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Abstract

Motivation: Flow cytometry and mass cytometry are widely used to diagnose diseases and to pre-

dict clinical outcomes. When associating clinical features with cytometry data, traditional analysis

methods require cell gating as an intermediate step, leading to information loss and susceptibility

to batch effects. Here, we wish to explore an alternative approach that predicts clinical features

from cytometry data without the cell-gating step. We also wish to test if such a gating-free ap-

proach increases the accuracy and robustness of the prediction.

Results: We propose a novel strategy (CytoDx) to predict clinical outcomes using cytometry data

without cell gating. Applying CytoDx on real-world datasets allow us to predict multiple types of

clinical features. In particular, CytoDx is able to predict the response to influenza vaccine using

highly heterogeneous datasets, demonstrating that it is not only accurate but also robust to batch

effects and cytometry platforms.

Availability and implementation: CytoDx is available as an R package on Bioconductor (bioconduc-

tor.org/packages/CytoDx). Data and scripts for reproducing the results are available on bitbucke-

t.org/zichenghu_ucsf/cytodx_study_code/downloads.

Contact: zicheng.hu@ucsf.edu or atul.butte@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of cytometry technologies, including flow cytome-

try and mass cytometry (CyTOF), allows researchers to characterize

cell mixtures at the single cell resolution with up to 45 markers.

Multi-dimensional cytometry data contains rich information that

can be used to diagnose a variety of diseases, such as leukemia

(Rawstron et al., 2018), allergy (Ocmant et al., 2007) and infectious

diseases (Farias et al., 2014). In addition, cytometry can be used to

predict other clinical outcomes, such as the response to vaccination

(Hoshina et al., 2016) and to cancer immune-therapies (Martens

et al., 2016; Rodriguez et al., 2016).

The analysis of cytometry data typically starts with identifying

cell populations by manual gating. The abundance of one or several

cell populations is then used to predict clinical outcome of interest.

For example, the abundance of PD-1 positive CD8þ T cells in the

tumor can be used to predict responsiveness to anti-PD-1 immuno-

therapy (Rodriguez et al., 2016). Several computational methods,

such as CITRUS, MetaCyto and FloReMi (Bruggner et al., 2014; Hu

et al., 2018; Van Gassen et al., 2016) have been developed to auto-

mate the gating-based strategy. Cell subsets are first identified from

the flow cytometry data using a clustering algorithm. The summary

statistics of the identified cell subsets, including abundance and mean

marker expression levels, are concatenated into a vector that is used

to build a model for predicting clinical outcome. In such process, each

cytometry data matrix, which characterizes the level of m markers in

n cells (Fig. 1, Cytometry data panel), is reduced into a vector (Fig. 1,

traditional approach panel). Such matrix-to-vector reduction can lead

to information loss. In addition, this analysis strategy requires each

cytometry sample to be clustered in exactly the same way, making it

sensitive to batch effects. Given that batch effects are widely present

in both clinical and research settings, a more robust method is needed

to integrate cytometry data from different experiments.

To address the aforementioned shortcomings of gating-based ap-

proach, we propose a new strategy named CytoDx that directly uses
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the cytometry data at the single cell level to predict clinical outcome.

The CytoDx first estimates the association between each single cell and

the clinical outcome. The cell level associations are then averaged with-

in samples to serve as predictors for the clinical outcome. Using publi-

cally available datasets that are generated from different institutes by

different cytometry platforms (flow cytometry and CyTOF), we dem-

onstrate that CytoDx is able to robustly predict clinical features even in

the presence of batch effects. We also demonstrate how CytoDx could

be used to integrate heterogeneous cytometry datasets in order to iden-

tify cells that are associated with the clinical feature of interest.

2 Materials and methods

2.1 Mathematical description of the CytoDx approach
Let Mi denote a ni-by-m matrix where ni is the number of cells and m is

the number of markers. Mi represents the cytometry data of i-th sample

in the training data. Let I denote the total number of samples in the train-

ing set. Let ri; j denote the j-th row of Mi. Here, each ri; j represents a

cell in sample i. Let Yi denote the clinical outcome associated with the

i-th sample. Let bcell denote the vector of weights in the cell level general-

ized linear model. Let L denote the link function specific to the regression

type, such as the logistic function for logistic regression. bcell is identified

by maximizing the regularized sum of log likelihoods:

XI

i¼1

Xni

j¼1

log p yijL bcell � ri; j

� �h i
� k

X
bcell
�� ��

where k is the regularization strength. The quantity L bcell � ri; j

� �
is

the expected association between each cell and the clinical outcome.

Let Pi denote the average of the cell level association in sample i:

Pi ¼
1

ni

Xni

j¼1

L bcell � ri; j

� �" #

Here, Pi is the predictor at the sample level. Let bsample denote

the weight in the sample level generalized linear model. bsample is

identified by maximizing the sum of log likelihoods

XI

i¼1

log p yijL bsample � Pi

� �h i

The quantity L bsample � Pi

� �
is the expected clinical outcome.

Let N be a n-by-m cytometry data matrix with unknown clinical

outcome and rj to be the j-th row of N. The predicted Y for N is

L bsample � P
� �

where P ¼ 1

n

Xn

j¼1

L bcell � rj

� �" #
:

2.2 Predicting the onset of AIDS in HIV carriers
The HIV dataset from FlowCAP IV competition was downloaded

from flowrepository.org under repository ID: FR-FCM-ZZ99.

We divided the cytometry data into training and testing set accord-

ing to the description in the original competition. The cytometry

data in both training and testing set were compensated using the

supplied compensation matrix and transformed using the formula

f(x) ¼ arcsinh (x/150). We removed the dead cells and debris by

removing cells whose VIVID is greater than 25 000 or FCS-A is

smaller than 25 000.

We randomly sampled 20 000 cells from each fcs file in both

training and test set. We added an additional variable to the matrix

to indicate if the cells have been stimulated by HIV antigens in vitro.

We trained a CytoDx Cox regression model using the training data.

The model was then used to predict the survival time (time between

blood collection and the development of AIDS) for each sample in

the test data.

To assess the performance, we used the original evaluation

source code from the FlowCAP IV competition (Aghaeepour et al.,

2016). Briefly, we fit a Cox regression using our predictor as the in-

dependent variable and the survival time of patients in the testing set

as the dependent variable. We then used a log-rank test to test if

our prediction was significantly associated with the survival time.

We downloaded the results of the original nine submissions in the

competition and evaluated them using the same code.

2.3 Detecting the latent cytomegalovirus infection
We downloaded CyTOF data and cytomegalovirus (CMV) specific

antibody titer data from SDY478 in the ImmPort database

(Bhattacharya et al., 2014). Individuals with CMV specific antibody

titer greater than 1 were considered CMV positive. We randomly

assigned the 69 samples into a 50-sample training group and a

19-sample testing group. Using CyTOF data and CMV status in the

training group, we trained 100 CytoDx models by applying different

Fig. 1. Schematic diagrams showing the traditional gating-based approach and the proposed CytoDx approach. CytoDx first estimates the association between

each single cell and the clinical outcome using a regularized generalized linear model. The cell level associations are then averaged within samples to serve as

sample level predictors. The clinical outcome for each cytometry sample is then predicted using a second regression model
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regularization strength (k) in the lasso model. We performed 5-fold

cross-validation to select the optimal model. We applied the optimal

model to the test set to evaluate the performance. We used the area

under the receiver operator curve (AUC) to quantify performance.

2.4 Pre-processing of HAI titer
We downloaded hemagglutination inhibition (HAI) titer data from

SDY112 and SDY404 studies in ImmPort database (Bhattacharya

et al., 2014; Furman et al., 2017; Thakar et al., 2015). In both stud-

ies, the antibody titers against three strains of influenza virus were

measured by HAI assays before vaccination and 28 days after vac-

cination. We first log transformed the HAI titer to make the data

normally distributed. We then averaged the log titers against three

strains of influenza virus for each individual to represent the overall

titer.

Because the HAI assays were performed independently in two

institutions, the antibody titers are different between the two stud-

ies. To adjust for this difference, we divided the titers into high titer

group and low titer group independently in each study. Titers

greater or lower than the median titer in each study are classified as

high and low titers.

In previous studies, HAI titers in day 28 were adjusted by the

titer before vaccination to represent the titer change (HIPC-CHI

Signatures Project Team and HIPC-I Consortium, 2017; Tsang

et al., 2014). In this study, we used the un-adjusted titer at day 28.

The protection against influenza is determined by the absolute

amount of anti-influenza antibody after vaccine rather than the rela-

tive change of anti-influenza antibody induced by the vaccine.

Therefore, predicting antibody titer at day 28 is more meaningful in

the clinic. In addition, we did not include the pre-vaccine titer in our

predictive model. Therefore, the post-vaccine titers were not con-

founded by pre-vaccine titers and did not need to be adjusted in this

case.

2.5 Rank transformation of cytometry data
We replaced each element in a cytometry data matrix by its rank

relative to other elements in the same column. Percentile rank was

calculated by dividing the rank by the number of cells (rows) in the

matrix and multiplying by 100.

2.6 Predicting HAI titer using cytometry data
CyTOF and flow cytometry data were downloaded from SDY112

and SDY404 (Bhattacharya et al., 2014; Furman et al., 2017;

Thakar et al., 2015) from ImmPort database (Bhattacharya et al.,

2018). We used the CyTOF data in SDY112 as a training dataset

and the flow cytometry data in SDY404 as a testing dataset. We ran-

domly sampled 5000 cells from each fcs file in both training and

testing sets. We ranked transformed the data using the pRank func-

tion contained within CytoDx package. Five T cell surface markers

(CD4, CCR7, CD3, CD45RA and HLADR) were shared between

the flow cytometry data and CyTOF data, and were used for pre-

dicting HAI titer. Using CytoDx, we trained logistic regression

model using the training data. To capture the relationship between

markers, we also included pairwise interactions in the model. The

trained model was then applied to the testing data to predict HAI

titer.

2.7 Finding cell populations using decision trees
We calculated the association between each cell and the clinical out-

come using the cell level predictive model in CytoDx. We built a

decision tree using the cell surface markers as independent variables

and the calculated association as the dependent variable. The deci-

sion tree groups the cell with similar association with the clinical

outcome together through a series of marker bisection steps. The

group with the highest average association with the clinical outcome

is selected and is manually inspected by gating the data based on the

bisection rules from the decision tree. The decision tree is built using

the rpart function in the “rpart” R package.

3 Results

3.1 Summary of CytoDx
The CytoDx workflow can be divided into three stages: the optional

data transformation, the cell level prediction and the sample level

prediction.

Data transformation (Optional): Cytometry data of a sample are

represented as a matrix, which characterizes the level of m markers

in n cells. Traditionally, the raw data are transformed using either

biexponential transformation or arcsinh transformation to facilitate

the down-stream cell clustering or cell gating. The gating-free nature

of CytoDx makes it highly flexible to different types of data trans-

formation. For example, rank-transformed data are highly resistant

to batch effects and are often used for meta-analysis of gene expres-

sion data (Dudley et al., 2009). However, this method’s use in

cytometry data has not yet been explored, because such transform-

ation heavily alters the shape of cell subsets, making cell gating diffi-

cult (Fig. 1, CytoDx approach panel). CytoDx bypasses the gating

step therefore can be easily applied to rank-transformed data. We

show that applying CytoDx on rank data allows robust prediction

of clinical outcome across heterogeneous datasets.

Cell level prediction: Using the cell marker levels as the inde-

pendent variables and the clinical outcome as dependent variables,

the CytoDx then builds a regularized generalized linear model

(Friedman et al., 2010) to predict the association between each sin-

gle cell and the clinical outcome (Fig. 1, CytoDx approach panel, see

the Methods section for a complete description). In some cases, the

two-way or higher order interactions between cell markers can also

be included as independent variables to capture the non-linear rela-

tionship between cell markers. The cell level predictions can be used

for two different purposes. First, the average of the cell level associa-

tions within each sample serves as a predictor for clinical outcomes

at the sample level. Second, the cell level prediction can be used to

identify the cell subsets that are associated with the clinical outcome

of interest.

Sample level prediction: The cell level associations are averaged

within samples to serve as sample level predictors. CytoDx then use

a second regression model to translate the average cell associations

to interpretable predictions, such as the probability of disease or

expected survival time (Fig. 1, CytoDx approach panel, see the

Methods section for a complete description).

3.2 Illustrating CytoDx using simulated data
We illustrate CytoDx through visualization of a simple simulated

dataset. Consider two cytometry samples, sample 1 from a healthy

donor and sample 2 from a donor with a disease (Fig. 2A). A cell-

level logistic model can estimate the association of each cell with the

disease (Fig. 2B). The blue cells, which have higher abundance in the

disease sample, are positively associated with the disease.

Conversely, the red cells, which have lower abundance in the disease

sample, are negatively associated with the disease. After averaging

the cell level associations, we can use a second logistic model to pre-

dict the probability of disease at the sample level (Fig. 2C).
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3.3 Predicting the risk of AIDS in HIV carriers
To benchmark the predictive accuracy of CytoDx, we applied the

method to the HIV dataset from FlowCAP IV competition

(Aghaeepour et al., 2016). The training dataset contains flow cytom-

etry data of peripheral blood from 191 HIV carriers. In addition, the

time between the blood collection and AIDS diagnosis (‘survival

time’) was recorded. The testing dataset contains flow cytometry

data of peripheral blood from another set of 192 HIV carriers. In

the original competition, all nine submissions used the traditional

gating-based approaches. Only two out of nine methods were able

to find a predictor that is significantly associated with the survival

time in the test dataset. Using CytoDx approach, we were able to

predict the survival time in the test dataset with higher significance

(P¼0.00175) than other gating-based approaches (Fig. 3).

3.4 Detecting latent cytomegalovirus infection
We then tested the performance of CytoDx using high-dimensional

CyTOF data. We downloaded CyTOF data and cytomegalovirus-

specific antibody titer data from SDY478 in the ImmPort database

(Bhattacharya et al., 2014). The CyTOF data profiles the peripheral

blood mononuclear cells (PBMC) of 69 individuals using 39

markers. The CMV antibody titer data were used as the gold stand-

ard for detecting CMV infection. We randomly assigned the 69 sam-

ples into a 50 sample training group and a 19 sample testing group.

To prevent over-fitting, we performed feature selection using the

lasso model in CytoDx (Fig. 4A). The final CytoDx model was

applied to the testing group. We found that CytoDx was able to

detect latent CMV infection accurately (AUC ¼ 0.87, P value ¼
0.007) using high-dimensional CyTOF data (Fig. 4B).

3.5 Predicting influenza vaccine response
It should be noted that the curated, high quality of the HIV data

from FlowCAP IV competition is not representative of real-world

settings. Cytometry data are often highly variable between labs or

hospitals. Even data from the same lab may vary between experi-

ments. Differences in sample preparation, reagents and cytometry

platform all contribute to batch effects. To test CytoDx in the pres-

ence of batch effects, we applied CytoDx to two datasets generated

from different institutes (Stanford and Yale) and by different cytom-

etry platforms (CyTOF and flow cytometry).

In both datasets [SDY112 and SDY404 from the ImmPort

Database (Bhattacharya et al., 2014; Furman et al., 2017; Thakar

et al., 2015)], the PBMC were collected from individuals before in-

fluenza vaccination and were analyzed by either CyTOF or flow

cytometry. The antibody titers were measured by hemagglutination

inhibition (HAI) assays 28 days after vaccination. We hypothesized

that the baseline PBMC status captured by cytometry data can be

used to predict the anti-influenza titer post-vaccination.

Because the cohorts in both studies have a bimodal age distribu-

tion (Fig. 5A), we divided the subjects into young (age < 35) and

older (age > 60) groups and analyzed them separately. Because the

HAI assays were performed independently in two institutions, the dis-

tributions of antibody titers are different between the two studies. To

adjust for this difference, we divided the titers into high titer group

and low titer group independently in each study (Fig. 5B and C).

Five T cell surface markers (CD4, CCR7, CD3, CD45RA and

HLADR) are present in both the flow cytometry data and CyTOF

data. Since the cytometry data are generated using different plat-

forms, they are distinct between studies (Fig. 5D). To adjust for such
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A B C

Fig. 2. Illustrating CytoDx using simulated data. (A) Plots showing the simu-

lated data, in which the number of blue cells increase, the number of red cells

decrease and the number of green cell stay unchanged in the disease sample.

(B) The association of each cell with the disease is estimated using a cell level

logistic regression model in CytoDx. Black bars represent the mean associ-

ation. (C) The probability of disease in each sample is estimated using a sam-

ple level logistic regression model in CytoDx (Color version of this figure is

available at Bioinformatics online.)

A B

Fig. 3. Benchmarking the performance of CytoDx. (A) A CytoDx cox regres-

sion was built to predict survival time of HIV carriers using training dataset

from the FlowCAP IV competition. Prediction in testing set was evaluated by

using the logrank test. Grey bars represent the submissions to the FlowCAP

IV competition. Blue bar presents the result from CytoDx. (B) Kaplan–Meier

plots for high- and low-risk HIV carriers according to CytoDx prediction (Color

version of this figure is available at Bioinformatics online.)

A B

Fig. 4. CytoDx detects latent CMV infection using high-dimensional CyTOF

data. We used CytoDx to detect latent CMV infection using CyTOF samples

from the ImmPort SDY478 dataset. (A) A bar graph showing the feature im-

portance of each marker in detecting latent CMV infection. We scanned

across a range of regularization strength (k) to generate 100 candidate mod-

els. Cross-validation was used to select the optimal predictive model. Red

bars represent markers included in the optimal model. For each marker, fea-

ture importance is estimated using the percent of candidate models that con-

tain the marker. (B) We applied the optimal model on a test dataset of 19

samples. The performance is visualized by the receiver operator curve (ROC)

and measured by area under the ROC curve (AUC). P values were calculated

using Wilcoxon tests (Color version of this figure is available at

Bioinformatics online.)
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differences, we applied rank transformation to both datasets.

Although the transformation largely removed the batch effects, it

drastically alters the shape of cell subsets, making cell gating diffi-

cult (Fig. 5D). However, since CytoDx bypassed the gating step, it

can be easily applied to the rank data.

We first applied CytoDx to the young group. After training the

CytoDx model using training data from SDY112, we applied the

model to the testing from SDY404. The CytoDx model was able to

accurately predict the vaccine titer 28 days after vaccination

(Fig. 5E, AUC ¼ 0.89, P value ¼ 0.005).

We also applied CytoDx to the older group but were unable to

predict antibody titer in these individuals (Fig. 5E, AUC ¼ 0.52, P

value ¼ 0.99). The result is consistent with a previous study from

Human Immunology Project Consortium (HIPC), which showed

that baseline global gene expression profiles can be used to predict

vaccine response in young individuals, but not in older individuals

(HIPC-CHI Signatures Project Team and HIPC-I Consortium,

2017). We discuss the low prediction accuracy in older people in the

discussion section.

We obtained similar results when using CytoDx to predict the post-

vaccine HAI titer as a continuous response variable. The predicted

titers were highly correlated with the observed titers in young individu-

als (correlation ¼ 0.77, P value ¼ 0.0005, Supplementary Fig. S1A),

but not in older individuals (correlation¼ 0.08, P value ¼ 0.67).

Two recently published methods, cydar (Lun et al., 2017) and

CellCnn (Arvaniti and Claassen, 2017), have been proposed to de-

tect small cell populations that are different between conditions

within the same experiment. Both methods were able to analyze

cytometry data without explicit cell gating, therefore can potentially

be applied on rank data as well. We applied both methods on the

rank data from SDY112 and SDY404, but were unable to predict

HAI titer in young people, suggesting that they are not compatible

with rank transformation (Supplementary Fig. S2).

3.6 Identifying cell populations associated with strong

vaccine response
In addition to predicting the antibody titer at the individual level,

CytoDx model can also be used to predict each cell’s association

with antibody titer. Such information can be used to identify cell

subsets associated with vaccine titer. We applied a decision tree

method to identify the cell subset that has the highest association

with antibody titer (Fig. 6A). Interestingly, the decision tree identi-

fied a CCR7þ CD45RAþ HLADR- cell subset. Manual inspection

showed that the subset is also CD3þ, indicating that the subset cor-

responds to naı̈ve T cells.

To confirm the result from the decision tree, we quantified the per-

centage of naı̈ve T cell in blood. We found that the percentage of naı̈ve

T cells is significantly elevated in high titer group (Fig. 6B and C). We

further divided the population into CD4þ and CD8þ naı̈ve T cells

and found that both subsets were elevated in the high titer group

(Fig. 6D and E). Among them, CD8þ naı̈ve T cells have the most sig-

nificant increase (P¼0.005). The result suggests that the availability

of naı̈ve T cells, which can respond to new antigens, is critical in deter-

mining the response against influenza vaccine in young individuals.

4 Discussion

In this study, we proposed a gating free strategy (CytoDx) for pre-

dicting clinical outcomes using cytometry data. The cytometry data

A

D E

B C

Fig. 5. The CytoDx approach is accurate and robust to batch effects. (A) The age distribution of subjects in SDY112 and SDY404. (B–C) The post-vaccine HAI titers

in young and older individuals. Titers were log transformed to make the data normally distributed. The log titers against three strains of influenza virus were aver-

aged for each individual to represent the overall titer. (D) The CD4 and CD3 profile in CyTOF data from SDY112 and flow cytometry data from SDY404. Data before

and after rank transformation are presented. (E) A CytoDx logistic regression was trained using data from SDY112 and applied to test dataset from SDY404 to pre-

dict post vaccine HAI titer. The performance in the test dataset is visualized by the receiver operator curve (ROC) and measured by area under the ROC curve

(AUC). P values were calculated using Wilcoxon tests
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matrix can be directly used to train a statistical model for clinical

outcome prediction. The gating-free approach has two main advan-

tages. First, it avoids the information loss in the gating step because

it uses the original cytometry matrix as input instead of using the

summary statistics from cell gating. Second, it is flexible to data

transformations. We demonstrated that applying CytoDx on rank-

transformed data allows robust prediction of clinical outcome across

heterogeneous datasets.

Using CytoDx, we were able to predict vaccine response in

young individuals. However, CytoDx fails to predict the vaccine re-

sponse in older individuals. The low prediction accuracy may be due

to multiple reasons. First, naı̈ve T cells, which are highly associated

with antibody titer in young individuals, are diminished in older

individuals (Carr et al., 2016; Douek et al., 1998). Second, it is

known that the immune cells are more heterogeneous in older peo-

ple due to age-related diseases and more antigen encounters

throughout life (Brodin et al., 2015). Our result is consistent with a

previous study from Human Immunology Project Consortium

(HIPC), which showed that baseline global gene expression profiles

can be used to predict vaccine response in young individuals, but not

in older individuals (HIPC-CHI Signatures Project Team and HIPC-

I Consortium, 2017), suggesting that molecular profiling of PBMC

does not provide enough information to predict the vaccine response

in older people. Detailed medical history may be needed to explain

the variance in immune cells.

Previous publications have identified a dependency between pre-

vaccine HAI titer and the vaccine response (HIPC-CHI Signatures

Project Team and HIPC-I Consortium, 2017; Tsang et al., 2014).

To adjust for the dependency between pre-vaccine titer and vaccine

response, the data were binned based on pre-vaccine titer and scaled

within each bin to remove the correlation between vaccine response

and pre-vaccine titer. The adjusted response was called Adjusted

Maximum Fold Change (adjMFC). Although the adjustment

removes the dependency with pre-vaccine titer, the association

between adjMFC and the protection against influenza has not been

demonstrated. For this analysis, we chose to predict the un-adjusted

post-vaccine titer instead as the correlation between absolute titer

and virus protection has been demonstrated by multiple studies

(Black et al., 2011; Wei et al., 2018). Given that the final protection

level is the outcome of interest, predicting the post-vaccine response

is more clinically relevant.

In both research and clinical settings, cytometry data are often

highly variable between labs or hospitals. Differences in sample

preparation, reagents and cytometry platform all contribute to batch

effects, making it difficult to jointly analyze cytometry datasets.

Rank transformation was able to alleviate the batch effect by remov-

ing the batch specific shape of the cell populations, but preserving

the relative order of cells in each dimension. Applying CytoDx to

ranked data allows robust prediction of clinical featured using data

from different sources. In addition, leveraging the cell level predic-

tion from CytoDx, researchers can identify the cell subsets that are

associated with the phenotype of interest.

It should be noted that several types of batch effects cannot be

removed using rank transformation alone. First, fluorescent spill-

overs will alter the relative orders of cells in each marker dimension.

Therefore, if a cytometry dataset is not properly compensated, batch

effects will persist after rank transformation. Second, the presence

of highly auto-fluorescent particles, such as cell debris or dead cells,

will shift the rank of cells in each marker dimension, leading

to batch effects that cannot be removed by rank transformation.

To overcome these problems, it is essential to combine rank trans-

formation with other pre-processing steps, including signal compen-

sation and debris removal.

A key step in CytoDx is predicting the association between each

cell and the clinical feature of interest. In principle, any type of pre-

dictive models can be used in this step, such as neural network and

decision tree. We choose to use the regularized generalized linear re-

gression (LASSO or ridge regression) for several reasons. First, the

A B

C D E

Fig. 6. CytoDx identifies cell populations associated with high vaccine response. (A) A decision tree identifies the cells associated with the HAI titer in young indi-

viduals. The number in each box represents the average association between the cell group and HAI titer. The splitting rule underneath each box divides the par-

ent population into two sub-groups. Red square shows the cell group with the highest association with HAI titer. (B) 2 dimensional plots showing the percent of

CCR7þ CD45RAþ naive T cells within total T cells from individuals with low or high HAI titer in the test dataset. (C-E) Boxplots showing the percent of total Naive

T cells (C), CD4þ Naive T cells (D) and CD8þ Naive T cells (E) in young individuals with high or low HAI titer. Naive T cells are defined as CD3þ CCR7þ CD45RAþ
and HLADR�. P values were calculated using two sided, unpaired t-tests
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linear method is less prone to overfitting, making it more robust

when predicting clinical features. Second, the linear methods are

computationally advantageous when making predictions for a large

number of cells. It takes less than 30 seconds to train a CytoDx

model using a dataset containing 24 million cells on a laptop.

Finally, LASSO regression automatically performs variable selec-

tion, allowing researchers to identify markers that are most relevant

for predicting clinical outcomes. We expect this advantage to be

more prominent when applying CytoDx to other types of single cell

data, such as single cell RNA sequencing data, where thousands of

transcripts are included as variables.
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