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Skeleton has emerged as an endocrine organ which is both capable of regulating energy metabolism and being a target for it.
Glutamine is the most bountiful and flexible amino acid in the body which provides adenosine 5′-triphosphate (ATP) demands
for cells. Emerging evidences support that glutamine which acts as the second metabolic regulator after glucose exerts crucial
roles in bone homeostasis at cellular level, including the lineage allocation and proliferation of bone mesenchymal stem cells
(BMSCs), the matrix mineralization of osteoblasts, and the biosynthesis in chondrocytes. The integrated mechanism consisting
of WNT, mammalian target of rapamycin (mTOR), and reactive oxygen species (ROS) signaling pathway in a glutamine-
dependent pattern is responsible to regulate the complex intrinsic biological process, despite more extensive molecules are
deserved to be elucidated in glutamine metabolism further. Indeed, dysfunctional glutamine metabolism enhances the
development of degenerative bone diseases, such as osteoporosis and osteoarthritis, and glutamine or glutamine progenitor
supplementation can partially restore bone defects which may promote treatment of bone diseases, although the mechanisms
are not quite clear. In this review, we will summarize and update the latest research findings and clinical trials on the crucial
regulatory roles of glutamine metabolism in BMSCs and BMSC-derived bone cells, also followed with the osteoclasts which are
important in bone resorption.

1. Introduction

Bone is a relatively dynamic organ which provides stiffness,
shape, support, and locomotion for body structures [1]. It
undergoes modeling and constant remodeling throughout
life, exhibiting structure and shape changes. Bone modeling
occurs from birth to adulthood and is responsible for gain-
ing mass and changing the skeletal structure, as exemplified
by the increases in bone length and diameter. Bone
remodeling, tightly coupling bone resorption and formation,
behaves the substitute for old tissues by new bones, thereby
maintaining the mineral homeostasis and strength [2]. Oste-
oblasts for bone formation and osteoclasts for bone resorp-
tion are the main cells involved in bone remodeling;
meanwhile, osteocytes derived from osteoprogenitors are
also crucial in this biological process [3–6]. Recently, emerg-
ing evidences support that bone is an endocrine organ and

manifests active metabolism, where cell bioenergetics plays
an essential role in regulating intermediary metabolism
[1, 7]. Collaboratively signaling networks contribute to an
efficient transition in organisms between anabolic and cat-
abolic states; thus, bone cells are capable to survive and
grow in environments in which nutrient availability differs.

Virtually, biosynthesis requires amounts of exogenous
fuel uptake, which can be converted to hydrolysis of adeno-
sine 5′-triphosphate (ATP) inside the body to drive all cellu-
lar processes later [8]. The fuel sources containing glucose,
free fatty acids, and the amino acids are excellent substrates
for generating ATP in both cytoplasm and mitochondria
through oxidative phosphorylation [9–11]. Their consump-
tion and catabolism are adjusted automatically in order to
match the distinctive energy demands in different stages
covering proliferation, differentiation, and apoptosis, in
which intracellular signaling molecules serve as checkpoints
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for fuel selection, storage, transport, and utilization [12]. In
addition, extrinsic factors like glucocorticoids also change
the fuel metabolism and biological behavior of bone cells in
result [13].

Previous studies supported that glutamine metabolism as
a regulatory node participated in many biological processes,
including vessel formation, cancer progress, and immune reg-
ulation [14–16]. Recently, glutamine in bone homeostasis
gained increasing concentration in mediating the prolifera-
tion, osteoblast, and adipocyte differentiation, immunological
features of cell BMSCs [17]. Alternatively, the bioenergetics of
osteoblasts, osteocytes, and even the adipocytes were also
regulated directly or indirectly by glutamine metabolism,
which were tightly related to the degenerative diseases such
as osteoporosis. Mechanistically, it was elucidated that
WNT/β-catenin signaling, mammalian target of rapamycin
signaling (mTOR), hypoxia-inducible transcription factors
(HIFs), and some other signaling pathways were involved in
bone cell metabolic activities [18–20]. In this paper, we
reviewed and updated the crucial regulatory roles of gluta-
mine metabolism in BMSCs, BMSC-derived bone cells, and
osteoclasts which expected to provide a novel therapeutic per-
spective for bone destructive disorders.

2. Glutamine Metabolism

Glutamine, a nonessential amino acid (NEAA) composed of
carbon (41.09%), hydrogen (6.90%), oxygen (32.84%), and
nitrogen (19.17%), is mainly synthesized by the enzyme glu-
tamine synthetase (GS) using glutamate and ammonia (NH3)
as a source. As the most bountiful and flexible amino acid
in the body, it represents about 20% of the total free
amino acids pool in the blood and 40% to 60% of the total
amino acid pool in certain tissues [21–23]. Glutamine is
hydrolyzed by glutaminase (GLS) to ammonium-ion
(NH4) and glutamate, the latter is subsequently transformed
to α-ketoglutarate (α-KG) occurring as a transamination or a
deamination [24]. Then, α-KG enters the tricarboxylic acid
cycle (TCA cycle) to generate ATP through the production
of nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH2) [25]. Rather than being a
substitute fuel source in TCA cycle, glutamine is also used
as substrate for constructing proteins and nucleotides [26].
The nitrogen from glutamine through the practice of amino-
transferases maintains the degrees of numerous amino acid
pools in the cell, as exemplified by more than 50% of NEAAs
originated from glutamine are used in protein synthesis in
cancer cells in vitro [27]. It is indicated that, in cancer cells,
mutations in TCA cycle enzymes, fumarate hydratase (FH)
and succinate dehydrogenase (SDH), or complexes of the
electron transfer chain (ETC), such as complex I and com-
plex III, could promote glutamine utilization. In other words,
TCA cycle, FH, SDH, and ETC are involved in its participa-
tion of nonessential amino acid production. For example,
taken in by the cell through a transporter, glutamine is deam-
inated to glutamate by cytoplasmic GLS1, transferred by
SLC25A11 into the mitochondrial matrix, and converted into
α-KG. Then, α-KG follows TCA cycle steps until oxaloacetic
acid, which is then converted into aspartate by aspartate

transaminase (GOT2) and exported into the cytoplasm,
which is critical to both purine and pyrimidine biosynthe-
sis. After that, Asparate may be transformed into aspara-
gine and arginine. In addition, glutamate in cytoplasm
could be converted into arginine and proline [28–30].
Besides, glutamine also powers fatty acid synthesis through
reductive carboxylation [31].

Glutamine metabolism was first put forward in 1935 by
Hans Krebs, who reported that the brain cortex and retina
of vertebrates and the kidney of rabbits and Guinea pigs
could synthesize glutamate into glutamine and hydrolyze
glutamine to ammonium glutamate [32]. Developing over
time, much is known about the importance of glutamine
metabolism in pathological conditions. Some tumor cells
utilized glutamine to provide both nicotinamide adenine
dinucleotide phosphate (NADPH) and carbon for lipid and
glutathione biosynthesis as well as nitrogen for nucleotide
biosynthesis, which was essential in controlling oxidative
stress and supporting proliferation [33, 34]. Moreover, gluta-
mine metabolism is also critical for liver-to-pancreas trans-
differentiation, mature adipocyte inflammatory responses,
and immunological cell functions [35–37]. And glutamine
metabolism impacted epigenetic states as well as genome
organization via α-KG, eventually altered cellular differen-
tiation decisions [38]. More than 30 years ago, Biltz et al.
firstly reported an active consumption and metabolism
of glutamine in isolated calvaria and long bones [39];
subsequently, the role of glutamine in bone has drawn
increasing attention.

3. Glutamine Metabolism in BMSCs

BMSCs, known as nonhemopoietic multipotent mesenchy-
mal cells, are traditionally capable to differentiate into
osteoblasts, adipocytes, and chondrocytes, thereby regulating
bone homeostasis [40–42]. Recently, the energy metabolisms
including glucose metabolism, glutamine metabolism, and
fatty acids in MSCs in various contexts are reported con-
stantly [43–45]. Glucose is a major energy and carbon source
for mammalian cells and has been known as a major nutrient
for osteoblasts since the early 1960s [46]. Instead of energy
supplement, aerobic glycolysis in osteoblasts may be linked
with the citrate secretion, which plays a critical role in the
formation of apatite nanocrystals in bone [47, 48]. Therapeu-
tic strategies that target glucose metabolism tend to apply to
patients diagnosed with systemic diseases such as type 2 dia-
betes mellitus and chronic kidney disease [49, 50]. Moreover,
Thrailkill et al. suggested that treatment with insulin alone
only partially corrected both hyperglycemia and diabetic
bone phenotype in twelve-week-old diabetic mice, which
means the therapy targets in other metabolism are required
[51]. Fatty acids, generated from stored triacylglycerides or
fat depots and released into the circulation, are degraded in
the mitochondria for the generation of ATP in bone cells,
while the amount that is utilized for ATP production is
currently unknown [52]. Similar to fatty acids, the extent that
amino acids contributes to oxidative phosphorylation
remains unclear at present; however, there are increasing
numbers of researches on glutamine. Glutamine as the
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second critical regulator after glucose exerts an essential mod-
ulation in BMSC proliferation, lineage allocation, osteoblast
specification, and even the immunomodulatory properties.

3.1. Glutamine Metabolism in BMSC Proliferation. With
regard to the proliferation of cells, Eagle et al. initially
described the importance of glutamine in cell proliferation
in vitro and meticulously essential for MSC proliferation
[53]. In synchronized HeLa cells, glutamine, as well as glu-
cose, is required for progression through the restriction point
in mid-to-late G1. And glutamine is the only essential
substrate for the progression through S phase into cell divi-
sion, which was also indicated by combining pulse-chase
LC-MS-based isotope tracing with computational deconvo-
lution and metabolic flux modeling in synchronized cell
populations [54, 55]. Mechanistically, glutamine has been
reported to progress through the restriction point in mid-
to-late G1 as well as exit S phase that was efficient for cell
division beginning [54]. It is indicated that glutamine could
enhance the expression of cyclin D1 and D3 and regulate
cyclin-dependent kinase (CDKs) that were able to promote
the passage into S phase and downregulate p21 expression,
a key regulator for the cycle checkpoint of G1/S [56]. And
this phenomenon may be associated with GLS, since
glutamine increased the activity of GLS and glutamate
dehydrogenase (GDH) through the mTOR/S6 and MAPK
pathways in a dose-dependent manner, which finally pro-
moted the cell proliferation [57]. However, the concrete
mechanism remains unclear currently. In addition, it is com-
monly accepted that glutamine provided precursors for
downstream synthetic steps, such as the DNA replication in
S phase and lipid synthesis in G2 phase. And the majority
of TCA carbons and nitrogen of some NEAAs derived from
degraded glutamine in endothelial cells [15, 58]. Glucose is
a major energy and carbon source for mammalian cells and
has been known as a major nutrient for osteoblasts since
the early 1960s. What is more, glutamine also provides a
small amount of energy, since the glutamine-consuming
enzymes are found largely in mitochondria and far from

the primary need for ATP. Additionally, Karner’s group
found that BMSC proliferation and colony expansion were
largely correlated with amino acid transaminase-dependent
α-KG production, which could partially explain the negative
impact of reduced GLS activity on BMSC proliferation [17].
However, the contribution of other amino acid biosynthesis
derived from glutamine metabolism to BMSC proliferation
has not been clear yet [33, 59]. For tumor cells in other
tissues, glutamine satisfies biosynthetic and bioenergetic
demands of these cells via anaplerotic entry to the TCA cycle
and reductive carboxylation, thus regulating cell survival and
proliferation [60, 61]. In contrast, the proliferation rates of
skeletal progenitor cells seemed less important connection
with glutamine-dependent reductive carboxylation or TCA
cycle anaplerosis, which suggested distinctive roles of
glutamine metabolism in different types of cells [19].

3.2. Glutamine Metabolism in BMSC Differentiation. Osteo-
genic and adipocyte differentiations are the pivotal linage
commitments of BMSCs in skeletal development. BMSCs
consume and metabolize a significant amount of glutamine
as they undergo differentiation into the osteoblast but not
the adipocyte lineage. As BMSCs differentiated toward oste-
oblasts, glutamine metabolism provided ATP through the
TCA cycle with a declined contribution to citrate [17].
Furthermore, an integrated mechanism in a glutamine-
dependent pattern was involved to meet energetic and syn-
thetic demands during BMSC differentiation (see Figure 1).

3.2.1. GLS. Mitochondria is a pivotal place covering many
complex metabolic reactions [62]. GLS catabolizes glutamine
into glutamate, then α-KG, which replenishes anaplerosis of
TCA intermediates to maintain mitochondrial activity and
supply metabolic intermediates for active biosynthesis in
osteogenesis [63]. Experimental evidence suggested GLS as
the targeted enzyme of glutamine metabolism which influ-
enced the differentiation of BMSCs. Genetically inhibiting
glutamine metabolism via deletion of Gls in BMSCs resulted
in reduction of overall osteoblast numbers and capability of
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Figure 1: Glutamine-dependent regulation of BMSC osteogenic and adipocyte differentiation. The black arrows represent the signaling
pathway in osteogenic differentiation regulated by glutamine; meanwhile, the gray arrows represent the signaling pathway in adipogenic
differentiation.

3Stem Cells International



bone information, consequently causing decreased bone
mass relative to wild-type littermates [17]. Alternatively,
miRNA as an important regulator was able to establish a
complex circuit in bone homeostasis by interacting with
different genes [64]. Recent evidences reported that
miRNA-206 participated BMSC bioenergy by directly
bounding to the 3′-untranslated region (3′-UTR) of GLS
mRNA, which resulted in the suppression of GLS expres-
sion and glutamine metabolism and eventually inhibited
the osteogenic differentiation of BMSCs [65].

3.2.2. mTOR.mTOR is a sensor of growth factors whose acti-
vation increases bone width and mass as a result of hyperpro-
liferated MSCs but declines bone length and mineral
contents due to defective MSC differentiation [66]. Mecha-
nistically, mTOR is a central target of intrinsic control in
bone cells which integrates various molecules associated with
glutamine metabolism in BMSC differentiation. Previous
studies indicated WNT signaling influenced osteoblasts
biological behaviors by enhancing both cell numbers and
protein synthesis activity [67]. Importantly, to meet the
increased energetic and synthetic need, the anabolic mecha-
nism directly responded to WNT signaling to impact osteo-
blast differentiation of BMSCs. WNT signaling targeted the
mammalian target of rapamycin complex1 (mTORC1) to
stimulate glutamine entry to the TCA cycle, subsequently it
lowered intracellular glutamine levels. Then, the general con-
trol nonderepressible 2-mediated (GCN2-mediated) with
integrated stress response (ISR) pathway was triggered due
to the WNT-induced reduction of glutamine, which stim-
ulated the expression of genes that responsible for amino
acid transport, tRNA aminoacylation, and protein folding
[68]. Previous studies also suggested that mTORC1 activa-
tion stimulated glutamate to α-KG conversion by activat-
ing GDH, thus promoting cancer cell proliferation [69].
The activation of mTOR signaling pathway stimulated by
Golgi membrane protein 1 (GOLM1) overexpression in
BMSCs was in sympathy with that in cancer cells,
behaving inhibited osteogenic differentiation of BMSCs
due to increased GDH activity and glutamine to α-KG
conversion. [20].

3.2.3. ERRα. Estrogen-related receptor α (ERRα), an orphan
nuclear hormone receptor, is capable of regulating the
transcription of related genes. Previous studies reported that
ERRα positively regulated adipocytic and chondrocytic
differentiation of MSCs while behaved a dual effect on oste-
oblast differentiation in Runx2- and/or WNT-target manner
[70]. Recently, the age-related restriction of BMSCs has
been reported as an essential factor in bone degenerative
progress because of declined osteogenic capacity and unbal-
anced lineage allocation [71, 72]. And the dynamic expres-
sion patterns of ERRα with ages were tightly associated
with BMSC osteoblast differentiation. A study displayed that
ERRα expression was obviously reduced in elder rats, which
was consistent with the deteriorated osteogenic capacity
with ages [73]. Besides, ERRα was dysregulated in age-
prevalent diseases like osteoarthritis and rheumatoid arthri-
tis [74, 75]. As for cell level, ERRα reached peak protein

expression levels at early phase of osteoblast differentiation
and declined at mineralization stage while mRNA levels
remained stable. It indeed supported the view that ERRα
was inactivated after the onset of osteoblast maturation
and it regulated osteoblast differentiation in a time-specific
manner [76]. However, precise molecular mechanism
remains unclear. Dysregulation of mitochondrial function
is a common feature of aging, and coactivation of ERRα
with proliferator-activated receptor gamma coactivator 1-
α (PGC-1α) regulated mitochondrial biogenesis through
fatty acid oxidation and energy expenditure related to
ROS [77, 78]. Through binding to its promoter, ERRα
directly regulated GLS expression, leading mitochondrial
Gln-dependent anaplerosis critical to TCA cycle and bio-
synthesis of nucleotides and proteins. Aging negatively
impacted on this ERRα/GLS signaling pathway, and
repaired ERRα and GLS expression could partially restore
osteogenic capacity of MSCs to resist bone loss [73]. In
addition, the synthesis master regulator mTOR modulated
ERRα/GLS signaling via affecting ERRα transcriptional
activity, which may be a targeted therapy for aging-
related bone loss [73].

3.2.4. ROS. Reactive oxygen species (ROS) originate from
the oxidation of metabolic intermediates of ETC and are
usually produced in the form of superoxide in the mito-
chondria [79]. The complexes of the respiratory chain in
mitochondria are the main ROS production sites, espe-
cially complexes I and III. Besides, many other proteins
such as pyruvate dehydrogenase (PDH) and electron
transfer flavoprotein (ETF) are also ROS producers [80].
ROS are not only a consequence of differentiation but also
are critical components of pathways regulating stem cell
differentiation [81]. They are precisely regulated to prevent
oxidative damage of cells in normal circumstances; ele-
vated ROS in BMSCs with ages were reported to destruct
the lineage allocation, displaying promoted adipogenesis
and blocked osteogenesis [82, 83]. A potential mechanism
may be the toxic accumulation of α-KG under excessive
oxidative metabolism. Increased activity of PDH and loss
of mitochondrial membrane potential (MMP) with a
transformation to TCA cycle most likely enhanced pyru-
vate entry into mitochondria, thus accumulating toxic
metabolites [84]. Then, it resulted in nucleocytoplasmic
vacuolation and chromatin condensation which obviously
prevented osteogenic and adipocyte differentiation. Simul-
taneously, the accompanying DNA damage, inhibition of
histone H3 (Lys27) of acetylation, and increased HIF-1α
degradation contributed to the death of BMSCs [84].
Moreover, another study reported that increased glutathi-
one content from glutamine was important to offset the
detrimental effect of ROS to the osteoblast fate [17]. Alter-
natively, compared with the positive role of ROS, glutamine
was less chief in adipocyte differentiation of BMSCs. The
mitochondrial-generated ROS enhanced adipocyte differen-
tiation in a mTORC1-dependent pattern, which could
explain the phenomenon that neither glutamine consump-
tion nor GLS activity altered during adipocyte differentia-
tion relative to undifferentiated BMSCs [85, 86].
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3.3. Glutamine Metabolism of BMSCs in Osteoimmunology.
Apart from the self-renewal and multilineage differentiation
features, MSCs are known to exert an immunosuppressed
modulation by expressing adhesion molecules and secreting
effectual factors like cytokines, chemokines, and growth fac-
tors [87–89]. Researches about glutamine metabolism in
immune system in recent decades also prompted the recogni-
tion of its regulatory role in adaptive immunity and innate
immunity, covering lymphocytes, neutrophils, and macro-
phages as well as a series of cytokines [90–92]. In BMSCs,
the concentration of glutamine was relevant to their immu-
nology properties. High dose of glutamine displayed an
enhancement for immunosuppressive properties of BMSCs
via affecting inflammatory cytokines, displaying decreased
levels of proinflammatory cytokines like interleukin-1β (IL-
1β) and IL-6 and increased levels of anti-inflammatory cyto-
kines IL-10, and transforming growth factor-β (TGF-β) [93].
Mechanistically, varied production of proinflammatory cyto-
kines may relate to the reduced expression of phosphorylated
nuclear factor kappa-B (NF-κB) and high level of signal
transducer and activator (STAT-3) in BMSCs as they control
cytokine production [94]. Additionally, IL-10 was critical in
immune responses in glutamine concentration as they inhib-
ited activation of NF-κB, thus modulating the cytokine pro-
duction. Meanwhile, both IL-10 and STAT-3 increased in
BMSCs with glutamine, which could be explained that the
anti-inflammatory effects of IL-10 were mediated by
STAT-3, and in turn, IL-10 was also reported to promote
STAT-3 to reduce amounts of proinflammatory cytokines
[95, 96]. Additionally, the proliferation of lymphocytes
and macrophages was inhibited when cocultured with
BMSCs in glutamine medium, both followed with an
increased production of IL-10 [97]. The increased IL-10
may be attributed to the transformation of macrophages
to an anti-inflammatory M2 phenotype with the induction
of MSCs [98], whereas the precise mechanism of immuno-
modulation in BMSC-mediated glutamine is unclear.

4. Glutamine Metabolism in Osteoblasts

Characterized as the chief bone-making cells, osteoblasts take
charge of producing large amounts of both collagen I-rich
bone matrix and ectoenzymes controlling matrix mineraliza-
tion. They follow timely programmed steps and express
specific genes under the control of proosteogenic pathways.
WNT signaling pathway is pivotal to promote the commit-
ment towards an osteo/chondroprogenitor of BMSCs,
especially in the early steps in osteoblast differentiation
[99]. It is suggested that WNT signaling directly reprograms
cellular metabolism in osteoblast lineage cells by stimulating
aerobic glycolysis, glutamine catabolism, and fatty acid
oxidation [67]. Additionally, glutamine catabolism has
been identified as a crucial regulatory step in satisfying
both energetic and synthetic requirements which is con-
nected with WNT-induced bone anabolism in immature
osteoblasts.

Karner et al. reported that glutamine was both an energy
source and a protein-translation rheostat which was respon-
sive to osteoblast differentiation [68], and impaired osteo-

blast differentiation with ages in BMSCs may be linked with
declined glutamine consumption [73]. Meanwhile, Brown
et al. supported that glutamine significantly improved
osteoblast viability and enhanced the utilization of glucose
in both human osteoblast-like cell lines and mouse calvarial
osteoblasts, and higher levels of osteocalcin expression were
beneficial for matrix mineralization [100]. Furthermore,
considering that glutamine directly stimulated collagen
type1a1 transcription in fibroblasts, the practice of glutamine
on mineralization in osteoblast cultures might be owing to an
influence on collagen expression [101]. However, it remains
unknown whether glutamine anaplerosis is required for
physiological osteoblasts activity in bone formation due
to the lack of systematic analyses in osteoblasts with Gls
depletion [102].

5. Glutamine Metabolism in Chondrocytes

The commitment of BMSCs to the chondrogenic lineage is a
significant event to initiate the endochondral ossification that
BMSCs firstly give rise to immature chondrocytes and carti-
lage primordia. Integrated signaling among growth factors
and components of the extracellular matrix containing colla-
gens, proteoglycans, glycosaminoglycans (GAGs), and prote-
ases regulate chondrocytes collaboratively to facilitate
progressive changes in endochondral ossification and bone
formation [103]. Glutamine was initially shown to sustain
glycosaminoglycan and protein synthesis as a carbon and
nitrogen provider in extracellular matrix metabolism in
chondrocytes [104]. In view of the special avascular environ-
ment of cartilage, it was widely assumed that cells within car-
tilage were hypoxic and hypoxia regulated the energetic state
of maturing cells [105]. However, an excessive hypoxic envi-
ronment was harmful for chondrocytes, and it was usually
followed with a reduced utilization of glutamine and declined
content of glutathione, which was possibly attributed to the
downregulated mitochondria1 function and inhibited oxida-
tive deamination [105]. HIF-1α is a protein expressing in
hypoxic microenvironment, and higher expression of HIF-
1α under hypoxic condition is of great necessity for chondro-
cytes survival in an intrinsic mechanism [106, 107]. As HIF-
1α mediated an upregulated expression of GLS1, the flux of
glutamine to α-KG was enhanced to favor α-KG-dependent
proline and lysine hydroxylation of collagen, and it was ben-
eficial to increase bone mass by endowing the resistance of
the cartilaginous matrix to protease-mediated degradation
[108]. In some pathological situations, glutamine also
exhibited a protective effect on chondrocytes. For instance,
glutamine upregulated glutathione concentration in chon-
drocytes to protect cells from injury in surgery or infectious
conditions [109, 110]. In stress conditions, glutamine exerted
chondroprotective effect by enhancing the expression of heat
shock protein 70 (HSP70), which reduced chondrocytes
apoptosis to prevent the progress of cartilage degeneration
[111]. Importantly, two energy-dependent anabolic pro-
cesses collaboratively regulated the biological behavior in
chondrocytes. The imbalance of glucose-mediated reduced
collagen synthesis and glutamine-mediated increased bone
mass in chondrocytes will lead to the skeletal dysplasia [108].
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6. Glutamine Metabolism in Osteoclasts

Tomaintain skeletal architecture and strength, a homeostatic
balance between new bone formation and old or damaged
bone resorption is required. Osteoclasts derived from the
hematopoietic lineage mainly degrade bone matrix and
liberate the calcium and phosphate, eventually exhibiting
regulation on bone mass as well as quality [112]. It was sug-
gested that L-glutamine had a significant impact on early
phase of osteoclast differentiation and maturation stage
[113]. Following the uptake through SLC1A5, a Na+-depen-
dent transporter of L-glutamine [114–116], osteoclasts
converted glutamine to glutamate and then to α-KG, which
was important as an anaplerotic substrate in osteoclast differ-
entiation [117]. Additionally, glutamine was an essential fuel
for the acquisition of bone-resorbing activity in mature, mul-
tinucleated osteoclasts [113]. Morten et al. reported that hyp-
oxia stimulated glutamine consumption in osteoclasts, which
was similar to SK–N–SH neuroblastoma and A549 lung ade-
nocarcinoma cells [118, 119]. The increased glutamine
uptake may mainly contribute to biosynthesis as glutamine
withdrawal had no effect on either ATP production [61].

7. Therapeutic Potential of Glutamine in Bone
Disorder Treatment

Energetic metabolism has gained improving attentions in the
past decades for the regulation in the delivery and utilization
of nutrients throughout the body, and the metabolic inflexi-
bility is associated with various pathological process [120].
In updated clinical trials, amounts of researches have been
arisen to elucidate the influence of glutamine in the improve-
ment of adverse reactions induced by treatments and the
potential applications in diagnosis (see Table 1). Addition-
ally, glutamine is pivotal for both energy production and
redox homeostasis in bone homeostasis, which can be a
potential strategy in bone diseases such as osteoporosis and
osteoarthritis.

7.1. Osteoporosis. Osteoporosis, mainly occurring in post-
menopausal women and elder group, is characterized by
low bone mass and deterioration of the bone microarchi-
tecture which eventually behaves increased fracture suscep-
tibility [151]. Previous researches reported aging-related
changes of glutamine metabolism in osteoporosis could
break the balance between osteogenic and adipocyte differ-
entiation of BMSCs through key enzyme destruction in
glutamine metabolism or mitochondria metabolic deteriora-
tion [73, 84]. Early anabolic therapies associated with gluta-
mine may be a good way to treat osteoporosis from the
perspective of etiology. Glutamine supplement (L-glutami-
ne/L-alanyl solution (2.0ml/kg) through the tail veins in
the first 7 d was noted to obtain quicker and more regular pri-
mary callus and cartilaginous callus through attainments of
positive nitrogen balance in standardized albino rats, which
was instrumental in the healing of fractured osteoporosis
patients [152]. However, the effect was tiny on enhancing
the quality of fracture healing under conditions of stress, only
exhibiting some influence on the speed of healing [152]. Vir-

tually, glutamine precursor has been explored to apply in the
treatment of osteoporosis in animal model. 2-Oxoglutarate
(2-Ox), a precursor of glutamine, has been identified to pro-
mote the thickness of cancellous bone, growth plate, and
articular cartilage in fundectomy-induced osteopenic bone
[153]. It was also applied in osteoporosis induced by gluco-
corticoid treatment in premature infants with inflammatory
and autoimmune disorders, which improved levels of growth
hormone and osteocalcin concentration and preserved
microarchitecture of trabecular bone [154].

7.2. Osteoarthritis. Osteoarthritis, characterized by degenera-
tion of the articular cartilage and subchondral bone
pathologically, is often diagnosed by the symptoms of pain,
joint stiffness, and disability [155]. In osteoarthritis patients,
inflammatory cytokines and ROS are induced by nonphysio-
logical mechanical loading and heat stress facilitated by
deviant joint movements, eventually contribute to the patho-
logical progression. The treatment of chondrocytes with glu-
tamine protected cells from heat stress and NO-induced
apoptosis, thereby preventing osteoarthritis [111]. Fujita
et al. indicated that heat stimulation and glutamine could
stimulate the expression of HSP70 in rat articular cartilage
in vivo, which may be involved in the suppression of osteoar-
thritis progression [156]. As stem cell-based therapy is a
potential approach for osteoarthritis, researches about cellu-
lar metabolism in stem cells contribute to the application of
cell-based treatment in general. Stegen et al. suggested that
HIF-1α-mediated conversion of glutamine to glutathione
synthesis was beneficial to maintain redox homeostasis under
oxidative or nutrient stress, consequently exerting beneficial
impact on cell survival [19]. The transplantation of
adipose-derived mesenchymal stem cells (Ad-MSCs) in
1ml of Dulbecco’s modified Eagle’s medium (DMEM) was
injected into articular defect area of the osteoarthritis rabbits,
and the overall healing score of experimental knees was supe-
rior when compared to the control group just received 1ml of
DMEM, in which 2mM L-glutamine was included [157]. In
addition, when it comes to osteoarthritis patients who
received TKA, supplementation with a combination of β-
hydroxy-β-methyl butyrate, L-arginine, and L-glutamine
(HMB/Arg/Gln) during the postoperative recovery could
suppress the loss of muscle strength [150].

8. Conclusion

Recent evidences indicated that glutamine is a critical regula-
tor in bone homeostasis via supporting energy as a substitute
carbon source through TCA cycle and providing precursors
for protein and nucleic acid synthesis. At cellular level,
glutamine metabolism mediate the bioenergy of bone cells
including BMSCs, osteoblasts, chondrocytes, and osteoclasts,
thus influencing their capabilities of the proliferation,
differentiation, and mineralization. Abnormal glutamine
metabolism is associated with clinical disorders such as oste-
oporosis and osteoarthritis and expected to provide novel
guideline for treatments. In bone tissues, an integrated
regulatory network where glutamine acting as the target
participate BMSC differentiation, whereas researches of
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downstream effectors of glutamine metabolism are seldom
studied currently. Therefore, the mechanism of glutamine
in bone homeostasis is likely multifaceted and additional
basic investigation is needed beyond doubt. Glutamine
metabolism has diversified influences on other cells or
tissues, for example, it impacted the cellular differentiation
through the epigenetic regulation in embryonic stem cells
[158]; nevertheless, it has not been elucidated in bone cells.
Alternatively, glutamine supplement has been applied in
some systemic disease treatment and is expected to restore
the impairment of osteoporosis and osteoarthritis. Virtually,
the targets of glutamine in bone disease therapy are little
known. Therefore, more fundamental and clinical studies
are needed to deeply investigate the role of glutamine metab-
olism in regulating bone homeostasis and provide a new
strategy for the clinical treatment of bone diseases.
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Table 1: The application of glutamine in clinical trials.

Disorders/treatment/diagnosis Detailed effect

Digestive system disease Postinfectious irritable bowel syndrome
Restore tight junction proteins, increase claudin-1

expression, and improve permeability [121]

Crohn’s disease
Increase the insoluble fraction of claudin-1 and

occludin proteins, prevent the tight junction proteins,
and maintain the intercellular junction [122]

Short bowel syndrome
Provide energy for enterocytes, enhance the

transport of sodium and water in the ileum, and
upregulate intracellular protein synthesis [123–125]

Acute pancreatitis
Improve lymphocyte proliferation, reduce

proinflammatory cytokine, release C-reactive protein,
and improve the nutritional status [126, 127]

Cirrhotic Increase blood ammonia [128]

Circulation system disease Sickle cell disease
Raise the NAD redox ratio within sickle cells and

synthesize NAD and decrease endothelial cell adhesion in
sickled red cells [129, 130]

Heart failure
Maintain a positive nitrogen balance and activate the

suppressed oxidative metabolism [131]

Locomotor system disease Duchenne muscular dystrophy
Inhibit whole-body protein degradation and stimulate

insulin secretion [132, 133]

Systemic disorders Critically ill patients Maintain high level of HSP70 [134]

Sepsis
Increase immune response, donate nitrogen for many
anabolic processes, and promote wound healing [135]

Type 2 diabetes mellitus
Delay gastric emptying to lower glycemia, stimulate
GLP-1 concentration, and increase circulating insulin

Low birthweight infants
Aid in maturation of the intestinal tract enhances growth,

development, and function of the immunologic system [136, 137]

Imaging diagnosis PET assay of tumor A potential tumor biomarker for targeted radiotracer imaging [138]

Regulatory effect on
certain treatments

Radiotherapy-induced toxicities Protective effects of diarrhea minimized dermatitis [139, 140]

Chemotherapy-induced toxicities
Treat neuropathy induced by vincristine and decrease

mucositis severity [141–144]

Peripheral blood stem cell transplantation Improve CD3+ and CD4+lymphocyte recovery [145, 146]

Liver transplantation
Synthesize glutathione and protect the liver graft

against lipid peroxidation [147]

Cardiac surgery
Enhance cell survival, attenuate the systemic inflammatory

response, and prevent intracellular lactate accumulation [148, 149]

Total knee replacement (TKA) Suppress the loss of muscle strength after TKA [150]
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