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Abstract
A key feature of major depressive disorder (MDD) is anhedonia, which is a predictor of response to antidepressant
treatment. In order to shed light on its genetic underpinnings, we conducted a genome-wide association study
(GWAS) followed by investigation of biological pathway enrichment using an anhedonia dimension for 759 patients
with MDD in the GENDEP study. The GWAS identified 18 SNPs associated at genome-wide significance with the top
one being an intronic SNP (rs9392549) in PRPF4B (pre-mRNA processing factor 4B) located on chromosome 6 (P=
2.07 × 10−9) while gene-set enrichment analysis returned one gene ontology term, axon cargo transport (GO:
0008088) with a nominally significant P value (1.15 × 10−5). Furthermore, our exploratory analysis yielded some
interesting, albeit not statistically significant genetic correlation with Parkinson’s Disease and nucleus accumbens gray
matter. In addition, polygenic risk scores (PRSs) generated from our association analysis were found to be able to
predict treatment efficacy of the antidepressants in this study. In conclusion, we found some markers significantly
associated with anhedonia, and some suggestive findings of related pathways and biological functions, which could
be further investigated in other studies.

Introduction
Major depressive disorder (MDD) is chronic illness

which affects 350 million people world-wide according
to an estimate by the World Health Organization
(WHO); it is characterized by depressed mood, dimin-
ished interest, impaired cognitive function, and somatic
symptoms, such as disturbed sleep or appetite. The
aetiology of MDD is multifactorial with a heritability
estimated to be approximately 35%1,2. It is generally
recognized that MDD is a common illness involving
multiple common genetic variants with small to mod-
erate effect size3. Indeed, several large cohort-based
genome-wide association studies (GWASs) in recent
years have identified signals which shed new light on our

understanding of MDD, for example, implicating the
presynaptic protein piccolo and alpha-1 subunit of a
voltage-dependent calcium channel in the pathogenesis
of MDD4,5 and shared genetic risk for MDD, bipolar
disorder and schizophrenia6,7. However, current studies
still fall far short of accounting for all of the genetic
variation in MDD with robust replicated findings. One
of the possible reasons could be that the majority of
these studies chose a dichotomous phenotype such as
diagnosis as their outcome measure, with the currently
limited understanding of the disorder leading to het-
erogeneity in diagnostic ascertainment8. Of interest,
using a polygenic risk score (PRS) for schizophrenia
(SCZ), Whalley et al. (2016) identified a subgroup of
patients with MDD that had a higher polygenic risk of
SCZ than others; this subgroup of MDD patients also
showed an attenuated level of distress and neuroticism9.
Instead of a case-control design, some studies choose
quantitative traits (QTs) related to illness to increase the
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power of the analysis. Quantitative variables have a
higher information content than categorical variables;
association studies using QTs can therefore increase the
statistical power four to eight-fold, with a resultant
proportional reduction of the required sample size10.
For example, one study used hippocampal atrophy
measured by MRI as a QT for Alzheimer’s disease in a
GWAS of only moderate sample size and nonetheless
identified novel candidate loci attaining genome-wide
significance11,12.
Different kinds of studies have long indicated that

anhedonia is a fundamental feature of MDD13,14. DSM-
IV-TR defines anhedonia as diminished interest or plea-
sure in response to stimuli that were previously perceived
as rewarding during a premorbid state15. Moreover,
anhedonia has been shown to be able to predict a longer
time to remission and fewer depression-free days16,17.
Specifically, using the same dataset as in our present
study, Uher et al. showed that out of the six disease
dimensions (mood, anxiety, pessimism, interest-activity,
sleep, and appetite), the interest-activity dimension
(anhedonia) at baseline was the only dimension able to
predict poor treatment outcome in the later time points17.
Both twin and family studies demonstrate that 44% of
anhedonia is attributable to genetic factors, especially
additive genetic effects, and first-degree relatives of
patients with MDD display anhedonia-related phenotypes
when compared to controls18,19. Although different
threads of evidence have validated anhedonia as a QT of
MDD, no genetic or genomic study has yet been carried
out to identify candidate loci associated with this key
feature of MDD.
Our study used a dimensional score of anhedonia to

conduct a GWAS and to estimate the heritability of this
phenotype accounted for by common variants, aiming to
shed new light on our understanding of MDD.

Materials and methods
Patient recruitment
Seven hundred and ninety-six people (296 males, 500

females) with unipolar depression of at least moderate
severity according to ICD-10 (International Classification of
Diseases, 10th revision, Mental and Behavioural Disorders,
Research Criteria) and DSM-IV (Diagnostic and Statistical
Manual of Mental Disorders, fourth edition) criteria20 were
recruited from eight European countries in the GENDEP
project21. All patients were of European ancestry without a
family history of schizophrenia, bipolar disorder or a cur-
rent dependency on alcohol or drugs. For further details
about the GENDEP project, see Uher et al.21,22.

Phenotype definition
Uher et al. conducted factor analysis of depression

severity data generated from three measures: the

Montgomery-Asberg Depression Scale (MADRS); the
Hamilton Depression Rating Scale (HDRS) and the Beck
Depression Inventory (BDI). Although these measures
had previously been widely used in studies of depres-
sion, prior to GENDEP, no study had used all three
measures simultaneously. Six dimensions with con-
tinuous factor scores representing the different
aspects of the psychopathology of depression were
extracted from initial questionnaire estimates23. Of
these six dimensions, the interest-activity score at
baseline (which had higher information loadings from
items in the three measures relevant to anhedonia, such
as “inability to feel”, “lassitude” in the MADRS; “sexual
interest” in the HAMD-17; “enjoyment” and “interest in
people” in the BDI) was found to significantly predict
response to treatment with the antidepressants used in
the study17. In this analysis, we used the baseline
interest-activity score as our outcome measure for
GWAS.

DNA extraction and genotyping
DNA was extracted from blood samples collected

in ethylenediaminetetraacetic acid (EDTA) tubes
using standard procedures24; genotyping was performed
in the Centre National de Génotypage using the Illu-
mina Human610-quad bead chip (Illumina) as
described25.

Genotype quality control and population stratification
analysis
Standard steps were taken for quality control of geno-

mic data in PLINK 1.0926 and data were excluded on
failure to pass the following thresholds: consistency of
gender information between genomic data and demo-
graphic data, SNP genotyping rate ≥ 95%, individual gen-
otyping rate ≥ 97%, Hardy–Weinberg equilibrium test
(P ≥ 0.001), minor allele frequency (MAF) ≥ 0.01. Fur-
thermore, using both PLINK 1.09 and KING27, pairwise
identity-by-state (IBS) was calculated and outliers or
subjects showing unknown familial relationship with
others (proportion IBD > 0.05) were subsequently
excluded26,28.

Population stratification analysis
Population stratification analysis was conducted using

EIGENSTRAT29, which employs principal component
analysis (PCA) to capture hidden population structure in
genomic data. Prior to the analysis, data were pruned to
make sure adjacent SNPs were in no more than weak
linkage disequilibrium (LD) with each other (PLINK
command: --indep-pairwise 50 10 0.5)30. This gener-
ated 20 principal components (PCs) which were con-
trolled for as covariates in the subsequent association
analysis.
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Imputation of missing genotypes using the 1000 Genomes
dataset
Following quality control steps, imputation was carried

out on genomic data. We employed IMPUTE2+ SHA-
PEIT2 to impute using the 1000 Genomes phase 3 dataset
as the reference dataset31,32. Before imputation, the phy-
sical position of SNPs was updated using UCSC Liftover
tool (https://genome.ucsc.edu/)33 to the haploid human
genome build 19 (hg19). Following imputation, the same
quality control steps were used to clean the resultant
imputed data.

GWAS using a linear mixed model (LMM)
In order to test for genotype–phenotype association

while controlling for potential confounding factors such
as population structure, family structure, and cryptic
relatedness simultaneously, we used factored spectrally
transformed LMM (FaST-LMM) for our association
study34. In brief, the LMM log likelihood of the phenotype
data, y (dimension n × 1; n denoting the cohort size), given
fixed effects X (dimension n × d; d denoting the number of
fixed effects in a single model, including the offset, the
covariates, and the SNP to be tested), can be written as

LL δ2e ; δ
2
g ; β

� �
¼ logN y Xj β; δ2gK þ δ2eI

� �
ð1Þ

where N (r|m; Σ) denotes a normal distribution of
variable r with mean m and covariance matrix Σ; K
(dimension n × n) is the genetic similarity matrix; I is the
identity matrix; δ2e is the magnitude of the residual var-
iance; δ2g is the magnitude of the genetic variance; and β
(dimension d × 1) denotes the weight of the fixed effects.
The “Fa” in FaST-LMM stands for factorization. Let S

be genetic similarity matrix, as the covariance matrix of
the normal distribution becomes a diagonal matrix S+ δI
(spectral decomposition), the log likelihood can be
rewritten as the sum over n terms. Factorization drama-
tically increases the size of datasets that can be analyzed
with LMM, and additionally enhances the speed and
feasibility of the analysis.
In our analysis, we chose the continuous interest-

activity score as our outcome measure, controlling for
gender, age, years of education, recruitment centres and
the first 20 PCs from EIGENSTRAT as covariates.

Replication analysis using STAR*D
Following our initial findings, we used data from the

Sequenced Treatment Alternatives to Relieve Depression
Study (STAR*D) to replicate our primary results. Detailed
information about the STAR*D including its demographic
characteristics and genomic profile have been previously
described35–37. In brief, 1351 patients with MDD were
recruited with the phenotype being defined as the sum of
items with corresponding content in baseline HAMD-17,

QIDS-SR, QIDS-C and the research outcome assessor-
rated 30-item Inventory for Depression Symptomatol-
ogy17, with genomic profile including 7405247 SNPs after
quality control and imputation38. Further, a linear model
using PLINK 1.09 was chosen with age, gender, years of
education, recruitment centre, and the first four popula-
tion PCs being included as covariates.

Gene-based and pathway analysis
Emerging evidence has suggested that disease- or trait-

associated genetic variants identified from GWASs tend
to be enriched in genic regions including multiple asso-
ciated variants at a single locus39,40. Therefore, we utilized
fastBAT which stands for a fast and flexible set-Based
Association Test and the P values from the LMM analysis
for gene-set testing41 to discover genes associated with the
interest-activity score based on the aggregated effect of a
set of SNPs (e.g., SNPs within or close to a gene) with
their generated P values being adjusted using Bonferroni
correction (0.05/22484).

Biological interpretation, heritability, and genetic
correlation estimates
In order to further understand the resultant signals and

their associations with the interest-activity score, we
chose loci with an association P value less than 1 × 10−5

and used DEPICT (Data-driven Expression Prioritized
Integration for Complex Traits) to accomplish gene
prioritization and tissue/cell type enrichment analysis
with a false discovery rate (FDR) set as 1%42. Recent
studies have shown that mutation-intolerant genes which
are presumed to hold critical biological functions are
enriched in rare variants in psychiatric disorders such as
autism and intellectual disability (ID)43,44; this pattern also
extends to both rare and common variants for schizo-
phrenia45. To test whether it also holds for common
variants in our MDD-related phenotype, we investigated
the enrichment of genes harboring SNPs attaining an
association P value ≤ 10−5 in the set of loss-of-function
(LOF) genes characterized by the Exome Aggregation
Consortium (ExAC), setting the constraint metric pLI ≥
0.9 (probability of being LoF intolerant) according to their
recommendation46.
Furthermore, aiming to detect phenotypic variance

explained by common SNPs (hg) in our sample and to
explore traits which shared a common genetic effect with
the interest-activity score, we chose LDSc (LD score
regression)47 from LD Hub—a centralized database of
summary-level GWAS results for 177 diseases/traits
from different publicly available resources/consortia
and a web interface that automates the LD score
regression analysis pipeline for detection of hg and genetic
correlation between target phenotype and multiple
traits48.
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Association analysis with longitudinal change of
anhedonia following treatment with antidepressants
The baseline interest-activity score from the study by

Uher el al.17, chosen as the primary outcome measure in
our GWAS, was found to significantly predict treatment
response in both GENDEP and STAR*D. In order to
investigate the potential association between the SNPs
associated with the baseline interest-activity score and
longitudinal change in the score, we summed up all the
associated SNPs to calculate a unweighted PRS for each
individual, then conducted association analysis between

this PRS and the interest-activity score from week 1 to
week 10 using a LMM. The fixed effects of the model
included our predictor (PRS) and covariates (age, quad-
ratic effect of age, gender, baseline interest-activity score,
and centerid) while the random effect included a random
intercept and a random time effect (slope). The PRS was
generated using PLINK26 and the above-mentioned
association analysis was implemented using the package
“nlme” in an R environment49.

Results
Demographic characteristics and genome-wide association
analysis
Demographic characteristics
Of 796 people with genomic data, 759 had a baseline

interest-activity score derived from factor analysis (286
males, 473 females). The mean age was 42.05 (11.59),
mean years of education 12.31 (3.12), mean baseline
MADRS 28.90 (6.77), mean baseline HDRS 21.88 (5.24),
and mean baseline BDI was 28.10 (9.76).

Genome-wide association analysis
After imputation and quality control, 1,313,135 SNPs

(of which 789,990 were imputed with high-quality
imputation, i.e., info > 0.6, LD pruning at R2 < 0.5) in
760 individuals remained in the present analysis and as
shown in Fig. 1, all study subjects were of European
ancestry with no gross population stratification.

C1

C
2

-0.03

-0.02

-0.01

0.00

0.01

-0.01 0.00 0.01

center1
center5
center6
center7
center10
center11
center12
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center14

Fig. 1 Population scatter plot of PC1 and PC2 stratified by centre

Fig. 2 Regional association plot of the SNP, rs9392549, that attained the lowest P value (2.07 × 10−9) in the association analysis
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Association analysis of interest-activity scores using
LMM identified 18 SNPs that passed genome-wide sig-
nificance (5 × 10−8) when including gender, age, years of
education and 20 PCs of the population structure from
EIGENSTRAT as covariates. The top SNP from the
analysis, rs9392549, in an intronic region of PRPF4B (pre-
mRNA processing factor 4B) located on chromosome 6,
had a P value of 2.07 × 10−9 (Figure 2). Table 1 sum-
marizes the top signals from the association analysis and
Fig. 3 displays this as a circularized Manhattan plot. The
genomic inflation factor (λ) was calculated as an index of
any potential confounding effect in the analysis, and the
results were consistent with potential confounding effects
having been adequately covered (λ= 0.9958, Fig. 4).
The replication analysis using the STAR*D dataset

indicated that while none of the associated SNPs found in
the GENDEP dataset were replicated at a Bonferroni-
adjusted significance level (0.03/18= 0.0016); two of
them, the top signal (rs9392549) and rs118190482 located
in the intronic region of STAB2 (in LD with rs831431, R2

= 0.5), were nominally significant (P= 0.03 and 0.046
respectively, in Table 1).

Gene-based and gene prioritization analysis
Gene-based association analysis indicated no gene was

associated at gene-level significance (P value= 2 × 10−6).
The gene with the strongest signal from the analysis was
KITLG on chromosome 12 (KIT ligand, P value= 3.09 ×
10−5).

Using DEPICT, one SNP, rs1001415, which is intronic
in EFCAB2 (EF-hand calcium binding domain 2) on
chromosome 1, was prioritized owing to sharing more
similar biological functions with other associated loci,
although the P value was only at a trend level (nominal P
= 0.09). Interestingly, Westra et al. reported that
rs1001415 is in high LD with a cis eQTL SNP (rs4658697)
in an intronic region of a transcript (NM 001143943.1) of
EFCAB250. Furthermore, gene-set analysis found one gene
ontology item (GO:0008088), axon cargo transport, was
over-represented by associated loci from our association
analysis with a nominal P value being 1.15 × 10−5. Cell/
tissue annotation analysis saw our associated loci were
highly annotated in the MeSH first term of “hypothala-
mus” and the MeSH second term of “nervous system”
(nominal P= 0.004). Although some results generated
from DEPICT showed nominal significance, they failed to
reach FDR. Nevertheless, our target genes were shown to
be significantly enriched by the gene set (3203 genes)
characterized by ExAC as mutation intolerant (P= 0.001).

Heritability estimation and genetic correlation analysis
Estimation of hg showed that 69% of the phenotypic

variance of the interest-activity dimension in our sample
could be explained by common SNPs (hg= 0.69 ± 0.88).
As shown in Table S1 and Figure S1, the genetics of the
interest-activity score was highly positively correlated
with Parkinson’s disease (PD) (rg= 0.83, se= 1.14), and
with Alzheimer’s disease (rg= 0.43, se= 0.32). Moreover,
its genetics was negatively correlated with that of the gray
matter volume of nucleus accumbens (rg=−0.6492, se=
0.84), eczema (rg=−0.41, se= 0.44) and with subjective
well-being (rg=−0.32, se= 0.47). This is consistent with

Fig. 3 Manhattan plot for the post-imputation GWAS on interest-
activity score

Fig. 4 Quantile-Quantile (QQ) plot for the post-imputation GWAS of
the interest-activity score
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a pleiotropic effect. However, the results should be
interpreted with caution given that none of the P values
generated from our genetic correlation analyses reached
the statistical significance of 0.05.

Association analysis between the PRS and longitudinal
change of anhedonia up to ten weeks following
antidepressant treatment
The association analysis showed that the PRS calculated

based on the GWAS of baseline interest-activity score was
significantly associated with longitudinal change of
anhedonia following antidepressant treatment (β= 1.73,
P= 0.0023). In order to evaluate if the top hit (rs9392549)
from the GWAS of baseline interest-activity score solely
drove the identified association, we conducted a second-
ary analysis using same model conditioning on rs9392549;
the association between the PRS and longitudinal change
of anhedonia remained significant (β= 1.64, P= 0.0091).

Discussion
To the best of our knowledge, this is the first genome-

wide association analysis of anhedonia in patients with
MDD. We used a LMM to conduct the association ana-
lysis, which identified 18 SNPs of genome-wide sig-
nificance, with the most significant being rs9392549 in an
intronic region of PRPF4B on chromosome 6 (P= 2.07 ×
10−9). Although no gene was significant on gene-set
testing, gene prioritization analysis found one intronic
SNP (rs1001415) in EFCAB2 to be significant with a trend
(P= 0.09) and the associated loci showed enrichment for
a particular gene ontology locus, axon cargo transport
(GO:0008088). Furthermore, using LD regression, we
showed that 69% of the variance in our phenotype was
explained by common SNPs and the markers associated
with anhedonia were positively correlated with PD and
with Alzheimer’s disease, while being negatively corre-
lated with nucleus accumbens gray matter volume.
The use of a LMM for the genome-wide association

analysis is in contrast to the classic general linear model
(GLM) in how population stratification or other sample
structure issues are addressed. Such confounding factors
are detected and addressed in GLM by using genomic
control51, ancestry inference (analysis of population-
structure)52–54 and PCA29,55. However, these strategies
fail to account for sample features such as family structure
or cryptic relatedness; for population stratification owing
to ancient population divergence, methods like genomic
control are relatively weak56. Linear mixed modeling by
contrast fits population structure as a fixed effect and a
similarity matrix between individuals as the variance-
covariance structure of the random effect57; such a
method has been shown to yield more a conservative λGC
compared to other approaches57,58. Using a similar sta-
tistical model, the CONVERGE consortium conducted a

genome-wide association analysis in a large cohort of
Chinese female patients with severe MDD, with two sig-
nificant loci being identified and replicated in different
samples59. These two loci (rs12415800 and rs35936514 on
chromosome 10), however, were not replicated in our
study given the rarer frequency of these loci in the Eur-
opean population.
One intronic SNP (rs9392549) in PRPF4B yielded the

lowest P value in association with anhedonia (P= 2.07 ×
10−9, replicated P= 0.03). PRPF4B, pre-mRNA proces-
sing factor 4 homolog B, is a kinase involved in mRNA
splicing that is involved in biological pathways such as
inositol phosphate metabolism60. Patients with MDD
have been shown to have alterations in mRNA splicing,
especially in that of neurotransmitter receptors61,62. For
instance, in suicide victims with a history of major
depression, adenosine-to-inosine RNA editing within the
coding sequence of the serotonin 2C receptor (5-HT2C)
pre-mRNA was significantly decreased and this effect was
reversed by treatment with the antidepressant fluox-
etine63. Additionally, inositol phosphate has been
repeatedly implicated in the pathophysiology of affective
disorders including MDD, with potential new treatments
arising64–66. For example, a double-blind, controlled
clinical trial in MDD indicated that the overall improve-
ment in scores on the Hamilton Depression Rating Scale
was significantly greater for inositol than for placebo after
4 weeks of treatment67.
One of two associated loci which were replicated with a

nominal significance, rs831431 (P= 1.92 × 10−8, repli-
cated P= 0.046) is a brain eQTL located in the intronic
region of STAB2, which encodes stabilin 2. Stabilin 2 plays
a critical role in angiogenesis68. According to BRAI-
NEAC69, rs831431 significantly affects the expression of
one of STAB2’s transcripts (tID= 3429159), especially in
the thalamus (eQTL P= 0.01). Although the precise role
of STAB2 in the pathogenesis of MDD or anhedonia still
remains unclear, it could be hypothesized that deficits in
neuroplasticity, potentially mediated by abnormal angio-
genesis lead to dysfunction in pleasure-rewarding cir-
cuitry. This could be in a temporal-specific manner,
analogous to the time-dependent gene expression that is
commonly seen in genes related to neurodevelopment70.
Of the other associated loci, rs10498321 is in an intronic

region of NPAS3. NPAS3, neuronal PAS domain protein
3, is a brain-enriched transcription factor, expression
deficits in which can cause deficiency in neurogenesis,
especially in the hippocampus71.
To date, NPAS3 has been mainly studied in schizo-

phrenia and bipolar disorder72–74 and schizophrenia,
especially with negative symptomatology, is another
condition in which anhedonia may be a common feature;
to our knowledge, this is the first report of an association
between NPAS3 and a MDD-related phenotype.
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Intriguingly, one of the top signals (rs7973260)75 identi-
fied in a GWAS of depressive symptoms in a large cohort
from the UK Biobank is in the 18 kb downstream of
rs650466, quasi-replicating the current finding and high-
lighting the potential importance of this genomic region
in understanding the biological mechanism of MDD.
Given the modest replication using STAR*D, we carried

out a genetic correlation analysis between STAR*D and
GENDEP by executing the “sumsum” command in
PRSice76, which takes respective summary statistics as
input. The result displayed in Figure S2 indicated that
although the two datasets were significantly correlated
with each other at multiple P-value thresholds (PT at 0.04,
0.05, 0.2, 0.3, and 0.5), the variance explained by each
other (R2) was relatively small, which may at least partly
explain the relatively weak replication signal in STAR*D.
Although it has been widely thought that QTs under-
pinning the symptomatology of psychiatric disorders
could increase the power of the identification of risk
variants, the way in which QTs are established has been
inconsistent. Of note, the QT of anhedonia was defined in
contrasting ways in GENDEP and STAR*D owing to
differential measures available. While our study provides
an alternative approach for GWAS with limited sample
size, it points to the importance of future efforts to vali-
date different measures of QTs along the lines of the
RDoC strategy77.
In our gene prioritization analysis, one intronic SNP

(rs1001415) in EFCAB2 was found to be more similarly
associated with other associated loci in terms of biological
function. EFCAB2, EF-hand calcium binding domain 2, is
located in SOR (smallest overlapping region) at 1q44 with
three other genes: HNRNPU, FAM36A, NCRNA00201.
Patients with microdeletions of this region display ID and
seizures78,79, which implies a role in neurodevelopment
and cognitive function. Of note, it is in high LD with one
cis eQTL SNP (rs4658697); therefore, we suggest that
future studies could use rs1001415 as a proxy for
rs4658697 for the expression of EFCAB2. In addition, one
gene set (GO:0008088, axon cargo transport) was over-
represented by our associated markers. It is therefore
possible that dysfunctional axon cargo transport affected
by our identified genes in brain regions relevant for
reward circuitry80,81 may be associated with impaired
neurotransmitter release (dopamine, etc.), putatively
leading to anhedonic symptoms.
Although the cross-phenotype LD score regression

failed to generate a genetic correlation with a significant P
value, it provided a trend worth further elaboration.
Specifically, anhedonia in our study was positively corre-
lated with PD (rg= 0.8). In fact, anhedonia independent
of clinical diagnosis and PD are both dopamine-
dependent processes and anhedonia is one of the most

commonly observed non-motor symptoms in PD82,83.
Moreover, anhedonia was negatively correlated with
nucleus accumbens gray matter volume (rg=−0.6). The
accumbens is a key structure in the reward circuit;
structural and functional changes in the accumbens have
been repeatedly implicated in substance abuse-related and
MDD-related anhedonia84,85. Nonetheless, any inference
from our current findings should be made with the caveat
that due to the lack of statistical significance, potential
type I error (false positive error) cannot be excluded.
Furthermore, the significant association detected

between our PRS and the longitudinal change in anhe-
donia is of interest in that it appears to offer insight not
only into the polygenic underpinnings of anhedonia but
also into its change during treatment. This preliminary
association analysis of the PRS generated by our associa-
tion findings illustrates the potential of applying such a
polygenic profile to better our prediction of treatment
response. This could be further tested in the response to
treatment of other disorders in which anhedonia is also a
feature.

Strengths and limitations
Strengths of our study include the LMM which controls

for confounding factors such as population stratification
and cryptic relatedness in a perhaps more robust manner
than GLM. However, there are limitations. Firstly, the
sample size for our study is modest. Generally, the
majority of power calculations used for GWAS employ a
case-control design; the use of an endophenotype such as
anhedonia, a QT of complex disease biologically hypo-
thesized to be closer to underlying genetic variation,
should increase the power of association10. Many
approaches for linear mixed modeling of GWAS are
computationally challenging, which makes such metho-
dology less popular for GWAS of large sample sizes. Our
study provided another new association strategy for
GWAS of modest sample sizes, although replication of
significant signals in a larger independent sample is
required.
Secondly, 16 out 18 SNPs identified in the association

analysis have a MAF lower than 0.03. The MAF dis-
tribution of our genomic data indicated that 67% of alleles
fall into the interval between 0.01 and 0.05 (Figure S3).
Enrichment of signals in the lower bound of the MAF
spectrum is methodologically recognized; we are aware
that given the sample size, these associations may be false
positives (a “winner’s curse”), as the number of individuals
with a minor allele is very limited.
Thirdly, not all patients were drug-free at the time of

recruitment (baseline), some medications such as anti-
depressants86,87,88 or benzodiazepines89 etc. might affect
patients’ anhedonia level at the baseline.
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Conclusion
In summary, this first GWAS of anhedonia in MDD

identified a number of SNPs attaining genome-wide sig-
nificance. The top hits include loci such as NAPS3 which
has been associated with schizophrenia, another condition
in which anhedonia may be a prominent feature. It is
therefore possible that our findings are relevant not only
for anhedonia in MDD, but also for anhedonia in other
neuropsychiatric conditions. Consistent with this, cross-
phenotype correlation analysis gave suggestive signals for
PD and nucleus accumbens size. We suggest that further
genetic exploration of anhedonia in MDD and other dis-
orders could be a new and productive avenue that could
lead to new treatments for this disabling feature of many
neuropsychiatric conditions.
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