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ABSTRACT

The transition from recreational drug use to addiction involves pathological learning

processes that support a persistent shift from flexible, goal-directed to habit behavioral

control. Here, we examined the molecular mechanisms supporting altered function in

hippocampal (HPC) and dorsolateral striatum (DLS) memory systems following absti-

nence from repeated cocaine. After 3 weeks of cocaine abstinence (experimenter- or

self-administered), we tested new behavioral learning in male rats using a dual-solution

maze task, which provides an unbiased approach to assess HPC- versus DLS-dependent

learning strategies. Dorsal hippocampus (dHPC) and DLS brain tissues were collected

after memory testing to identify transcriptional adaptations associated with cocaine-

induced shifts in behavioral learning. Our results demonstrate that following prolonged

cocaine abstinence rats show a bias toward the use of an inflexible, habit memory system

(DLS) in lieu of a more flexible, easily updated memory system involving the HPC. This

memory system bias was associated with upregulation and downregulation of brain-

derived neurotrophic factor (BDNF) gene expression and transcriptionally permissive his-

tone acetylation (acetylated histone H3, AcH3) in the DLS and dHPC, respectively. Using

viral-mediated gene transfer, we overexpressed BDNF in the dHPC during cocaine absti-

nence and new maze learning. This manipulation restored HPC-dependent behavioral

control. These findings provide a system-level understanding of altered plasticity and

behavioral learning following cocaine abstinence and inform mechanisms mediating the

organization of learning andmemorymore broadly.

K E YWORD S

BDNF, dorsolateral striatum, gene transcription, hippocampus, learning and memory,

psychostimulants

1 | INTRODUCTION

Psychostimulant abuse causes long-lasting neuroplastic changes across

brain networks that mediate motivation and reward, decision-making,

behavioral flexibility, and learning and memory (Gipson, Kupchik, &

Kalivas, 2014; Graybiel, 2008; Kalivas, Volkow, & Seamans, 2005;

Robbins, Ersche, & Everitt, 2008; Robinson & Kolb, 2004; Robison &

Nestler, 2011; Stalnaker et al., 2007; Takahashi, Roesch, Stalnaker, &

Schoenbaum, 2007). Learned behaviors are regulated by both cognitive/

goal-directed and habit memory systems in the brain. Disruption in the
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balance between these systems is a lasting and potentially pervasive

symptom of the addicted phenotype that may contribute to both the

development and maintenance of drug addiction, as well as therapeutic

challenges (Balleine & O'Doherty, 2010; Ersche et al., 2016; Everitt &

Robbins, 2005; Everitt & Wolf, 2002; Goodman & Packard, 2016).

Whether maladaptive behaviors characteristic of drug abuse are

supported by enhancements in habit memory systems, impairments in

goal-directed memory systems or a combination of both remains poorly

understood (de Wit et al., 2018; Ersche et al., 2016; Everitt & Robbins,

2005; Robbins et al., 2008).

Habit and goal-directed learning depend upon distributed brain cir-

cuits that can compete for behavioral control, such that a failure in one

may manifest as an enhancement in the other, or vice versa. (Balleine &

O'Doherty, 2010; Kathirvelu & Colombo, 2013; Matthews & Best,

1995; McDonald & White, 1993; Packard, Hirsh, & White, 1989;

Tomas Pereira, Gallagher, & Rapp, 2015; Yin, Knowlton, & Balleine,

2004; Yin, Knowlton, & Balleine, 2006). Among these systems is the

dorsolateral striatum (DLS), which encodes information inflexibly and

supports behaviors that are “hard-wired” (habits) (Graybiel, 2008;

Quinn, Pittenger, Lee, Pierson, & Taylor, 2013; Tricomi, Balleine, &

O'Doherty, 2009; Yin et al., 2004; Yin et al., 2006). Another system is

the hippocampus (HPC), which flexibly encodes episodic and semantic

information to support goal-directed behaviors that can be rapidly and

easily modified (Eichenbaum & Cohen, 2014; Eichenbaum, Otto, &

Cohen, 1992; Kennedy & Shapiro, 2004; Redish, 2016; Squire & Dede,

2015; Wikenheiser & Schoenbaum, 2016). Much research has focused

on drug-induced adaptations within frontostriatal circuits, and both

facilitated dorsal striatal (DSTR) and impaired prefrontal cortical

(PFC) plasticity/function have been largely implicated in the cogni-

tive and behavioral abnormalities associated with excessive expo-

sure to psychostimulants and relapse (Belin & Everitt, 2008; Chen

et al., 2013; Fuchs, Branham, & See, 2006; LeBlanc, Maidment, &

Ostlund, 2013; Li et al., 2015; Lucantonio, Stalnaker, Shaham,

Niv, & Schoenbaum, 2012; Moratalla, Elibol, Vallejo, & Graybiel,

1996; Vanderschuren, Di Ciano, & Everitt, 2005; Volkow et al.,

2006). However, additional evidence has shown that repeated

cocaine exposure impairs HPC-dependent learning and HPC long-

term potentiation (LTP) is enhanced or diminished depending on

the length of cocaine abstinence, short versus long, respectively

(Beveridge, Smith, Daunais, Nader, & Porrino, 2006; Briand,

Gross, & Robinson, 2008; Guan, Zhang, Xu, & Li, 2009; Kutlu &

Gould, 2016; Mendez et al., 2008; Sudai et al., 2011; Thompson,

Swant, Gosnell, & Wagner, 2004). Whether impairments in HPC

memory processing and plasticity contribute to the predominant

use of DLS-dependent learning strategies following repeated

cocaine exposure has not been well studied and the neuroadaptations

supporting psychostimulant-mediated transitions in behavioral

learning remain poorly understood. Using a dual-solution maze task

that can be solved with either HPC- or DLS-dependent strategies,

we examined molecular and transcriptional adaptations associated

with cocaine-induced shifts from goal-directed to habit memory

system function.

2 | METHODS

2.1 | Subjects

Male, Long-Evans rats, approximately PND 40, 220–250 g at start of

experiment (Charles River Laboratories, Wilmington, MA) were housed

individually in a colony room maintained at a constant temperature

(23�C) on a reverse 12 hr light/dark cycle (lights off from 7:00 a.m. to

7:00 p.m.) with ad libitum access to food and water (except for during

maze training, see below). Training and testing was conducted in the

dark cycle. Following acclimation, rats were handled for 5–7 days prior

to the onset of the experiments. All procedures were performed in

accordance with guidelines stipulated by the NIH Guide for the Care

and Use of Laboratory Animals and were approved by the UCLA Insti-

tutional Animal Care and Use Committee.

2.2 | Behavioral apparatus

2.2.1 | Operant chambers

Rats were trained to self-administered cocaine in operant chambers

(Med Associates Inc., St. Albans, VT) housed inside sound-attenuating

cubicles. Each chamber had a stainless steel grid floor and contained

two retractable levers located 6 cm above the floor. Two stimulus lights

were mounted above the levers and a white house light was located

20 cm above the floor on the wall adjacent to the levers. During training,

catheters were attached to polyethylene-50 tubing protected by a metal

tether which fed to a plastic swivel outside of the chamber, which itself

was connected to a 10 mL syringe loaded with either saline or cocaine.

All chambers were controlled by a Med Associates interface system.

2.2.2 | Dual-solution maze

Rats were trained on a plus-shaped maze with a wooden laminate-

covered floor and plexiglass walls. Each of the four maze arms

(103 × 10 cm2) extended from a central platform (12.5 cm2) at 90�

angles. The maze stood on central legs placing the maze arms 97 cm

off the ground. Plexiglass walls extended 20 cm from the floor of the

maze. One lamp was positioned in the northwest corner of the room,

and large posters were positioned on each of the room's four walls.

During habituation, training and probe testing a clear plexiglass bar-

rier (20 cm tall) was used to block the arm opposite to the start arm,

creating a T-shaped maze. The north maze arm was blocked during

habituation and training, while the south maze arm was blocked dur-

ing the probe test (Figure 1b). A plexiglass tub with woodchip bed-

ding and wire lid was used as a holding cage between trials.

2.3 | Surgical procedures

2.3.1 | Jugular catheterization

Rats were anesthetized with 2–3% isoflurane anesthesia. The ventral

neck and shoulder blade areas were shaved and alternating treatments

of Betadine scrub and alcohol applied. Two incisions were made: (a) a
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1 cm lateral incision in an anterior/posterior direction on the neck over

the right jugular vein and (b) a 1 cm medial incision between the scapu-

lae on the back. The jugular vein was isolated through blunt dis-

section of the surrounding tissue. A catheter tube (0.04 in. O.D. × 0.20

I.D., Plastics One, Roanoke, VA) approximately 15 cm long was then

threaded through the incision between the shoulder blades, passing

through the subcutaneous space, to the incision in the neck and

inserted into the vein toward the heart (~2 cm). The catheter tubing

was attached to a guide cannula positioned between the animal's shoul-

der blades. The cannula bent at a right angle protruding from the skin,

was embedded in dental acrylic and fixed with mesh (1 mm thick,

2 cm2) circumscribing its base. The catheter was anchored to the vein

using two 6–0 silk (nonabsorbable) sutures, one below and one above

the insertion point of the catheter into the vein. The incisions in the

neck and back regions were closed using absorbable 4–0 sutures. Rats

received a 7-day recovery period following surgery. Rats were injected

with Carprofen (5 mg/kg, analgesic) prior to surgery and every 12 hr for

2 days postoperation. Starting 24 hr after surgery and continuing through-

out self-administration procedures, catheters were flushed daily with

0.1 mL ampicillin (antibiotic, 4 mg/mL in 0.9% sterile saline) followed by

0.1–0.2mL heparinized saline (50 IU/mL in 0.9% sterile saline).

2.3.2 | Viral-mediated gene transfer

Within 24–96 hr of the final cocaine treatment rats were anesthetized

with 2–3% isoflurane anesthesia and given Bupivacaine (s.c) at the site

of incision. Brain-derived neurotrophic factor (BDNF) overexpression

in the dorsal hippocampus (dHPC) was achieved through bilateral ste-

reotaxic infusions of AAV2-CAG2-mCherry-2A-mBDNF-WPRE or

control virus AAV2-CAG2-mCherry-WPRE, generously gifted by

Blurton-Jones (Goldberg et al., 2015; White et al., 2016), at a rate of

1 μL/hr in the dHPC (AP: −3.8 mm; ML: ±2.2 mm; DV: −2.5 mm from

bregma). Rats were injected with Carprofen (5 mg/kg, analgesic) prior

to surgery and every 12 hr for 2 days postoperation and received

17–21 days recovery prior to maze training.

2.4 | Drug treatment

2.4.1 | Experimenter-administered cocaine

Rats were treated daily with intraperitoneal (i.p.) injections of 20 mg/kg

cocaine or saline vehicle for 14 days. This regimen of cocaine treatment

was selected based on previous studies reporting effects that have

been replicated in rodent models of cocaine self-administration and in

tissues obtained from humans with a history of drug abuse (Kumar

et al., 2005; Maze et al., 2010; Robison et al., 2013). Following the final

injection, rats were left undisturbed in their home cages, except to

monitor weight and health, for 17–21 days.

2.4.2 | Cocaine self-administration

Following 7 days recovery from surgery, rats were trained to self-

administered cocaine on a fixed ratio one schedule (0.75 mg/kg/infusion)

in operant conditioning chambers (Med Associates). Training consisted of

3-hr daily sessions run until animals met performance criterion of 12–14

consecutive days with less than 25% change in number of drug infusions

earned between days. A session would begin with the illumination of a

house light and the extension of two levers. Presses on the designated

active lever activated a syringe pump for drug infusion. After each res-

ponse/infusion, levers were retracted and a cue light located above the

active lever was illuminated for a 15 s timeout period. Presses on the

inactive lever were recorded but resulted in no programmed conse-

quences. Animals designated to receive saline, were yoked to an animal

designated to receive cocaine such that when a cocaine animal pressed

the active lever, both animals received their respective infusions and

programmed consequences.

2.5 | Dual-solution maze task

Starting 1 week prior to maze training and continuing until tissue col-

lection, rats were food restricted to maintain 93–96% of their free-

feeding body weight. This mild food restriction schedule was adminis-

tered because rats were required to only run four trials per test ses-

sion. Water continued to be provided ad libitum.

2.5.1 | Habituation and training

Animals began food restriction 10–12 days after the last drug expo-

sure. On Days 16 and 17 of drug abstinence, rats were habituated to

the plus maze apparatus. Habituation involved one trial per day. Rats

were placed on the south start arm of the maze and allowed to freely

explore the maze for 5 min. During habituation sessions, a clear

plexiglass barrier blocked access to the north arm and no reward pel-

lets were available on the maze. After each habituation trial, animals

were returned to their home cages and provided with 10 banana fla-

vored grain-based pellets (Bio-Serv, Flemington, NJ; F0158, 190 mg),

subsequently used as training reward. During habituation, experi-

menters observed entries to each available maze arm, and the number

of arm traversals to identify any preference for specific arms. Prior to

training, each animal was designated to receive reward in either the

east or west maze arm. Rats that exhibited a bias during habituation

were intentionally split evenly between receiving reward in their pre-

ferred or nonpreferred maze arm. Rewarded arms (east vs. west) were

assigned in a counterbalanced manner within and between testing

groups. Following habituation animals received a maximum of 12 days

of training. Training days consisted of four trials per day. On the first

trial of training Day 1, the reward arm was baited with five total pel-

lets along the arm from the choice point to the reward cup at the end

of the arm. For all subsequent training trials, one reward pellet was

placed at the end of the designated reward arm. For each trial, animals

were placed in the south start arm facing away from the maze and

given 2 min to navigate to the reward site. If 2 min elapsed before the

rat reached the reward site, the rat was placed at the reward site by

the experimenter. On every training trial, rats were scored for their

choice between east and west goal arms. A choice was defined when

the rat had all four paws in the selected goal arm. Training
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continued until animals exhibited four consecutive days with a total

of five errors or less (68.75% correct). If a rat failed to reach this

criterion performance after 12 days of training they were removed

from the experiment (cocaine, N = 0; saline, N = 2; this was often

associated with lack of maze exploration or irregular reward con-

sumption). During the last 4 days of training, the time required for a

rat to complete each trial was recorded and analyzed for differ-

ences between treatment groups.

2.5.2 | Probe testing

Learning strategy was assessed with a single probe trial. For probe tri-

als, the barrier was moved to block the south start arm, and animals

were placed on north arm at the beginning of the trial. Rats were

scored based on the goal arm selected, those who turned into the pre-

viously rewarded arm were scored as “place learners” and those who

turned into the previously unrewarded arm scored as “response

learners.” Probe testing was conducted at one of two time points: 1 or

24 hr after criterion levels of performance were met for gene expres-

sion and Western blot analyses, respectively (Figure 1a,b).

2.6 | Tissue analyses

2.6.1 | RNA isolation and quantitative PCR

Bilateral DLS and dHPC were obtained from 1-mm coronal brain

sections immediately following the 1-hr probe test (1 hr after per-

formance criterion). RNA isolation and quantitative PCR (qPCR)

were performed as described previously (Kennedy et al., 2013).

Briefly, tissue was homogenized in Trizol and processed according

to the manufacturer's instructions. RNA was purified with RNeasy

Micro columns (Qiagen, Germantown, MD, Cat. #7004) and spec-

troscopy confirmed that the RNA had 260/280 and 260/230 ratios

>1.8. RNA was reversed transcribed into cDNA using iScript cDNA

synthesis (Bio-Rad, Hercules, CA). qPCR was performed using

~2.5 ng of cDNA for each reaction plus primers and SYBR Green.

Each reaction was run in duplicate and analyzed following the ΔΔCt

method as previously described using glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) as a normalization control.

Primers used for qPCR were as follows: GAPDH: F-AAGTCGGTG

TGAACGGATTTG, R- GGGGTCGTTGATGGCAACA; BDNFIX: F-GGGT

GAAACAAAGTGGCTG, R-ATGTTGTCAAACGGCACAA; Fos: F-GGGAG

CTGACAGATACGCTC, R-TTGGCAATCTCGGTCTGCAA; Jun: F-CTGATC

ATCCAGTCCAGCAA, R-TGGCTATGCAGTTCAGCTAGG, Egr1: F-AGCCT

TCGCTCACTCCACTA, R-GACTCAACAGGGCAAGCATAC; Egr2: F-TCCT

CTGTGCCTTGTGTGATG, R-ACCCAGGGAGTGATTTTTTTTTC; Egr3:

F-AGCAGTTTGCTAAATCAATTGCCT, R-CATTCTCTGTAGCCATCTG

AGTGTAAT.

2.6.2 | Western blot

Bilateral DLS and dHPC were obtained from 1-mm coronal brain sec-

tions 24 hr after probe testing. Western blotting was performed as

described previously (Kennedy et al., 2013). Briefly, tissue was

homogenized in 50–90 μL of 1 M HEPES lysis buffer (1% SDS) con-

taining protease and phosphatase inhibitors using an ultrasonic pro-

cessor. Protein concentrations were determined using a DC protein

assay and 10–20 μg samples of total protein were electrophoresed on

18% Tris-HCl polyacrylamide gels. Proteins were transferred to a

PVDF membrane, blocked for 1 hr in 5% BSA, and incubated over-

night at 4�C with either anti-acetyl H3 (Millipore, Burlington, MA, Cat.

# 06-599, RRID:AB_2115283, 1:5,000) or anti-GAPDH (Cell Signaling

Technology, Danvers, MA, Cat. #2118, RRID:AB_561053, 1:60,000)

antibodies. Membranes were then incubated with secondary antibody

conjugated to horseradish peroxidase for 1 hr at room temperature

(anti-Rabbit, Vector Laboratories, Burlingame, CA, Cat. # PI-1000) and

bands were visualized using SuperSignal West Dura substrate. Bands

were quantified with the NIH ImageJ software and normalized to

GAPDH to control for equal loading.

2.6.3 | Virus validation

Immunohistochemistry

Rats were deeply anesthetized with Nembutal and perfused transcardially

with PBS followed by 4% paraformaldehyde (PFA). Brains were removed

and postfixed in 4% PFA overnight, and then placed into 30% sucrose in

0.1 M phosphate buffer. Brains were then sectioned at 40 μm using a

cryostat, and stored in cryoprotectant. To visualize viral expression, free-

floating coronal sections were washed two times in 1X PBS for 10 min

and then blocked for 1–2 hr at room temperature in a solution of 5% nor-

mal goat serum and 1% Triton X-100 dissolved in PBS. Sections were

then washed three times in PBS for 15 min and incubated in blocking

solution containing rabbit anti-DsRed antibody (1:1000; Clontech,

Mountain View, CA) with gentle agitation at 4�C for 18–22 hr. Sections

were rinsed three times in the blocking solution and incubated in

AlexaFluor-594-conjugated (red) goat secondary antibody (1:500; Invi-

trogen, Carlsbad, CA) for 2 hr. Sections were then washed three times in

PBS for 30 min, mounted on slides, and coverslipped with ProLong Gold

mounting medium with DAPI. All images were acquired using a Keyence

(BZ-X710) microscope with a ×4 or ×20 objective (CFI Plan Apo), CCD

camera, and the BZ-X analyzer software.

Quantitative PCR

Animals were euthanized 5–7 days following the probe test. Bilateral

DLS and dHPC were obtained from 1-mm coronal brain sections with

16 gauge blunt tip needles. Care was taken to collect tissue surround-

ing the base of the injection needle track visible on the brain section.

This tissue was processed and analyzed for Bdnf exon IX expression

as described above.

2.7 | Statistical analysis

Statistical analyses were performed using GraphPad Prism and SPSS Sta-

tistics. Datasets were analyzed using Student's t tests, one- and two-way

analysis of variances (ANOVAs), Fisher's exact test (FET), and repeated

measures ANOVA. The presented gene expression data (Figure 3c–e)
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were analyzed without correction for multiple comparisons, as small

effect sizes were expected and false negatives would limit follow-up

research. Identified changes in the expression of a key gene of interest,

Bdnf IX, were replicated in a separate cohort of animals (Figure S1).

3 | RESULTS

3.1 | Abstinence from repeated cocaine biases new
behavioral learning toward the use of a DLS-
dependent strategy

Aberrant learning processes contribute to the chronic relapsing nature

of psychostimulant addiction. To investigate whether this represents

a global and persistent change that impacts new learning outside of

the context of drug-seeking/taking, we trained and tested rats on a

dual-solution maze task following abstinence from repeated cocaine.

Extensive research employing this behavioral paradigm has shown

that with limited training, rats will use an HPC-dependent (place)

strategy to solve the task but with overtraining there is a shift to a

DLS-dependent (response-based) solution (Kathirvelu & Colombo,

2013; Packard & McGaugh, 1996; Pych, Chang, Colon-Rivera, Haag, &

Gold, 2005; Tolman, Ritchie, & Kalish, 1946, 1947). Because we

hypothesized that cocaine exposure would promote DLS-dependent

learning strategies we employed a limited training procedure. Rats

received experimenter-administered cocaine (20 mg/kg daily, i.p.) for

14 days. Following 21 days of drug abstinence animals were trained in

the dual-solution task. To investigate the learning strategy adopted by

rats to solve the task, animals were given a probe test either 1 or

24 hr after criterion levels of performance were reached (Figure 1a).

Behavioral data obtained from these two distinct probe-testing proce-

dures were initially examined separately but as there was no differ-

ence detected between the two experiments, the data was combined.

Following limited training, saline exposed rats displayed place learning

while rats abstinent from cocaine showed the predominant use of

response learning (Figure 1d; p < .0001, FET). Importantly, all rats

required a similar number of training days to reach criterion levels of

performance (Figure 1c; t(59) = 1.10, p = .28). Measures of the latency

to complete trials during the last 4 days of training did not differ

across treatment groups (data not shown).

Next, to validate our behavioral findings in a model of contingent

cocaine administration, we trained rats to self-administered cocaine

(0.75 mg/kg/infusion; 12–14 days of asymptotic lever pressing) dur-

ing 3 hr daily sessions (Figure 2a,b). Following 21 days of abstinence,

rats were trained and tested (24 hr after performance criterion) on the

dual-solution maze. Yoked saline control rats exhibited HPC-

dependent place learning while rats abstinent from cocaine primarily

displayed DLS-dependent response learning (Figure 2c; p = .024, FET).

Together, these data show that prior repeated cocaine exposure does

not cause a general impairment in new learning but rather is associ-

ated with a shift from HPC- to DLS-dependent memory processing

and behavioral control.

3.2 | Cocaine-induced memory system bias is
associated with bidirectional changes in AcH3 and
BDNF in the DLS and HPC

Learning and memory are critically dependent on brain plasticity that

in turn requires gene transcription. We thus hypothesized that the

observed shift in behavioral learning strategy following cocaine would

be associated with altered experience-dependent transcriptional acti-

vation in the HPC and DLS. Acetylation of core histone proteins mod-

ifies chromatin structure to facilitate gene transcription and support

new learning and behavioral plasticity (Kennedy & Harvey, 2015;

Peleg et al., 2010; Rudenko & Tsai, 2014). Following the 24-hr probe

test, we compared total levels of histone H3 acetylation (AcH3) in the

dHPC and DLS of experimenter-administered cocaine and saline-

treated animals. Levels of AcH3 were significantly increased in the

DLS (Figure 3b; t(8) = 2.585, p = .032) and moderately decreased in

the dHPC (Figure 3a; t(9) = 2.019, p = .074) of cocaine-treated animals.

A two-way ANOVA was used to compare fold change AcH3 levels in

the DLS and dHPC, and revealed a main effect of brain region

[F(1,17) = 9.813, p = .006] and an interaction between brain region and

drug treatment [F(1,17) = 9.813, p = .006]. AcH3 levels were

F IGURE 1 Memory system bias following abstinence (21 days)
from experimenter-administered cocaine (20 mg/kg/day, 14 days).
(a) Timeline for experimenter-administered cocaine experiments.
Probe testing for future gene expression and western blot analyses
was conducted at 1 and 24 hr after performance criterion was met,
respectively. (b) Schematic representation of the dual-solution task
used for all experiments. (c) Number of days to reach criterion levels
of performance. Data presented as mean ± SEM. (d) Saline-treated
rats used an HPC-dependent place strategy to solve the task while
cocaine-treated rats showed a bias toward the use of a DLS-
dependent response strategy. DLS, dorsolateral striatum; HPC,
hippocampal [Color figure can be viewed at wileyonlinelibrary.com]
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significantly higher in the DLS compared to the dHPC in cocaine-

treated animals (p = .0003).

We next profiled changes in the expression of candidate immediately

early genes (IEGs) previously shown to play a role in activity-dependent

plasticity in both the striatum and HPC. In order to capture the transient

nature of IEG induction in response to new learning, we compared

mRNA levels of Fos, Jun, early growth response (Egr1-3) and Bdnf in the

dHPC and DLS of experimenter-administered cocaine and saline-treated

animals immediately following the 1-hr probe test on the dual-solution

maze. No group differences were observed in the mRNA levels of Fos,

F IGURE 2 Memory system
bias following abstinence
(21 days) from cocaine self-
administration (fixed ratio one,
0.75 mg/kg/infusion).
(a) Experimental timeline.
(b) Cocaine self-administration.
(c) Yoked-saline rats used an
HPC-dependent place strategy to
solve the task while cocaine self-
administering rats showed a bias
toward the use of a DLS-
dependent response strategy.
DLS, dorsolateral striatum; HPC,
hippocampal

F IGURE 3 Memory system bias following
abstinence (21 days) from experimenter-
administered cocaine (20 mg/kg/day, 14 days) is
associated with bidirectional changes in
permissive histone acetylation and Bdnf
expression in dHPC and DLS. (a and b)
Quantification and representative Western blots
of total AcH3 in the dHPC and DLS 24 hr after
probe testing (N = 5-6/group). (c–f) mRNA
expression in the dHPC (c and e) and DLS (d and f)
1 hr after criterion performance on the plus maze
and immediately following probe testing
(N = 6–9/group). Data presented as mean ± SEM.
#p = .074. *p < .05. DHPC, dorsal hippocampus;
DLS, dorsolateral striatum; HPC, hippocampal
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Jun, Egr1, and Egr3 in dHPC and DLS (Figure 3c,d). Egr2 expression was

reduced in the dHPC of cocaine-treated animals (Figure 3c; t(12) = 2.53,

p = .026). Of particular interest, Bdnf IX expression showed bidirectional

regulation in the DLS and dHPC of cocaine-treated animals;

upregulated in DLS (Figure 3f; t(12) = 2.96, p = .012) and downregulated

in dHPC (Figure 3e; t(14) = 2.99, p = .010). A two-way ANOVA was used

to compare fold change Bdnf IX expression in the DLS and dHPC, and

revealed main effects of brain region [F(1,26) = 12.49, p = .001] and drug

treatment [F(1,26) = 8.419, p = .007], as well as an interaction between

brain region and drug treatment [F(1,26) = 11.66, p = .002]. Bdnf IX

expression was significantly higher in the DLS compared to the dHPC

in cocaine-treated animals (p < .0001). After identifying Bdnf IX as a tar-

get of interest, we sought to replicate our findings in a separate cohort

of animals and found similar bidirectional regulation; upregulated in

DLS (Figure S1b; t(13) = 2.452, p = .029) and downregulated in dHPC

(Figure S1a; t(10) = 2.96, p = .014). These results suggest that memory

system bias following cocaine abstinence is associated with both

enhanced and repressed transcriptional activation in the DLS and HPC,

respectively.

3.3 | Overexpression of BDNF in the dHPC restores
HPC-dependent behavioral learning and control
following cocaine abstinence

HPC lesions or inactivation can facilitate DLS-dependent learning and

neurochemical manipulations that enhance HPC memory function can

delay transitions from HPC- to DLS-dependent behavioral control

(Chang & Gold, 2003; McDonald & White, 1993; Packard, 1999;

Packard & McGaugh, 1996; Schroeder, Wingard, & Packard, 2002).

Based on this evidence, we hypothesized that increasing BDNF

in the dHPC would restore HPC-dependent behavioral learning

in cocaine-treated animals. We tested this hypothesis by over-

expressing BDNF in the dHPC. Following 14 days of experimenter-

administered cocaine, rats were injected with AAV-BDNF or

AAV-mCherry (control) into area CA1 of the dHPC (Figure 4a,b)

(Goldberg et al., 2015; White et al., 2016). qPCR of tissue punches

from injected areas revealed an increase in BDNF message in tissue

transfected with AAV-mCherry-BDNF over tissue transfected with

AAV-mCherry (Figure 4b, t(18) = 2.617, p = .018). Neither cocaine

treatment nor viral manipulation affected the number of training

days required to meet criterion levels of performance (Figure 4c;

F(2,24) = 2.685, p = .09). Probe testing conducted 1 hr after criterion

levels of performance revealed a significant group difference in

learning strategy (Figure 4d; p = .003, FET). The data were post hoc

partitioned into two orthogonal subsets: saline-mCherry

vs. cocaine-BDNF, and those two groups were then combined for

comparison with cocaine-mCherry. This analysis showed that dHPC

BDNF overexpression in cocaine-treated animals restored probe

test performance to that of saline controls (saline-mCherry vs. cocaine-

BDNF; p = 1.00, FET). Both saline-mCherry and cocaine-BDNF groups

displayed place learning while cocaine-mCherry rats showed a predomi-

nant use of response learning (p = .001, FET). These results strongly

implicate decreased experience-dependent induction of HPC BDNF in

the facilitation of DLS-dependent behavioral learning following cocaine

abstinence.

F IGURE 4 Overexpression of Bdnf in dHPC prevents cocaine-induced memory system bias. (a) Experimental timeline. (b) Immunohistological
image showing viral expression in dHPC using mCherry (red) and DAPI (blue). (c) Number of days to reach criterion levels of performance (N = 9/
group). Data presented as mean ± SEM. (d) BDNF overexpression in dHPC during cocaine abstinence and maze learning restored an HPC-dependent
place strategy to solve the task. BDNF, brain-derived neurotrophic factor; DHPC, dorsal hippocampus; HPC, hippocampal [Color figure can be
viewed at wileyonlinelibrary.com]

HARVEY ET AL. 1107

http://wileyonlinelibrary.com


4 | DISCUSSION

The current experiments investigated the effects of cocaine on HPC

and DLS behavioral learning and control. Prolonged abstinence from

repeated experimenter- or self-administered cocaine biased new

behavioral learning toward the use of DLS-dependent strategies. This

memory system bias was associated with upregulation and down-

regulation of transcriptionally permissive AcH3 and BDNF in the DLS

and dHPC, respectively. We further observed that viral overexpression

of BDNF in the dHPC was sufficient to restore HPC-dependent behav-

ioral control following cocaine. Our results provide novel circuit and

mechanistic insight into the persistent and pervasive effects of cocaine

on the organization of learning and memory.

Functional and molecular adaptations within frontostriatal circuits

have been largely implicated in the development and maintenance of

drug addiction as well as drug-induced changes in behavioral learning

more broadly. Psychostimulant exposure accelerates DLS-dependent

habit behavioral responding in instrumental tasks (Corbit & Janak, 2007;

Corbit, Nie, & Janak, 2012; Fuchs et al., 2006; Nelson & Killcross, 2006;

Yin et al., 2004; Zapata, Minney, & Shippenberg, 2010) and this has been

attributed to hypofunction and decreased plasticity in frontocortical brain

regions as well as hyperfunction and increased plasticity in the DSTR

(Chen et al., 2013; Corbit, Chieng, & Balleine, 2014; Li et al., 2015;

Lucantonio et al., 2012; Moratalla et al., 1996; Schoenbaum & Setlow,

2005; Vanderschuren et al., 2005; Volkow et al., 2006). Instrumental

conditioning paradigms have some limitations in understanding the

broader impact of drugs of abuse on behavioral learning, as they do not

necessarily engage nor require the HPC, a memory system known to par-

ticipate in the rapid encoding of both external sensory and internal moti-

vational information to support goal-directed behaviors (Eichenbaum

et al., 1992; Kennedy & Shapiro, 2004, 2009; Redish, 2016; White &

McDonald, 2002; Wikenheiser & Redish, 2015; Wikenheiser &

Schoenbaum, 2016). In maze navigation, tasks like the present

where new behavioral learning can be supported by either the HPC

or DLS, HPC-dependent place learning is acquired more rapidly and

with overtraining there is a transition to DLS-dependent (response-

based) solutions (Kathirvelu & Colombo, 2013; Packard & McGaugh,

1996; Pych et al., 2005; Tolman et al., 1946, 1947). Rats receiving HPC

inactivation following limited training in the dual-solution task perform

at chance levels during probe testing, suggesting that under these condi-

tions the DLS has not yet acquired task relevant information (Packard &

McGaugh, 1996). In the present experiments, cocaine exposed rats show

the predominant use of DLS-dependent response strategies with only

limited training. These findings strongly suggest that repeated cocaine

exposure is associated with enhanced DLS-dependent behavioral learning

and replicate previous reports employing both instrumental and maze

learning tasks (Corbit et al., 2014; Fuchs et al., 2006; LeBlanc et al., 2013;

Schmitzer-Torbert et al., 2015; Udo, Ugalde, DiPietro, Eichenbaum, &

Kantak, 2004; Zapata et al., 2010). Although it is possible that cocaine-

induced memory system bias may be mediated through enhanced HPC-

dependent behavioral learning and an accelerated shift from HPC to DLS

behavioral control, this is unlikely given the modest criterion levels of

performance employed in the present experiments and the similarity

between cocaine and saline-treated animals in task acquisition. Thus, our

new results further implicate impaired HPC memory function in this pro-

cess and align with recent clinical evidence showing that individuals with

a history of substance use are biased toward the early use of caudate

nucleus-dependent learning strategies when required to solve a virtual

dual-solution navigation task (Bohbot, Del Balso, Conrad, Konishi, &

Leyton, 2013).

Posttranslational modifications of histone proteins have emerged

as critical regulators of experience-dependent transcriptional activa-

tion and plasticity. Increases in transcriptionally permissive histone

acetylation throughout the brain's reward circuitry have been shown

to regulate cocaine-induced molecular and behavioral adaptations

(Kennedy et al., 2013; Kennedy & Harvey, 2015; Malvaez et al., 2013;

Malvaez, Sanchis-Segura, Vo, Lattal, & Wood, 2010; Renthal et al.,

2007; Rogge & Wood, 2013; Sadakierska-Chudy et al., 2017; Sadri-

Vakili et al., 2010; Schmidt et al., 2012). Multiple reports have further

demonstrated a similar role for histone acetylation in mediating learning

and memory processes across a variety of behavioral tasks (Castellano

et al., 2012; Kilgore et al., 2010; Lattal, Barrett, & Wood, 2007; Melissa

Malvaez et al., 2018; Morris, Mahgoub, Na, Pranav, & Monteggia,

2013; Peleg et al., 2010; Rudenko & Tsai, 2014; Stefanko, Barrett, Ly,

Reolon, & Wood, 2009). We found that following maze learning, levels

of total AcH3 were increased and decreased in the DLS and dHPC of

cocaine abstinent animals, respectively. These results suggest that

cocaine exposure may persistently alter chromatin-mediated transcrip-

tional regulatory events in both the HPC and DLS, which may in turn

promote the capture of new learning by the DLS memory system. Our

findings are of particular interest in light of recent evidence showing

that manipulations that increase or decrease levels of histone acetyla-

tion in the DSTR either accelerated or prevented habitual responding in

an instrumental learning task (Malvaez et al., 2018). Together, the data

support a common histone acetylation-dependent mechanism for both

adaptive and maladaptive shifts between circuits mediating flexible,

goal-directed and habit behavioral learning and control.

Activity-dependent increases in BDNF play a critical role in the con-

solidation of new memories across multiple brain systems (Bambah-

Mukku, Travaglia, Chen, Pollonini, & Alberini, 2014; Bekinschtein et al.,

2007; Dragunow et al., 1993; Rattiner, Davis, & Ressler, 2004; Tokuyama,

Okuno, Hashimoto, Xin Li, & Miyashita, 2000). BDNF regulates cocaine-

mediated behavioral and molecular adaptations in a complex, brain region

and cell-type specific manner (Li & Wolf, 2015). The collective data

suggest that elevated BDNF in reward circuits including the DSTR,

ventral tegmental area and nucleus accumbens facilitate behavioral

responses to cocaine while manipulations that increase BDNF in

the medial prefrontal cortex (mPFC), a brain region implicated in

flexible/goal-directed behavioral responding, can oppose such behav-

iors. Here, we found that following new learning Bdnf expression was

increased in the DLS and decreased in the dHPC of cocaine-treated

animals. These data both corroborate and extend previous findings

identifying BDNF as a molecular target that may mediate both

enhanced and impaired plasticity across habit and goal-directed

memory circuits following repeated cocaine.
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BDNF activates multiple intracellular signaling pathways to

increase de novo gene transcription and synaptic plasticity. Here we

sought to identify regulation of candidate genes downstream of

BDNF in the DLS and HPC following cocaine abstinence and maze

learning. In vitro studies have shown that BDNF signaling through the

TrkB receptor supports the induction of Fos and members of the Egr

family of transcription factors (Egr1-3) (Calella et al., 2007). Both Fos

and Egr IEGs are upregulated in response to psychostimulants and

new behavioral learning, albeit in a time-dependent and brain region

specific manner (Bozon et al., 2003; Chandra et al., 2015; Dragunow,

1996; Jouvert, Dietrich, Aunis, & Zwiller, 2002; Pollak, Herkner,

Hoeger, & Lubec, 2005; Torres et al., 2015). Although we found no

change in the expression of Fos and Egrs1 and 3 in the DLS and dHPC,

the reported decrease in Egr2 in the dHPC of cocaine-treated rats is

of particular interest. HPC LTP is decreased following prolonged absti-

nence from cocaine (Keralapurath, Briggs, & Wagner, 2017; Thomp-

son et al., 2004) and the induction of Egr2 has been implicated in its

maintenance (Williams et al., 1995; Worley et al., 1993). Additional

evidence suggests that experience-dependent increases in Egr2

may be mediated through histone acetylation-dependent changes

in chromatin structure (Torres et al., 2015). Our findings showing a

decrease in Bdnf, Egr2, and AcH3 in the dHPC following cocaine

abstinence reveal a novel molecular pathway that may mediate

cocaine-induced impairments in HPC memory function. Future

investigations will be necessary to examine the time course and

mechanisms supporting these changes. One possibility is that

repeated cocaine exposure causes a persistent up and down regula-

tion of AcH3 in the DLS and dHPC, respectively. This in turn may

serve to both prime (DLS) and repress (HPC) the induction of BDNF

and other IEGs in response to novel experience to support a lasting

and global bias toward inflexible, DLS-dependent behavioral learn-

ing and control.

Cognitive behavior therapy (CBT) as a monotherapy or in combi-

nation with pharmacotherapy has shown efficacy in the treatment of

substance use disorders. CBT encompasses a broad range of behav-

ioral treatments focused on promoting adaptive cognitive and behav-

ioral learning strategies. Clinical investigations have reported a

correlation between performance on HPC-dependent memory tasks

and CBT treatment retention in cocaine abusers (Aharonovich et al.,

2006) and learning and memory deficits in tasks that require fronto-

HPC circuits are associated with increased cocaine relapse outcomes

following inpatient treatment (Fox, Jackson, & Sinha, 2009). Competi-

tive interactions between HPC and DLS memory systems have been

well established. Experimental manipulations that impair HPC function

enhance DLS-dependent behavioral learning and manipulations that

impair DLS function after overtraining restore HPC behavioral control

(Kathirvelu & Colombo, 2013; Matthews & Best, 1995; Packard &

McGaugh, 1996; Tomas Pereira et al., 2015). We found that over-

expression of BDNF in the dHPC was sufficient to restore HPC-

dependent behavioral learning and control. These data suggest that

the pervasive and predominant use of DLS-dependent learning strate-

gies following repeated cocaine may be corrected through interven-

tions targeted at restoring plasticity and function in goal-directed

memory circuits, including the HPC. Our findings provide a broader

understanding of how the addicted brain processes and stores new

information and support recent clinical and preclinical evidence

suggesting that interventions focused on enhancing function within

goal-directed memory circuits may improve therapeutic outcomes in

patients seeking treatment for cocaine abuse (Corbit et al., 2014;

Ersche et al., 2016).

In the present experiments, analyses were focused on HPC and

DLS memory systems; components of broader networks known to

mediate goal-directed and habit behavioral learning (Redish, 2016;

Wikenheiser & Schoenbaum, 2016). The mPFC is reciprocally con-

nected with both the HPC and striatum. Prelimbic mPFC lesions

promote habit in instrumental tasks while infralimbic mPFC lesions

reinstate goal-directed behavioral responding (Coutureau &

Killcross, 2003; Killcross & Coutureau, 2003). Evidence from plus

maze navigation tasks further demonstrate a critical role for the

mPFC in mediating shifts between HPC- and DLS-dependent

behavioral strategies (Ragozzino, Detrick, & Kesner, 1999;

Ragozzino, Wilcox, Raso, & Kesner, 1999; Rich & Shapiro, 2007),

and HPC–PFC interactions are increased during flexible decision-

making (Spellman et al., 2015; Young & Shapiro, 2011). Future

studies are needed to understand the effects of psychostimulants

on dynamic interactions within these circuits, associated neuro-

plastic changes across circuit components, and the broader impact

of such changes on learning processes.

In conclusion, our findings suggest that cocaine-induced impairments

in HPCmemory function and plasticity may facilitate a pervasive enhance-

ment in DLS-dependent behavioral learning and control and identify

altered experience-dependent regulation of BDNF and AcH3 in this pro-

cess. Bidirectional changes in BDNF and AcH3 across multiple brain

regions following cocaine exposure challenge BDNF and AcH3 as

therapeutic targets. Follow-up studies investigating regulatory events

both upstream and downstream of the reported changes may facili-

tate the identification of a common molecular pathway mediating

cognitive and behavioral abnormalities associated with excessive

exposure to psychostimulants. The present results provide new

insight into the persistent effects of cocaine on behavioral learning

and may ultimately contribute to the development and refinement of

both cognitive and pharmacological therapies for treating cocaine

abuse and addiction.
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