating the relationships between multiple health behaviors
(e.g., physical activity, sedentary behavior, and sleep). A “naïve”
data mining approach (i.e., searching for correlations, clusters, etc.
without a specific research question in mind) is almost never
useful. Without a research question to frame the analysis, it is
challenging to identify interesting and high-impact correlations.
This approach also lacks an experimental design to establish
internal and external validity (see Step 5).
For observational datasets, establishing irrefutable causal

relationships is typically not possible; however, the data often
contain natural experiments that allow for causal analysis.
Correlational analysis of observational data has helped transform
science and medicine, for example, linking tobacco usage with
lung cancer.9 It is equally important, however, to appreciate that
observational data can also produce results that are refuted when
experimental trials are conducted subsequently (e.g., hormone-
replacement therapy trials showing increased cardiovascular
disease risk in postmenopausal women counter to previous
observational data analysis31). Many of the most powerful

observational studies capitalize on natural experiments in the
data (see Step 4), and the large size of commercial app datasets
often increases the chance that they include the necessary
exogenous variation (e.g., weather18 or delays in friendship
acceptance in an app19) to allow for natural experiments. Another
goal of analyzing observational datasets is to generate hypotheses
to test with rigorous experimental approaches where causal
relationships can be established. For example, the observational
work of Shameli et al.20 suggests that the gender makeup of
participants in an online physical activity competition predicts
how motivating the competition will be. A randomized controlled
trial could subsequently test whether individuals assigned to
competitions where participant gender is evenly split see greater
increases in physical activity than those assigned to groups where
all participants are of the same gender.
The researcher must next identify and gain access to the

necessary dataset(s). Forming research-focused partnerships with
industry is a valuable source of data for academic researchers. In
establishing industry collaborations, we begin by talking with the
potential partner to identify research goals that are of mutual
interest. Another important aspect is a data sharing agreement,
which spells out the rights and responsibilities of both parties. We
have found that having a template for the data sharing agreement
helps advance the collaboration. For example, our template
includes a clause to allow for open publication of results, with
attribution of the industry partner based on their preference, and
we have found that companies generally accept this. Table 1
includes additional elements of our data sharing template. The
partner must also ensure that the app’s or device’s terms of
service permit data sharing for research, and the researcher must
acquire any necessary institutional review board approvals. Ethical
concerns should also be considered. For example, GPS or other
location information should be obscured when possible (e.g.,
Strava heat maps came under fire recently for accidentally
revealing the location of secret military bases abroad32).
In many cases it is helpful to combine multiple datasets. For

example, by combining data from Azumio’s activity tracking app
with the World Bank’s database of life expectancy by gender in
countries around the world, we were able to show that when
women’s physical activity is reduced compared to men, their life
expectancy is also reduced compared to men in the same country
(Fig. 3). In this analysis we could not link the data individually, but
in some cases this linking is possible. For example, if the location
of an individual is known, you can link with weather databases to
quantify how weather patterns affect an individual’s physical
activity.18 Thus, new insights can be drawn by adding context to
measurements from wearables (e.g., location information). Data
collected through more traditional research studies can also
complement datasets from commercial apps and wearables by
helping to demonstrate that a phenomenon of interest is present
across multiple populations and measurement modalities. There
are a number of publicly available datasets describing physical
activity, other health behaviors, and health status indicators of

Table 1. Elements of a data sharing agreement with an app or wearable company

Data ownership The partner owns the dataset; the act of data sharing does not transfer that ownership to the researcher.

Scope of data use The researcher will use the dataset only for non-commercial research and education purposes.

Data access Access to the data within the researcher’s organization will be granted only on a need-to-have basis.

User anonymity The researcher will not use the data to try and identify and contact the users.

Publications The researcher has the right to publish the results with an attribution or not, as preferred by the partner, provided that the data
cannot be reconstructed from the publication and that no partner’s commercial secrets are disclosed.

Licensing of results The partner has non-exclusive, royalty-free license to any results obtained from the data

Our data sharing agreement template typically includes some or all of the following elements. You should review your data sharing agreement with the
appropriate officials at your institution

Fig. 2 Overview of best practices for analyzing large-scale physical
activity and health behavior datasets from commercial smartphone
apps and wearable devices. The process is highly iterative, as
indicated by the arrows flowing in both directions. By sharing
results, along with data and software tools, your work can help
inspire new research, completing the circle
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interest like disease status, weight, etc. We have compiled many of
these.33

Before proceeding with your analysis, you should consider
whether your research question will be answerable given the
limitations of available data. In Steps 2–5, we will discuss
approaches to assess and account for confounding, missing data,
and selection bias, common challenges in analyzing data from
wearables. But before proceeding, you should make sure your
question and the challenges of the dataset do not set you up for
failure. For example, if sensor measurements are known to be
imperfect, trends are often easier to study and gain confidence in
than absolute differences. Individuals from developing countries
and individuals with low socioeconomic status are underrepre-
sented in many datasets; thus, questions focused on these groups
may thus be better addressed with a different type of study.

Step 2: prepare the data for analysis
The next step is to prepare your data for analysis, defining and
implementing strategies to handle issues such as inaccuracies in
the sensor data, missing data, or outliers. The process of preparing
your data typically comprises several steps.
Characterize the accuracy and precision of sensors and determine

if appropriate for your research question(s). You can use literature
that describes sensor accuracy to determine if any wearables or
apps used in the dataset have been previously validated.10,34,35 If
existing literature is insufficient, you should conduct independent
experiments to test accuracy. For example, you might need to test
the app or device in a new population of interest (e.g., individuals
with osteoarthritis) or for a new health behavior/activity of
interest. In some cases, if sensor accuracy is low, precision may
be sufficient (e.g., if trends are most important to your research
question).
Define the population of interest and determine if the population

is sufficiently represented. The population you study is driven by
your research question (e.g., are you focusing on elderly
individuals or obese individuals?). While, in relative terms, a
particular demographic subgroup may be underrepresented in a
dataset, in absolute terms the actual sample size of that subgroup
may be more than sufficient to answer useful questions of interest.
For example, older adults may be underrepresented compared to

the general population, but if the sample size is still large (Fig. 4),
this does not preclude you from researching relationships in this
group. If the goal is to answer a question about the general
population, you may wish to resample to match the population of
interest (e.g., to achieve a known gender ratio or distribution of
ages). Alternate strategies to resampling are discussed in Step 5.
Clean the data to remove outliers and erroneous values. Begin by

inspecting the data, examining the range of each value to
determine a definition for outliers. This is typically done at the
discretion of the researcher based on expected values (e.g., what
is a reasonable maximum body weight or steps taken in a day for
an adult?) or by defining a threshold based on standard deviations
from the mean. Similarly, Helander et al.16 created thresholds for
weight change between measurements to eliminate cases where
multiple individuals used the same scale or the user weighed their
suitcase. You should also examine the distribution of data, since
peaks and discontinuities can reveal problems. For example,
people might not change default values for height and weight in
the app. You should also ensure that all the data are in the same
units and that the dataset does not include duplicate entries (e.g.,
as performed in the work of Serrano et al.24,25).
Characterize missing data, create thresholds for inclusion, and

define approaches for handling missing data. Data can be missing
for a variety of reasons; for instance, a day could be missing

Fig. 3 Difference in life expectancy as a function of the difference in
activity volume between females and males. When the gap in steps
between females and males gets smaller (i.e., less negative), females
outlive males by more years (using World Bank data65; grey line is
LOESS fit; R2= 0.20). These results indicate that the reduced activity
levels recorded by women in countries with high activity inequality
may have significant implications for health. (Plot shows countries
with more than 1000 subjects from the Argus dataset described in
our previous work.11)

Fig. 4 Comparison of demographics of U.S. users of a smartphone
and data from traditional surveillance studies. a Body Mass Index
(BMI) distribution of users of the Argus app (blue) vs. the U.S.
population as measured in the National Health and Nutrition
Examination Survey66 (NHANES; red). b Age distribution of users of
the Argus app vs. NHANES. The counts for the NHANES sample are
weighted according to the NHANES-provided sample weights, thus
the distributions approximate the general U.S. population and the
total of the weighted counts in the histogram matches the number
of individuals in the 2011–2012 NHANES study year. While there are
differences between the distributions, the app dataset, due to its
massive size, has large coverage of users between the ages of 15
and 70 and BMIs from 20 to 40. For example, the dataset includes
32,000 individuals in the U.S. over age 60 and 113,000 individuals in
the U.S. whose BMI classifies them as obese
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because the individual forgot her smartphone at home or an hour
of recording could be missing because an individual did not want
to wear his activity tracker to a formal event. Users of apps can
also neglect to enter demographic information of interest, such as
height or weight.
As a researcher, you should define thresholds for how much

health behavior data (e.g., activity or sleep) is required for a day or
recording session to be included for analysis, a user to be
included, and a group of interest to be included. In some cases,
the thresholds can be informed by the literature (e.g., many
accelerometer studies of physical activity only use subjects with at
least three days of recordings based on an analysis by Tudor-
Locke et al.36). If the literature does not provide guidance, you
should choose reasonable thresholds and ensure you reproduce
known trends (see Step 3) and conclusions are robust to decisions
made (see Step 5). For example, in our study of activity
inequality,11 we chose to include countries with at least 1000
users, but found that moderate increases or decreases in this
threshold did not affect the main conclusions of our work.
We commonly want to examine health behavior data along

with demographics or other covariates. If your dataset is
sufficiently large and you can demonstrate that individuals with
missing demographic and other covariate data are the “same” as
individuals without missing data, you might require complete
cases for analysis. One approach for demonstrating two popula-
tions are sufficiently similar in a set of relevant variables is to use
standardized mean difference (SMD). The SMD is defined as the
difference in the means of treated and control groups (in this case,
missing and not missing data) divided by the overall standard
deviation.37 Covariates with absolute SMD lower than 0.25 are
considered balanced. Note that SMD is preferred over hypothesis
tests and p-values as a measure of balance since the latter conflate
changes in balance with changes in statistical power. If there are
differences between individuals or days with and without missing
data or the dataset is not large enough to support a complete case
analysis, imputation can be used.38,39 Another approach is
descriptive analysis of the selection effect (i.e., quantifying that
subjects with data were X much younger and Y more active than
subjects that were excluded for missing data).

Step 3: verify that the datasets reproduce previously published
datasets and analyses
Next, you must verify that your new dataset(s) are able to
reproduce previous results. The aim here is to establish
convergent construct validity: are you measuring what you think
you’re measuring? You should review similar literature and
publicly available datasets that overlap with your dataset. If the
literature or analysis of gold-standard datasets point to consistent
conclusions (e.g., about the relationships between gender and
activity and sleep), you should determine if your dataset produces
these same relationships. If this analysis identifies conflict, there
may be reasonable explanations for the difference. For example,
traditional surveillance studies have their own limitations, such as
bias due to self report,40 so comparing activity levels across
different age groups might show different magnitudes, but similar
trends (Fig. 5). If comparison with previous results reveals
differences, you may also need to reassess the parameters and
thresholds determined in Step 2. You will also conduct sensitivity
and robustness analysis after analyzing the data to answer your
research question of interest (Step 5).
An orthogonal and equally important approach is showing

discriminant construct validity, where the aim is to demonstrate
that your sensor or dataset does not measure things it shouldn’t.
For example, in our analysis of the dataset from Azumio, we
showed that there was no correlation between the average
number of daily steps within a country and the average estimated

weartime.11 Thus our steps count was not erroneously measuring
simply how much individuals were using their phones.

Step 4: analyze the data to answer your (new) research question
The focus of this paper is analyzing data that have already been
collected (i.e., observational data) and the topic of observational
study design has been reviewed (e.g.,41,42). Thus, we will highlight
areas of relevance to health app and device datasets.
One common goal and challenge in observational data analysis

(and all of science!) is moving beyond correlations and establish-
ing causal relationships. In observational datasets collected from
commercial apps and wearables, individuals are not assigned to
different treatments (e.g., living in a city with high or low
walkability) at random, as in randomized controlled trials. Instead,
someone who is more motivated to be active may choose to live
in a city that is more walkable. One approach to counter the
confounding this can create is to identify natural experiments in
the available data. In a natural experiment, the researcher finds a
case or cases in the dataset where exposure to the treatment of
interest is governed by circumstances that have not been
manipulated by the researcher but can be argued to be random.
While these natural experiments are rare and can be hard to
identify, the datasets from commercial apps and wearables are
large enough that these “rare” occurrences happen in sufficient
numbers. For example, Althoff et al.19 used a delay in the
acceptance of a friend request in a health app’s social network
feature to separate the effects of increased intrinsic motivation to
be active from the boost in activity resulting from a new friendship
(Fig. 6). Similarly, Aral and Nicolaides18 capitalized on global
weather variation and geographically distinct friendships to show
that exercise is contagious and the level of contagion varies based
on gender and relative levels of activity. Other natural experi-
ments we might capitalize on are geographic relocation (e.g.,
between cities with higher or lower walkability), transit strikes, or
sudden changes in air quality. You must argue and present as
much evidence as possible that your natural experiment
approximates random assignment. For example, in the study by
Althoff et al.19 they showed that 22 variables (e.g., age, BMI, and
previous activity levels) were balanced (SMD < 0.25) between the
groups with and without a delayed friend acceptance.
Another approach to address the fact that exposure to different

“treatments” (e.g., levels of physical activity) is not assigned at
random in observational datasets is to build and apply a model
that estimates the propensity of an individual to receive treatment
based on measured covariates. These propensity scores can be
used for matching, stratification, weighting, or covariate adjust-
ment.43 Propensity scoring is well-established in the case of binary
treatments (e.g., they match individuals in the “treatment”
population to comparable individuals in the control population)
and several papers review the topic.42–44 There is evidence that a
weighting approach reduces bias when estimating treatment
effects; however, along with covariate adjustment, weighting may
be more sensitive to whether the propensity model is correctly
specified.43 In all cases, it is vital to assess whether the propensity
model adequately achieves balance (e.g., using SMD) between
covariates for the treated and untreated conditions.43 We have
also explored approaches for propensity weighting in the case
where the treatment of interest comes in varying doses. In
particular, we were interested in using data for the Argus
smartphone app to understand how varying activity levels were
related to BMI and other health indicators. Since app users who
take more and less steps are generally different in other ways that
may also affect our outcome variables of interest, we extended
inverse probability of treatment weighting to estimate a dose-
response relationship while controlling for these confounding
factors (Fig. 7). With this analysis we found that longer bouts of
activity are associated with lower BMI and that even relatively

J.L. Hicks et al.

6

npj Digital Medicine (2019)    45 Scripps Research Translational Institute



short bouts—of 5 or 10 minutes—are associated with better
health measures.
There are several other approaches for moving toward causality

—some are relatively new and others have a long history of use in
econometrics, but have not yet been widely applied to large-scale
commercial health behavior datasets. Instrumental variables
(which were first explored in the 1920s) are a method for
analyzing natural experiments, where researchers capitalize on a
covariate that affects the outcome variable of interest only by its
influence on the explanatory variable of interest.45 For example,
state cigarette taxes have been used as an instrument to relate
maternal smoking to birth weight.46 In the case of health behavior
datasets from commercial apps and wearables, we might use
distance from a newly built public park or transit stop as an
instrumental variable to study how environment affects activity.
Another classic technique from econometrics is regression
discontinuity.47 In this design, the investigator capitalizes on
treatments prescribed above and below a threshold (e.g., a
scholarship awarded to individuals with an SAT score of above
1500) to argue that differences (e.g., in college graduation rates)

between individuals just above and just below the threshold can
be primarily attributed to the treatment. In the case of commercial
apps, this approach might be used to gauge whether a threshold-
triggered notification or message (e.g., to stand-up if sedentary
time has lasted for 60min) in an app changed an individual’s
behavior. As in the case of natural experiments, the investigator
must argue and present quantitative evidence where possible to
show that the instrumental variable or regression discontinuity is
reasonable. Doubly robust estimators are a relatively new
approach to extract causal evidence from observational datasets.
A regression model is one widely used approach to try to handle
confounding in observational datasets, but it must be correctly
specified to estimate a treatment effect. The propensity score
models discussed in the previous paragraph must also be correctly
specified. Doubly robust estimators48 estimate the treatment
effect while only requiring one of these models be correctly
specified.
Another challenge with wearable datasets is the massive scale

of the data; datasets can have millions or even billions of samples.
Such datasets might be too large to be easily analyzed with

Fig. 5 Verifying that a smartphone app dataset reproduces previously reported relationships between physical activity, geographic location,
age, and gender. In our study of activity inequality,11 we conducted extensive analyses comparing the app dataset to previously published
datasets. a WHO physical activity measure67 versus smartphone activity measure (LOESS fit). The WHO measure corresponds to the
percentage of the population meeting the WHO guidelines for moderate to vigorous physical activity based on self-report. The smartphone
activity measure is based on accelerometer-defined average daily steps. We found a correlation of r= 0.3194 between the two measures (P <
0.05). Note that this comparison is limited because there is no direct correspondence between the two measures—values of self-reported and
accelerometer-defined activity can differ,40 and the WHO confidence intervals are very large for many countries. b WHO obesity estimates68

based on self-reports to survey conductors, versus obesity estimates in our dataset, based on height and weight reported to the activity-
tracking app (LOESS fit). We found a significant correlation of r= 0.691 between the two estimates (P < 10−6). c Gender gap in activity
estimated from smartphones is strongly correlated with previously reported estimates based on self-report (LOESS fit). We found that the
difference in average steps per day between females and males is strongly correlated to the difference in the fraction of each gender who
report being sufficiently active according to the WHO (r= 0.52, P < 10−3). d Daily step counts are shown across age for all users. Error bars
correspond to bootstrapped 95% confidence intervals. Observed trends in the dataset are consistent with previous findings; that is, activity
decreases with increasing BMI69–71 and is lower in females than in males.70,72–74 This figure is adapted from our previous work11 and
reproduced with permission
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standard desktop or laptop computers. Often, only a subset of
input fields are relevant for the study. In those cases, the data can
be preprocessed with only the relevant fields being extracted,
which can yield a significantly smaller dataset. If the resulting
dataset is still too large for a personal computer, the next option is
a large memory compute server. These computers offer similar
computing environments and analysis tools (e.g., Python or R) as
personal computers, and they can provide orders of magnitude
more main memory than personal computers. While an in-house
large memory compute server might be prohibitively expensive,
all major cloud providers offer on-demand machines with several
terabytes (TBs) of main memory, which is sufficient for all but the
largest datasets. If the dataset size exceeds even the capabilities of
the large memory servers, then a distributed approach is needed,
where multiple machines work together on a single task.
Distributed approaches can be scaled up by adding more

machines to accommodate the size of the dataset being analyzed.
These approaches require modifications to the analysis scripts and
programs to take advantage of the distributed capabilities.
Common environments for distributed analysis are Hadoop49,50

and Spark,51,52 available as open source or commercial offerings
and supported by major cloud providers.

Step 5: check robustness of conclusions
You must now determine whether your conclusions are robust.
The goal in this step is to try to prove yourself wrong. You should
identify all the potential limitations and shortcomings of your
dataset and approach and test whether your conclusions are still
valid. The essential tests should establish internal validity (i.e., are
your research design and methods sound?) and external validity
(i.e., can your findings be generalized to other people and/or

Fig. 7 Example of propensity scoring to isolate the effects of a treatment that comes in different doses (physical activity) from other
confounding factors. The Argus smartphone app (Azumio, Inc.) collects minute by minute step counts. a For each user, we can construct a plot
of activity bout length (X) vs. the average number of minutes per day spent in activity of at least X minutes. We call the area under this curve
an individual’s activity persistence. In the figure we include users with at least 10 days of step tracking data. b We next want to understand
how activity persistence influences quantities like BMI. Since individuals with higher or lower activity persistence may be different in other
ways that influence BMI (such as age and gender), we used inverse probability of treatment weighting (IPTW) to isolate the effects of activity.
The grey curve shows the BMI of individuals in each decile of activity persistence (where higher deciles indicate more bouts of longer
duration), without any weighting. The green curve shows the relationship after we have used IPTW to minimize the influence of other factors
like age and gender on the estimated BMI for each decile of activity persistence. Error bars correspond to bootstrapped 95% confidence
intervals

Fig. 6 Example of a natural experiment using observational data from a smartphone app for tracking activity. The Argus smartphone app
(Azumio, Inc.), includes a social network that users can opt to join. Althoff and colleagues19 sought to uncover if and how forming social
connections affects social activity. Since users who join and are active in the social network may be more intrinsically motivated to increase
their activity, they used a natural experiment to isolate the effects of social influence from other factors that could influence activity. In
particular, they compared the change in activity between a individuals who sent out a friend request (question mark) that was immediately
accepted (check mark) and b individuals whose friend request was not accepted for more than 7 days. Note the curves in a and b are for
illustrative purposes and do not represent actual subjects. Once a friendship is accepted, the user receives notifications of their connections’
activities (e.g., going for a run), and can comment on their connections’ activity posts (denoted by the heart, text box, and notification bell in
a and b). Since the two groups were similar in all aspects except whether their friend request was accepted within 7 days, the additional
increase in activity of the direct acceptance group can be attributed to social influence. c This social influence resulted in users taking 400
more steps per day on average. Error bars indicate bootstrapped 95% confidence intervals
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situations?). To establish internal validity, several questions must
be addressed.
Have you accounted for selection bias and confounding? If your

analysis aimed to establish a causal relationship, your study design
(Step 4) should account for potential confounders, and any
potential unmeasured confounders should be acknowledged. If
your analysis involved mining the data for new clusters and
correlations, it is vital to identify potential confounders and
determine how they may have influenced the results. For
example, say you find clusters of less engaged and highly
engaged app users and the highly engaged users show greater
weight loss. If the highly engaged users tend to be younger,
without further analysis you cannot infer that engagement with
the app leads to weight loss.
Have you accounted for any multiple hypothesis testing? Testing

multiple hypotheses increases the risk of Type I (false positive)
errors and you must use an appropriate technique to account for
this. A simple approach is the Bonferroni correction, which adjusts
the study-wide significance level based on the number of
hypotheses tested. Benjamini and Hochberg53 also provide a
method for selecting a subset of rejected null hypotheses that
achieves a desired false discovery rate (where the false discovery
rate is the ratio of false positives to all positives). The second
approach has greater power, but may increase the rate of false
positives.54

Are any distributional or parametric assumptions valid? Para-
metric statistical tests and many statistical models rely on
distributional or other assumptions. In some cases, these
assumptions are justified. In the app data we have analyzed, we
have found, for example, that steps per day tends to be similar to
a normal distribution (with some truncation since steps per day
can’t be negative) and the number of connections in a social
network to follow a power law distribution. If assumed distribu-
tions do not hold in your data, you should choose non-parametric
tests or be able to argue why your choice of test or model is still
reasonable (e.g., drawing on previous literature that shows non-
normality is acceptable if sample sizes are large).
Are your findings robust to analysis choices you made in Steps 2

and 5? In Step 2, you chose an approach to handle missing data
and outliers. You should verify that your conclusions are similar if
you use another valid approach. For example, you could compare
analyses using complete case analysis to an imputation approach.
You should also examine how removing and including outliers
and varying thresholds for outliers affect your results.
If conclusions are sensitive to an analysis choice or limitation of

your dataset, you may need to revisit your research question
because the limitations of the dataset may prevent answering it. If
you test new hypotheses, as pointed out above, you must take
precautions against false discovery and p-hacking.55 Another
option is to find or collect additional data (e.g., you could collect a
small, targeted set of data prospectively).
Alternately, if the sensitivity is minor or explainable, you can

report the sensitivity as a limitation when publishing results. Many
scientists are skeptical about using commercial app datasets and
this skepticism is merited. However, if sensitivities and limitations
have been thoroughly examined and documented, the inherent
“messiness” of such datasets should not preclude their publica-
tion. Traditional surveillance and experimental studies of health
behaviors have limitations (e.g., small sample sizes and bias due to
self-report), and consumer wearable and app data can comple-
ment traditional approaches to move the field forward.
To establish external validity, you must identify the populations

and situations to which your findings apply. Given the nature of
the data from consumer wearables and apps, missing data is
common, and since the population is typically a convenience
sample, it may not be a match to the population of interest. For
example, one challenge of analyzing data from apps and

wearables is that the population of users is likely skewed towards
individuals of higher socioeconomic status than the general
population. In our study of activity inequality, we found that
walkability was a key predictor of low activity inequality. We had
no way to measure the socioeconomic status of users; however,
we were able to show that high city walkability was associated
with low activity inequality across U.S. cities with a range of
median income levels (Fig. 8).
Another useful technique for assessing the robustness and

usefulness of your results is to compare any models you have built
to a simple or null model. This comparison will help you assess
whether model predictive power is meaningful beyond simpler
explanations that are encoded in a null model. For example, in the
case of network analysis, the null model is a graph that is random,
but maintains the structural features of your network. In a social
network, where edges represent friendships, the edges can be
rewired randomly while preserving the degree of each node and
thus the number of friends of each person.56 Comparing your
model to this null model will help you to assess whether model
predictive power is meaningful or just a property of any similar
random network.
Examining p-values is a common approach in biomedical

research, but in very large datasets many relationships are
statistically significant. Even a relationship with a small effect size
can have very low p-values in large samples. Thus, we find that
“practical significance” often matters more. Even if a relationship is
statistically significant, is the effect size still large and meaningful?
How much variance in the data is explained by a particular
relationship? These quantities should be reported in addition to,
or even instead of, p-values. In the case where you are building a
predictive model, cross-validation or other approaches to testing
the model on a reserved test or hold-out dataset (not used to train
the model) should show, for example, sensitivity and specificity
values that indicate the model will be useful in practice. Testing a
model on an entirely different dataset is rarely done but is
valuable for evaluating a model’s generalizability.

Fig. 8 Relationship between walkability and activity inequality
holds within cities in the USA of similar income. We found that
walkability was associated with lower levels of activity inequality. To
help account for potential confounding due to socioeconomic
factors, we grouped the 69 cities in our analysis into quartiles based
on median household income (data from the 2015 American
Community Survey75). We found that walkable environments were
associated with lower levels of activity inequality for all four groups
(LOESS fit). The effect appears to be attenuated for cities in the
lowest median household income quartile. These results suggest
that our main result—activity inequality predicts obesity and is
mediated by factors of the physical environment—is independent
of potential socioeconomic bias in our sample. This figure is adapted
from our previous work11 and reproduced with permission
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Step 6: share results
In the final step, you should document the dataset, methods, and
results for publication, with the goal of adding to our knowledge
about health behaviors and inspiring new research. You should be
as transparent as possible, documenting limitations of your
analysis and describing all the analyses in Steps 2–5 to draw your
conclusions and establish their validity. In conjunction with
publication, we encourage researchers to share their models,
software, datasets, and other digital resources wherever possible.
You must consider what data is ethical to share publicly while still
protecting the identity of users; in some cases, sharing aggregated
data is safest. Taking the extra time to fully document and share
your approach, results, and code allows others to reproduce and
extend your results, completing the circle of Fig. 2 and increasing
the impact of your research.

FUTURE RESEARCH: CHALLENGES AND OPPORTUNITIES
Access to data remains a significant barrier to research. Vast
amounts of data have been and are being collected by
smartphones and wearables, but they are largely siloed at
individual companies. A few strategies might unlock more of
these data for analysis by researchers to uncover new ways to
monitor and improve health. We encourage users to release
anonymized data to advance research and, at minimum, there
should be better means for users to download their own data and
donate it for research, if they wish to do so. Going a step further,
researchers can also leverage the growing movement toward
citizen science, where researchers engage individuals in the
process of collecting and analyzing data and then employing the
results to effect changes in their community.57 For example,
Rodriguez and colleagues58 recently showed that using a citizen
science mobile app called the Discovery Tool (which allows
participants to take geo-coded photos and describe barriers to
and enablers of healthy living in their local environments)
increased engagement in a safe routes to school program along
with rates of walking and biking to school. To protect user privacy,
we need better standards and algorithms for anonymizing activity
data. Government, health care, academic, and industry partner-
ships and consortiums around app and wearable data sharing and
analysis are also needed.
The research community needs more gold-standard population

level data against which to compare. Initiatives like the UK
Biobank59 have conducted large cohort studies that provide a
valuable resource, including wearable data, along with medical
records, imaging, genome, and other measures. Another area of
interest is identifying the relationships between activity, sedentary
time, and sleep over the full 24-hour day. Data from commercial
apps and wearables could provide insights into these relation-
ships, but better algorithms and sensors are needed to accurately
differentiate between these activities. Additionally, the research
community needs transparency. Understanding how algorithms
are computing quantities of interest—like steps or activity counts
—is vital for researchers to understand sensitivities and limitations
of their datasets. We encourage companies to share the details of
their algorithms with researchers when possible.
To both increase trust and continue to advance our knowledge,

we also need new methods for working with large-scale
observational datasets. For example, natural experiments, instru-
mental variables, and regression discontinuities are powerful
approaches for helping establish causality, but their discovery
largely relies on the ingenuity of the research team. Approaches to
automatically identify these natural experiments60 could help us
discover more insights about the many factors drive physical
activity and health. We also need better tools to analyze and
communicate uncertainty. For example, automated tools to screen

for potential confounding would be highly valuable. And in most
datasets, there are many, or even infinite, choices for thresholds,
tuning parameters, combinations of features, removing outliers,
etc. These choices collectively span a “multiverse” of analyses61

and reflect “researcher degrees of freedom”.62 We need better
tools to quantify, communicate, and visualize this uncertainty.
We hope there will continue to be new collaborations between

biomedical researchers and data scientists, where cross-
disciplinary expertise is needed to tackle some key challenges.
For example, “just-in-time” interventions, developed with insights
from health behavior change and data science experts, could
optimize prompts and nudges for health behavior change at the
individual, group, and population levels. Collaboratively tackling
these and other challenges will help commercial apps and devices
have a sustained, positive impact on public health.
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