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Response-adaptive randomisation (RAR) can considerably improve the chances
of a successful treatment outcome for patients in a clinical trial by skewing the
allocation probability towards better performing treatments as data accumu-
lates. There is considerable interest in using RAR designs in drug development
for rare diseases, where traditional designs are not either feasible or ethically
questionable. In this paper, we discuss and address a major criticism levelled
at RAR: namely, type I error inflation due to an unknown time trend over the
course of the trial. The most common cause of this phenomenon is changes in
the characteristics of recruited patients—referred to as patient drift. This is a real-
istic concern for clinical trials in rare diseases due to their lengthly accrual rate.
We compute the type I error inflation as a function of the time trend magnitude
to determine in which contexts the problem is most exacerbated. We then assess
the ability of different correction methods to preserve type I error in these con-
texts and their performance in terms of other operating characteristics, including
patient benefit and power. We make recommendations as to which correction
methods are most suitable in the rare disease context for several RAR rules, dif-
ferentiating between the 2-armed and the multi-armed case. We further propose
a RAR design for multi-armed clinical trials, which is computationally efficient
and robust to several time trends considered.
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1 INTRODUCTION

Randomised controlled trials (RCTs) are considered the gold standard approach to learn about the relative efficacy of
competing treatment options for evidence-based patient care. The information provided by an RCT can subsequently be
used to better treat future populations. Traditionally, patients are allocated with a fixed and equal probability to either
an experimental treatment or standard therapy arm. We will refer to RCTs implemented in this way as incorporating
complete randomisation (CR). However, there is generally a conflict between the individual benefit of patients in the
trial and the collective benefit of future patients. Complete randomisation, by definition, does not provide the flexibility
to alter the allocation ratios to each arm, even if information emerges that breaks the initial trial equipoise. This conflict
becomes more acute in the context of rare life-threatening conditions, because the trial participants generally make up a
sizeable proportion of the total patient population.
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Response-adaptive randomisation (RAR) offers a way of simultaneously learning about treatment efficacy while also
benefiting patients inside the trial. It achieves this by skewing allocation to a better performing treatment, if it exists, as
data are accrued. When RAR rules are used in a multi-armed trial, they also increase the probability of finding a successful
treatment and speed up the process of doing so.1,2

However, RAR is still infrequently used in practice. One of the most prominent recent arguments against its use is the
concern that the false positive error rate (or type I error rate) may not be controlled at the nominal level.3 This can easily
occur if the distribution of patient outcomes changes over time and the traditional methods of analysis are used.4 One such
example is when the underlying prognosis of patients recruited in the early stages of a trial differs from those recruited in
the latter stages. This is often referred to as “patient drift.” Karrison et al5 investigate the type I error inflation induced by
various RAR rules implemented within a 2-armed group sequential design with a binary outcome in which, depending on
the observed value of the corresponding z-statistics, the next group of patients is allocated in one of 4 possible fixed ratios
R(z). They show that if all success rates increase by 0.12 over the course of a study with 3 interim analysis, the type I error
rate achieved by a group sequential design is “unacceptably high,” with the inflation being worst for the most aggressive
RAR rules.

Time trends are more likely to occur in studies that have a long duration. Consider, for example, the Lung Cancer
Elimination (BATTLE)-1 phase II trial which recruited patients for 3 years (2006-2009). It was found that more smokers
and patients who had previously received the control treatment enrolled in the latter part of the study compared to the
beginning of the study.6 Trials that last more than 3 years will often be required for rare diseases because of the recruitment
challenge. It is also exactly for this case where the use of RAR can be most desirable as the trial patients represent a higher
proportion of the total patient population and the suboptimality gap of traditional RCTs—in terms of overall expected
patient benefit—increases as the prevalence of the disease decreases.7

There has been little work in the literature considering the impact of time trends on different RAR rules. In Coad,8

sequential tests for some RAR rules that allow for time trends are constructed while estimation and the issue of bias within
this context are addressed in another study.9 In Rosenberger et al,10 a covariate-adjusted response-adaptive mechanism
for a 2-armed trial that can take a specific time trend as a covariate is introduced. In the trial context investigated by
Karrison et al,5 an analysis stratified by trial stage eliminates the type I error inflation induced by a simple upward trend
of all the success rates. A similar stratified analysis is used in Coad.11 More recently, Simon and Simon4 considered broad
RAR rules for the 2-armed case and proposed a randomisation test to correct for type I error inflation caused by unknown
time trends of any type. There have been several recent papers comparing different classes of RAR rules under various
perspectives (see, eg, previous studies12-15), yet most of these do not examine the effects of time trends as done in Coad.11

An exception to this is Thall et al3 in which type I error inflation under time trends is pointed out as an important criticism
of RAR. However, their paper only investigates a special class of RAR (based on regular updates of posterior probabilities).
In this paper, we identify and address a number of unanswered questions that we describe below, including the study of
the multi-armed case.

If one is considering designing a clinical trial using a particular RAR rule, then a fundamental question to consider
is how large the temporal change in the trial data has to be to materially affect the results. In Section 2, we address this
question for a representative selection of RAR procedures.

If the possibility of a large drift occurring during the trial is a concern and a RAR scheme is being considered for
designing such a trial, then subsequent and related questions are as follows: Do any “robust” hypothesis testing procedures
exist that naturally preserve type I error in the presence of an unknown time trend? Should these procedures be different
for 2-armed and for multi-armed trials? Should they differ depending on the RAR rule in use? And, finally, what is their
effect on statistical power? Sections 2 and 3 address these questions for different RAR procedures. In Section 4, we consider
whether time trends can be effectively detected and adjusted for in the analysis and how extended modelling approaches
for modelling a time trend compare to model-free approaches to control for type I error. In Section 5, some conclusions
and recommendations for addressing this specific concern are given.

2 RAR RULES, TIME TRENDS, AND TYPE I ERROR RATES

In this section, we assess the impact of different time trend assumptions on the type I error rate of distinct RAR procedures.
We assume that patients are enrolled in the trial sequentially, in groups of equal size b over J stages. We do not consider
monitoring the trial for early stopping, and therefore, the trial size is fixed and equal to T = b × J. We have omitted it the
possibility of early stopping in this paper to isolate the effects of an unaccounted for time trend in a trial design using RAR.
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Patients are initially allocated with an equal probability to each treatment arm. After the first interim analysis, allocation
probabilities are updated based on data and according to different RAR rules. In a real trial, this initial CR start-up phase
could be replaced by a restricted randomisation phase (eg, a permuted block design) to minimise sample imbalances and
improve the subsequent probabilities updates.16 For simplicity of presentation, we consider a binary outcome variable
Yi,j,k for patient i allocated to treatment k at stage j (with Yi,j,k = 1 representing a success and Yi,j,k = 0 a failure) that
is observed relatively quickly after the allocation. An example might be whether a surgery is considered to have been
successful or not.

We consider a trial with K ⩾ 1 experimental arms and a control arm and assume that every patient in the trial can only
receive one treatment. We will also assume that for every j < J before making the treatment decisions for the ( j + 1)th
block of patients, the outcome information of the jth block of patients is fully available. Patients in block j are randomised
to treatment k with probability 𝜋j,k (for j = 1, … , J and k = 0, 1, … ,K). For example, a traditional CR design will have
𝜋j,k = 1∕(K+1)∀j, k. Patient treatment allocations are recorded by binary variables ai,j,k that take the value 1 when patient
i in block j is allocated to treatment k and 0 otherwise. Because we assume that patients can only receive one treatment,
we impose that

∑K
k=0 ai,j,k = 1 for all i, j. We denote the control treatment by k = 0. Updating the allocation probabilities

after blocks of patients rather than after every patient makes the application of RAR rules more practical in real trials.17

An appropriate test statistic is used to test the hypotheses that the outcome probability in each experimental treatment
is equal to that of the control. That is, if we let Pr(Yi,j,k = 1|ai,j,k = 1) = pk, then we consider the global null to be
H0,k ∶ p0 = pk for k = 1, … ,K. Generally, any sensible test statistic will produce reliable inferences if the outcome
probability in each arm conditional on treatment remains constant over the course of the trial. If this is not the case, then
the analysis may be subject to bias. To illustrate this, we shall assume the following model for the outcome variable Y

Logit
[
Pr(Yi,j,k = 1|Zi,j, ai,j,k = 1)

]
=
{

𝛽0 + 𝛽ttj + 𝛽zZi,j k = 0
𝛽0 + 𝛽ttj + 𝛽zZi,j + 𝛽k k ⩾ 1 , (1)

where tj = ( j − 1), Zi,j is a patient-level covariate (eg, a binary indicator variable representing whether a patient charac-
teristic is present or absent), and therefore, 𝛽 t is a time trend effect, 𝛽z is the patient covariate effect, and 𝛽k is treatment's
k main effect. We shall assume that Zi,j ∼ Bern(qj) and define Expit(u) = exp(u)

1+exp(u)
. Furthermore, we shall assume that the

global null hypothesis is true, meaning H0,k holds for k = 1, … ,K, or equivalently 𝛽1 = · · · = 𝛽k = 0. Patients with Zi. = 1
will have success rate when allocated to arm k equal to Expit(𝛽0 + 𝛽 ttj + 𝛽z) while patients with a negative value Zi. = 0
will have a success rate of Expit(𝛽0 + 𝛽 ttj).

If the covariate variable Z is unobservable then when analysing the data, response rates will in effect be marginalised
over Z as follows:

Pr(Yi,j,k = 1|ai,j,k = 1) =
1∑

f=0
Pr(Yi,j,k = 1|Zi,j = f , ai,j,k = 1)Pr(Zi,j = f )

= Expit(𝛽0 + 𝛽ttj)(1 − qj) + Expit(𝛽0 + 𝛽ttj + 𝛽z)qj.

(2)

Assuming that equal numbers of patients are recruited at each of J stages, then the mean response rate in arm k will be

Pr(Yi,.,k = 1|ai,.,k = 1) = 1
J

J∑
j=1

Pr(Yi,j,k = 1|ai,j,k = 1). (3)

The inclusion of tj and Zi,j allows us not only to introduce time trends of different magnitude but also to describe 2 distinct
scenarios that are likely to be a concern in modern clinical trials: changes in the standard of care (scenario 1)—or changes
in the effectiveness of the control treatment—and patient drift (scenario 2)—or changes in the baseline characteristics of
patients. Under model (1), we shall consider that a case of scenario 1 occurs if 𝛽 t ≠ 0 while 𝛽z = 0 whereas an instance of
scenario 2 happens if 𝛽z ≠ 0 while 𝛽 t = 0 and qj evolves over j.

In this section, we consider the global null hypothesis by setting 𝛽k = 0 for all k for both scenarios. In Sections 3.3 and 4,
we consider extensions of these scenarios where 𝛽k > 0 for some k ⩾ 1. Specifically, we consider alternative hypotheses
of the form H1,k ∶ pk − p0 = Δp > 0 for some k ⩾ 1 with the treatment effect Δp defined as Δp = Pr(Yi,.,k = 1|ai,.,k = 1)
− Pr(Yi,.,k = 1|ai,.,0 = 1).

2.1 RAR procedures considered
Many variants of RAR have been proposed in the literature. However, different RAR procedures often perform similarly,
because they obey the same fundamental principle. Myopic procedures determine the “best” allocation probabilities for
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the next patient (or block of patients) according to some criteria based on the accumulated data (on both responses and
allocations) up to the last treated patient. Non-myopic procedures consider not only current data but also all possible
future allocations and responses to determine the allocation probability of every patient (or block of patients) in the trial
(see chapter 1 in Hu and Rosenberger18). Furthermore, RAR procedures can be considered to be patient benefit oriented
if they are defined with the goal of maximising the exposure to a best arm (when it exists). Additionally, RAR procedures
can also be defined with the goal of attaining a certain level of statistical power to detect a relevant treatment effect, thus
being power oriented. Response-adaptive randomisation rules that score highly in terms of patient benefit generally have
lower power.

Thus, to illustrate these 4 types of rules, we focus on the following RAR rules: “Thompson sampling” (TS) (myopic
patient benefit oriented), “Minimise failures given power” (RSIHR) (myopic power oriented), the “forward-looking Gittins
index rule” (FLGI) (non–myopic patient benefit oriented), and its controlled version, the ‘controlled forward-looking Git-
tins index rule” (CFLGI) (non–myopic power oriented). A short summary of these approaches is now given; for a more
detailed description, see Villar et al.19

(a) TS: Thompson20 was the first to recommend allocating patients to treatment arms based on their posterior
probability of having the largest response rate.
We shall compute the TS allocation probabilities using a simple Monte Carlo approximation. Moreover, we shall
introduce a tuning parameter c defined as ( j−1)×b

2T
where ( j − 1) × b and T are the current and maximum sample

size, respectively. This parameter tunes the aggressiveness of TS allocation rule based in the accumulated data so
that the allocation probabilities become more skewed towards the current best arm only as more and more data
accumulate. Notice that TS is essentially the only class of RAR considered in Thall et al.3

(b) RSIHR: Rosenberger et al21 proposed and studied an optimal allocation ratio for 2-armed trials in which the
allocation probability to the experimental arm is defined as

𝜋j,1 =
√

p1√
p0 +

√
p1

. (4)

This allocation procedure is optimal in the sense that it minimises the expected number of failures for a fixed
variance of the estimator under the alternative hypothesis that there is a positive treatment effect Δp = p1 −p0 > 0.
The optimal allocation ratios that extend Equation 4 for the general case in which K > 1 do not admit a closed
form; however, numerical solutions can be implemented as in Tymofyeyev et al.22

In practice, the allocation probabilities may be computed by plugging in a suitable estimate for the pk’s using
the data up to stage j − 1. In our simulations, we implemented the optimal allocation ratio for RSIHR using the
doubly-adaptive biased coin design. Specifically, we used Hu and Zhang's randomisation procedure with allocation
probability function given by equation (2) in Tymofyeyev et al22 and 𝛾 = 2. Notice that we estimated the success
rate parameters from the mean of its prior distribution for the first block of patients (when no data were available)
and the posterior mean thereafter.

(c) FLGI: In Villar et al,19 we introduced a block randomised implementation of the optimal deterministic solution
to the classic multi-armed bandit problem, first derived in other studies.23,24 The FLGI probabilities are designed
to mimic what a rule based on the Gittins index (GI) would do. See Section 3 and Figure 1 in Villar et al19 for a
more detailed explanation of how these probabilities are defined and approximately computed via Monte Carlo.
The near optimality attained by this rule differs from the one targeted in procedure (b) in the sense that average
patient outcome is nearly maximised with no constraint on the power levels that should be attained. Notice that
before the introduction of this procedure based on the GI, an important limitation to the practical implementation
of non-myopic RAR rules such as those in Cheng and Berry7 and Williamson et al25 was computational, particularly
in a multi-armed scenario.

(d) CFLGI: In addition to the rule described in (c), for the multi-armed case (ie, K > 1), we consider a group allocation
rule that, similarly to the procedure proposed in Trippa et al,26 protects the allocation to the control treatment so it
never goes below 1∕(K + 1) (ie, its fixed equal allocation probability) during the trial.

2.2 Simulation results
In this section, we present the results of various simulation studies that show, for instances of scenarios 1 and 2 (described
in detail below), the degree to which the type I error rate can be inflated for different RAR rules relative to a CR design.
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FIGURE 1 The per block success rate under different time trend assumptions plotted over time. Left plot corresponds to scenario 1
(changes in standard of care), and middle and right plots correspond to different cases of scenario 2 (patient drift)

As is the usual case when comparing RAR procedures, we consider measures of efficiency (or variability) and ethical
performance, assessing which one of them (if any) provides a better compromise between these 2 goals.14 We therefore also
compute the expected number of patients assigned to the best treatment (p∗) and expected number of patient successes
(ENS). However, under the global null considered in this section, ENS and p∗ are identical for all designs and therefore we
do not report them here. In sections where we consider scenarios under various alternative hypotheses, we report patient
benefit measures as well as power. Specifically, we report p∗ and the increment in the expected patient benefit that the
RAR rule considered attains over a CR design, ie, ΔENS = ENSRAR − ENSCR.

For each scenario, a total of 5000 trials were simulated under the global null and the same global null was tested. We
used z-statistics for testing with RAR rules (a), (b), and (d) (when asymptotic normality can be assumed) and, given that
bandit-based procedures can result in very small sample sizes for some arms, an adjusted Fisher exact test for procedure
(c). The adjustment for the bandit rules chooses the cut-off value to achieve a 5% type I error rate (as in Villar et al27). For
multi-armed trials, we use the Bonferroni correction method to account for multiple testing and therefore ensure that the
family-wise error rate is less than or equal to 5%. In all simulations and for all RAR rules, we assumed uniform priors on
all arms' success rates before treating the first block of patients.

2.2.1 Scenario 1: changes in the standard of care
The first case we consider is that of a linear upward trend in the outcome probability of the control arm. This could be the
case of a novel surgery technique that has recently become the standard of care, but it requires a prolonged initial training
period for most surgeons to become proficient in these complex procedures until “failure” is eliminated or reduced to a
minimum constant rate. In terms of the model described in Equation 1, this corresponds to varying 𝛽 t with all else fixed.

Specifically, we let 𝛽 t take a value such that the overall time trend within the trial

D = Pr(Yi,j,. = 1|tj = J − 1) − Pr(Yi,j,. = 1|tj = 0)

varies in D = {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.24}. Figure 1 (left) shows the corresponding evolution of the per block success
rate of every arm over time across the scenario in which J = 5 and for the cases of no drift (D = 0, dark blue) and the
strongest drift considered (D = 0.24, dark red).

Figure 2 summarises the simulation results. The top row of plots shows the results for the 2-armed trials (ie, K = 1),
and the bottom row of plots shows the results for K = 2. In both cases, the trial size was T = 100. The value of the sample
size T might be interpreted as the maximum possible sample size (ie, including a very large proportion of the patient
population) in the context of a rare disease setting. The plots in the left column assume a block size of 10, and the plots
in the right column assume a block size of 20. The initial success rate was assumed to be equal to 0.3 (which corresponds
to 𝛽0 ≈ −0.8473) for all the arms considered.

Under the assumption of no time trend (ie, 𝛽 t = D = 0), the test statistics used preserve the type I error rate for all
designs in all cases considered, except for TS for which the false positive rate is somewhat inflated (as pointed out in Thall
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FIGURE 2 The type I error rate for scenario 1 (changes in the standard of care) under different linear time trends assumptions and
different response-adaptive randomisation rules. CR, complete randomisation; CFLGI, controlled forward-looking Gittins index rule; FLGI,
forward-looking Gittins index rule; RSIHR, minimise failures given power; TS, Thompson sampling

et al3). For CR, the type I error rate is preserved even when a time trend is present and regardless of the block size, number
of arms, and the trend's magnitude.

The error rates for some of the RAR rules (FLGI and TS) are substantial when overall time trends are of 0.08 and
more. This is because these rules are patient benefit oriented, ie, they skew allocation towards an arm based on data more
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considerably and/or earlier on in the trial. On the other hand, the RSIHR procedure, being a power-oriented rule, remains
practically unaffected by temporal trends in terms of type I error inflation. This very important difference in performance
amongst RAR procedures has not been noted previously.

Multi-arm allocation rules that protect allocation to the control arm, like the CFLGI, are also unaffected by type I error
inflation, even for large drifts. Generally, the type I error inflation suffered by the other RAR rules seems to be slightly
larger for the 3-armed case than for the 2-armed case.

2.2.2 Scenario 2: patient drift
For this case, we imagine a simplistic instance in which patients are classified into 2 groups according to their prognosis.
This occurs if, for example, Zi,j in model (1) represents the presence or absence of a biomarker in patient i at stage j,
where Zi,j = 1 denotes a biomarker-positive patient and Zi,j = 0 denotes biomarker-negative patient. Alternatively, Zi,j
can capture any other patient feature. It could, for example, represent if a patient is a smoker and previously received the
control arm, which would be a relevant covariate in the BATTLE-1 trial. Moreover, we let the recruitment rates of these
2 types of patients, ie, qj, vary as the trial progresses to induce the desired drift in the mix of patients over time. We will
model this situation by letting 𝛽z > 0 in (1) whilst holding all else fixed. We start by assuming that Z is unobserved. In
Section 4.1, we explore the case where Z is measured and can be adjusted for.

The middle and right-hand side plots in Figure 1 show the evolution of Pr(Yi,.,k = 1|ai,.,k = 1) under differing patterns of
patient drift over the course of the trial. The middle plot describes the case in which there is a linear trend in the average
success rates of all arms created by the patient drift whereas the plot to the right considers the case of a more complex
temporal evolution with the average success rates going up and then down or vice-versa. In both cases, a trial of size T =
200 with J = 10 and therefore b = 20 was considered. The success rates for all arms for the biomarker-negative patients
were Pr[Yi,j,. = 1|Zi,j = 0] = 0.3 (so that 𝛽0 ≈ −0.8473). For the biomarker-positive group, Pr[Yi,j,. = 1|Zi,j = 1] = 0.6 (such
that 𝛽z ≈ 1.2528).

Figure 3 summarises the simulation results for the cases depicted in Figure 1 (middle and right). The results show that
the RAR procedures most affected by type I error inflation are those that are patient benefit oriented (FLGI and TS). Type

FIGURE 3 The type I error rate for different group recruitment rates assumptions under scenario 2 with 𝛽z ≈ 1.2528. CR, complete
randomisation; CFLGI, controlled forward-looking Gittins index rule; FLGI, forward-looking Gittins index rule; RSIHR, minimise failures
given power; TS, Thompson sampling
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I error inflation is high only for the moderately large recruitment rate evolution assumed. As before, the power-oriented
rules (RSIHR and CFLGI) have type I error rates that do not significantly differ from those obtained by a CR design. This
further supports the argument that not all RAR procedures are equally affected by the presence of the same temporal
trend.

3 TESTING PROCEDURES AND RAR DESIGNS ROBUST TO PATIENT DRIFT

In this section, we describe a hypothesis testing procedure for RAR rules in a 2-armed trial context and a RAR design for
multi-armed trials that preserves type I error rates in the presence of an unknown time trend.

3.1 Two-armed trials: randomisation test and the FLGI
The type I error inflation shown in scenarios 1 and 2 for some of the RAR rules is caused by the fact that the test statistics
used assume every possible sequence of treatment allocations (ie, every possible trial realisation) is equally likely. For
instance, this is the case for the adjusted Fisher exact test used for the FLGI in the previous sections. This assumption is
not true in general, as certain allocation sequences will be highly unlikely or even impossible for some RAR procedures.
This is particularly well illustrated in the case of the FLGI rule where it is possible for one of the arms to be effectively
“selected” within the trial, since the probability of assigning a patient to any other arm from that point onwards is zero.

In this section, we show the results of developing and computing a test statistic, introduced in Simon and Simon,4 based
on the distribution of the assignments induced by the FLGI under the null hypothesis. In their paper, the authors show
that using a cut-off value from the distribution of the test statistic generated by the RAR rule under the null hypothesis,
and conditional on the vector of observed outcomes, ensures the control of the type I error rate (see Theorem 1 in Simon
and Simon4). Their result applies to any RAR rule and any time trend in a 2-armed trial; most importantly, its implemen-
tation does not require any knowledge or explicit modelling of the trend. In this paper, we have chosen to implement it
for the FLGI rule, as this is the most recently proposed RAR procedure of the ones considered. Notice that type I error
rate preservation under time trends by means of randomisation-based inference for restricted randomised procedures is
established in Rosenberger and Lachin.28, section 6.10

However, computation of the null distribution can be challenging under realistic trial scenarios, as it requires the com-
plete enumeration of all trial histories and it is infeasible for response-adaptive rules that are deterministic as, eg, the
GI rule is. Therefore, there is a need to find ways of computing such a randomisation test efficiently for the sake of its
practical implementation as well as evaluating its effect on power, which might differ across different rules.

We implement a randomisation test for the FLGI rule that is based on a Monte Carlo approximation of the exact ran-
domisation test. More precisely, our approach does the following: for a given trial history y = (y1, y2, … , yJ), where yj
a vector of the b observed outcomes at stage j, we simulate M trials under the FLGI allocation rule. The FLGI allocation
ratios are updated after each block using the allocation variables ai,j.k randomly generated under the FLGI rule by Monte
Carlo and the observed outcome data up to that point (ie, (y1, … , yj)). For each of these M simulated trials, we compute
the value of the test statistic to assemble an empirical distribution of the test statistic under the null. We can then com-
pare the test statistic observed in the original trial to the empirical distribution, rejecting the null hypothesis at level 𝛼 if it
is more extreme than its 𝛼 percentile for a one-sided test (or than its 𝛼∕2 or 1 − 𝛼∕2 percentile for a 2-sided test). Finally,
we repeat this procedure for another Nr trial history replicates and report the average type I error rate achieved as well as
the averages of the other ethical performance measures considered.

Table 1 shows the results from Nr = 5000 replicates using the approximate randomisation test for the case of scenario 1
displayed in Figure 2 (top-right). For each trial replicate, the approximate randomisation-based test was computed using
M = 500 simulated trials—or resamplings—to construct the empirical distribution function. The values of Nr and M are
the same as those used by the simulations in Simon and Simon.4 From Table 1, we see that the type I error rate is preserved
at its 5% level even when the patient drift is severe. We also report p∗ and ΔENS, as defined in Section 2.

3.2 Multi-armed trials: protecting allocation to control
As shown in the simulation results reported in Section 2, the RAR rules that include a protection of the allocation to the
control treatment (specifically, the CFLGI) preserve the type I error rate. Matching the number of patients allocated to
control to that allocated to the best performing arm has also been found to produce designs that result in power levels
higher than that of a CR design (see, eg, Villar et al19,26). In the next section, we report on results that indicate that this
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TABLE 1 The type I error rate for the approximate
randomisation test from 5000 replicates of a 2-arm trial
of size T = 100 using an FLGI with block size b = 20
(J = 5) and under the case of scenario 1 depicted in
Figure 2 (top-right plot)

𝛼(s.e.) p∗(s.e.) ΔENS D

0.0445 (0.21) 0.501 (0.21) 0.19 0
0.0480 (0.21) 0.506 (0.22) −0.17 0.08
0.0449 (0.20) 0.494 (0.23) 0.02 0.16
0.0445 (0.21) 0.499 (0.24) 0.23 0.24

Abbreviation: FLGI, forward-looking Gittins index rule.

matching feature not only preserves the type I error rates but also ensures high power levels when using the standard
analysis methods as an approximation inference method and under the presence of time trends.

Therefore, if the design of the multi-arm trial incorporates protection of the control allocation, there appears to be no
need to implement a testing procedure that is specifically designed to be robust to type I error inflation. This is another
important and novel finding.

3.3 Protecting against time trends and its effect on power
Preserving the type I error rate is an important requirement for a clinical trial design. However, the learning goal of a
trial also requires that, if a best experimental treatment exists, then the design should also have a high power to detect it.
In this section, we therefore assess the power of the approximate randomisation test (for the FLGI) and the standard test
(for the CFLGI).

We first explore an extension of an instance of scenario 1 in which we assume that there is a treatment effect of 0.4
(where p0 = 0.3 and p1 = 0.7; therefore, 𝛽1 ≈ 1.6946), which is maintained even in the cases where we also assume a
positive time trend in the standard of care. The trial is of size T = 150 with J = 5 stages (so that b = 30). Under this
design, the assumed treatment effect is detected with approximately 80% power by the FLGI rule if there is no time trend
and the adjusted Fisher test is used. If a traditional CR design is used, then the power attained is 99%, but the proportion
of patients allocated to each arm is fixed at 1/2.

Table 2 shows the power to reject the null hypothesis as the overall time trend increases from 0 to 0.24 (ie, for 𝛽 t ∈
{0, … , 0.24} while 𝛽z = 0) for a treatment effect of 0.4 (ie, for 𝛽1 ≈ 1.6946). We denote by (1−𝛽F) the power level attained
by the adjusted Fisher test and by (1 − 𝛽RT) the power level when using the approximate randomisation test.

These results show that the power of the randomisation test is considerably reduced compared to that obtained using
Fisher exact test. However, the patient benefit properties of the FLGI over the CR design are preserved in all the scenarios.
The improvement in patient response of the FLGI design over CR is around 30% regardless of the drift assumption.

Next, we consider the multi-arm case by assessing the effect on power on the RAR rules that protect allocation to the
control arm. To do so under different trend assumptions, we extend a case of scenario 1. We assume then that there is a
treatment arm that has an additional benefit over the other 2 arms of 0.275 (where p0 = p2 = 0.300 and p1 = 0.575), which
is maintained even in the cases we assume a positive time trend in the success rate of the standard of care. Regardless of

TABLE 2 Power for the approximate randomisation test from
5000 replicates of a 2-arm trial of size T = 150 using an FLGI with
block size b = 30 (J = 5) under a case of scenario 1 with a
treatment effect of 0.40

(1 − 𝛽F)(s.e.) (1 − 𝛽RT)(s.e.) p∗(s.e.) ΔENS D

0.8086 (0.39) 0.6057 (0.48) 0.871 (0.09) 22.04 0
0.8972 (0.30) 0.6080 (0.49) 0.881 (0.04) 24.01 0.08
0.9524 (0.21) 0.6021 (0.50) 0.878 (0.05) 23.99 0.16
0.9802 (0.14) 0.5851 (0.48) 0.882 (0.03) 23.73 0.24

Abbreviation: FLGI, forward-looking Gittins index rule.
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FIGURE 4 ENS-power trade-off of CR, CFLGI, and FLGI in 5000 replicates of a 3-arm trial of size T = 100 with block size b = 20 (J = 5)
under a case of scenario 1 with a treatment effect of 0.275 for arm 1. CR, complete randomisation; CFLGI, controlled forward-looking Gittins
index rule; ENS, expected number of patient successes; FLGI, forward-looking Gittins index rule

the trend assumption, a traditional CR design has a mean p∗ value of 1/3 by design and detects a treatment effect of such
a magnitude with approximately 80% power.

Figure 4 shows the ENS-power levels for the designs considered. The CR design performs as predicted in terms of power
and ENS. The power of the CFLGI is unaffected except for a small increase when the trend is very high. This approach
attains an improvement over CR on ENS for every trend magnitude assumption considered (the improvement in ENS
goes from 15.81% to 13.44% in the case of the largest assumed trend).

Figure 4 also includes the results for the FLGI for comparison. Power levels are increased when there is a positive time
trend, as assumed in this case, compared to the case of no time trend. This is due to the temporal upward trend which
for the FLGI rule causes an overestimation of the treatment effect. Notice that the probability in these simulations of the
allocation imbalance observed in the FLGI being in the wrong direction (ie, towards inferior arms) only occurred in less
than 4% of all replicates.

4 ADJUSTING THE MODEL FOR A TIME TREND

In this section, we illustrate the extent to which adjusting for covariates can help to reduce type I error inflation and
affect power. This section also discusses the problems that can be encountered when doing this after having used a RAR
procedure and how to address them.

4.1 Two-armed trials
We first study covariate adjustment under instances of scenario 1. We consider a 2-armed trial of size T = 100 with J = 5
and b = 20. We shall focus on the most extreme case considered in Figure 1 in which the overall time trend was D = 0.24
(or 𝛽 t ≈ 0.2719). The initial success rates of both arms were set to 0.3 (ie, 𝛽0 ≈ −0.8473).

Parts (I) and (III) in Table 3 show the results for the estimation of the models' parameters using standard maximum
likelihood estimation, when the (logistic) model is correctly specified. These results indicate, perhaps unsurprisingly, that
for both designs, the treatment effect is found to be significant in less than 5% of the 5000 trials, which suggests that
by including a correctly modelled time trend, type I error inflation is avoided. However, we note that there is a strong
deflation in the type I error rate of the FLGI design. This occurs because the testing procedure used in this section does
not include an adjustment similar to the one used with Fisher exact test in Sections 2 and 3. When we look at the mean
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TABLE 3 GLM estimated through MLE with and
without Firth correction for T = 100, J = 5, b = 20 in a
case of scenario 1 with D = 0.24
(I) GLM fitting without correction for CR

𝛽0 E
(
𝛽i
)

E (MSE) E (pvalue < 0.05)
𝛽0 −0.8684 0.1992 0.5174
𝛽t 0.2610 0.0243 0.4018
𝛽1 0.0070 0.1900 0.0544

(II) GLM fitting with correction for CR
𝛽0 −0.8370 0.1838 0.5224
𝛽t 0.2509 0.0227 0.4012
𝛽1 0.0067 0.1775 0.0534

(III) GLM fitting without correction for FLGI
𝛽0 −1.4465 8.9957 0.4110
𝛽t 0.1898 0.0307 0.1844
𝛽1 0.0038 18.2440 0.0142

(IV) GLM fitting with correction for FLGI
𝛽0 −0.9307 0.3947 0.4670
𝛽t 0.1825 0.0301 0.1858
𝛽1 0.0048 0.7993 0.0456

Abbreviations: CR, complete randomisation; FLGI,
forward-looking Gittins index rule; GLM, generalised linear
model; MLE, maximum likelihood estimation; MSE, mean
squared error. Results for 5000 trials. True values were assumed
to be 𝛽0 ≈ −0.8473, 𝛽 t ≈ 0.2719 and 𝛽z = 𝛽1 = 0.

estimated coefficient for the time trend, we note that CR only slightly underestimates it, having a 40% power to detect
it as significantly different from 0. The FLGI design results in a larger underestimation of the time trend coefficient.
This underestimation is consistent with that observed in Villar et al27 for reasons clarified in Bowden and Trippa.29 The
power to detect a significant time trend for the FLGI is more than halved compared to CR. Since its estimate is negatively
correlated with that of the time trend coefficient, the baseline effect 𝛽0 is also overestimated in both designs, but more
severely for the FLGI.

Another consequence of the underestimation of the time trend is that complete or quasi-complete separation is more
likely to occur (see Albert and Anderson30). This happens for the FLGI, for example, when all the observations of one of the
arms are failures (and few in number) and this arm is therefore dropped early from the trial (ie, its allocation probability
goes to 0 and never goes above 0 again within the trial).

When this problem occurs in a trial realisation, the maximum likelihood estimates are highly unstable and will not be
well defined. This can be observed in the expected mean squared error value for 𝛽0 in Table 3 (III) for the FLGI. To address
this, we applied Firth's penalised likelihood approach,31 which is a method for dealing with issues of separability, small
sample sizes, and bias of the parameter estimates (using the R package “logistf”). The use of Firth's approach mitigates
the bias due to the separability issue, but it will not correct for the bias caused by the RAR procedure, which is addressed
in Bowden and Trippa29 or Coad and Ivanova.32 To the best of our knowledge, methods that simultaneously adjusts for
both sources of bias do not exist. These results suggest that developing bias-correction methods specially designed for
the FLGI within this context could offer improved estimation results than those obtained here. In Table 3 parts (II) and
(IV), results of deploying the Firth correction are displayed. These results show an improvement in the estimation of
the baseline effect when using the FLGI design: The mean squared error value is significantly reduced, and the average
estimate of 𝛽0 is closer to its true value (though it is still overestimated). For the CR design, there is also an improvement.
Also, note that the type I error deflation has also been almost fully corrected by the Firth's adjustment in the FLGI design.

To assess the effect on statistical power in Table 4, we replicate the estimation procedure for the case studied in the third
row of Table 2 in which we let the treatment effect of arm 1 be positive (ie, 𝛽1 ≈ 1.6946) while the overall drift assumed
corresponds with D = 0.16 (or 𝛽 t ≈ 0.1840 and 𝛽z = 0). The initial success rate in the control arm was equal to 0.3 (ie,
𝛽0 ≈ −0.8473). Because complete (or quasi-complete) separation affected the FLGI rule in all the scenarios considered
here, Table 4 and the following tables only display the results using Firth correction.
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TABLE 4 GLM estimated through MLE with Firth
correction for T = 150, J = 5, b = 30 in a case of
scenario 1 with D = 0.16 and 𝛽1 = 1.6946
(II) GLM fitting with correction for CR

𝛽0 E
(
𝛽i
)

E (MSE) E (pvalue < 0.05)
𝛽0 −0.8951 0.1413 0.7194
𝛽t 0.1985 0.0175 0.3262
𝛽1 1.7831 0.1488 0.9994

(IV) GLM fitting with correction for FLGI
𝛽0 −0.8832 0.3192 0.3364
𝛽t 0.2408 0.0291 0.3062
𝛽1 1.6917 0.4313 0.7394

Abbreviations: CR, complete randomisation; FLGI,
forward-looking Gittins index rule; GLM, generalised linear
model; MLE, maximum likelihood estimation; MSE, mean
squared error. Results for 5000 trials. True values were assumed
to be 𝛽0 ≈ −0.8473, 𝛽 t ≈ 0.1840, 𝛽1 = 1.6946 and 𝛽z = 0.

As expected, the power of a CR design displayed in Table 4 coincides with the value reported in Section 3.3, which using
both procedures (ie, adjusting for covariates or hypothesis testing) yields an average value of 99%. The power value of the
FLGI design when fitting the generalised linear model is lower than the 80% value reported in Section 3.3 for the case of
no time trend (ie, ≈74%). The difference in power levels is explained by the adjustment in Fisher exact test done in that
section, which raises power by correcting for the deflation of the type I error rate of the standard Fisher test.

Our results suggest that correctly modelling a time trend and adjusting for separation via Firth correction can safeguard
the validity of trial analyses using RAR, that is, by maintaining correct type I error rates and delivering a level of statistical
power similar to that obtainable when no trend is present.

4.2 Multi-armed trials
In this section, we consider the case of multi-armed trials and an instance of scenario 2 or patient drift. Also, we shall
remove the assumption that the patient covariate or biomarker is unobservable, and allow for the availability of this
information before analysing and estimating the corresponding model in (1).

First, we study the case of scenario 2 in which the proportion of biomarker-positive patients evolves as qj = 0.5+( j−1)
× 0.05 for j = 1, … , 10 (see Figure 1, middle). We simulated 5000 three-armed trials of size T = 200 with J = 10 and
b = 20. The differential effect of being biomarker positive was assumed to be of 0.3, which corresponds with 𝛽z ≈ 1.2528.
The initial success rates of all the arms for the biomarker negatives were equal to 0.3 (ie, 𝛽0 ≈ −0.8473).

Table 5 displays the results of the CR, FLGI, and CFLGI designs under the null hypothesis. These results suggest that
all designs attain the same power to detect the biomarker effect (as the adaptation is not done using this information, all
designs have similar numbers of patients with a positive and a negative biomarker status). More importantly, incorporat-
ing patient covariate data into the explicative model dramatically reduces type I error inflation for the FLGI. Although
the observed rates are close to 6% and, thus, above the 5% target, they are well below the levels observed without this
adjustment (˜17%).

In Table 6, we examine the effect on power by replicating the previously described scenario but allowing for the exper-
imental arm 1 to have an effect for all patients of 0.2 (ie, 𝛽1 = 0.8473). These results show how the power to detect the
treatment effect in arm 1 with an FLGI design is almost halved compared to that attained by a traditional CR design. Yet
the CFLGI improves on the power level of the CR design by approximately 15%. Also note that the type I error rate for
arm 2 appears to be deflated for the FLGI and CFLGI designs.

These results suggest that fitting a model that includes a time trend after having used a RAR rule can protect against
the type I error inflation caused by patient drift as long as the patient covariate information is observable and available to
adjust for. However, the power level attained by covariate adjustment is considerably less than that attained by a design
that protects the allocation to the control arm.

Furthermore, these results fail to illustrate the learning-earning trade-off that characterises the choice between a CR
and a RAR procedure and the reasons why the FLGI could be desirable to use from a patient benefit perspective (despite
the power loss and the type I error inflation potential). The traditional CR design, which maximises learning about all
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TABLE 5 GLM estimated through MLE with Firth
correction for T = 200, J = 10, b = 20, K = 3 in a case of
scenario 2 in which qj = [0.5 ∶ 0.05 ∶ 0.95]

(II) GLM fitting with correction for CR

𝛽0 E
(
𝛽i
)

E (MSE) E (pvalue < 0.05)
𝛽0 −0.8527 0.1307 0.6778
𝛽z 1.2597 0.1142 0.9758
𝛽1 −0.0084 0.1305 0.0458
𝛽2 −0.0029 0.1304 0.0486

(IV) GLM fitting with correction for FLGI
𝛽0 −0.8771 0.1724 0.6740
𝛽z 1.2471 0.1169 0.9702
𝛽1 0.0114 0.2228 0.0598
𝛽2 −0.0097 0.2246 0.0620

(VI) GLM fitting with correction for CFLGI
𝛽0 −0.8455 0.1338 0.6632
𝛽z 1.2505 0.1200 0.9686
𝛽1 −0.0226 0.1471 0.0558
𝛽2 −0.0196 0.1477 0.0492

Abbreviations: CR, complete randomisation; CFLGI, controlled
forward-looking Gittins index rule; FLGI, forward-looking Git-
tins index rule; GLM, generalised linear model; MLE, maximum
likelihood estimation; MSE, mean squared error. Results for
5000 trials. True values were assumed to be 𝛽0 ≈ −0.8473,
𝛽z ≈ 1.2528 and 𝛽 t = 𝛽1 = 𝛽2 = 0.

TABLE 6 GLM estimated through MLE with Firth
correction for T = 200, J = 10, b = 20, K = 3 in a case of
scenario 2 in which qj = [0.5 ∶ 0.05 ∶ 0.95]

(II) GLM fitting with correction for CR

𝛽0 E
(
𝛽i
)

E (MSE) E (pvalue < 0.05)
𝛽0 −0.8816 0.1324 0.7078
𝛽z 1.3006 0.1239 0.9726
𝛽1 0.9355 0.1549 0.6954
𝛽2 −0.0032 0.1356 0.0516

(IV) GLM fitting with correction for FLGI
𝛽0 −1.1635 0.5391 0.3994
𝛽z 1.3492 0.1300 0.9762
𝛽1 1.1300 0.5845 0.3672
𝛽2 0.0041 0.7740 0.0246

(VI) GLM fitting with correction for CFLGI
𝛽0 −0.8861 0.1378 0.6966
𝛽z 1.3127 0.1243 0.9718
𝛽1 0.8862 0.2077 0.7718
𝛽2 −0.2487 0.5027 0.0288

Abbreviations: CR, complete randomisation; CFLGI, controlled
forward-looking Gittins index rule; FLGI, forward-looking Git-
tins index rule; GLM, generalised linear model; MLE, maximum
likelihood estimation; MSE, mean squared error. Results for
5000 trials. True values were assumed to be 𝛽0 ≈ −0.8473,
𝛽z ≈ 1.2528 and 𝛽1 = 0.8473, 𝛽 t = 𝛽2 = 0.
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arms, yields an average number of successfully treated patients (or ENS) of 116.83 when p∗ remains fixed by design at
1/3. The FLGI design, on the other hand, is almost optimal from a patient benefit perspective, achieving an ENS value
of 135.21, 15.73% higher than with CR, and it achieves this by skewing p∗ to 0.7783. Finally, the CFLGI is a compromise
between the 2 opposing goals that improves on the power levels attained by a CR design and also on its corresponding
ENS value (though is below the value that could be attained with the unconstrained FLGI rule) by attaining an ENS value
of 126.32, 8.12% more than with a CR design, and a p∗ of 0.5618.

5 DISCUSSION

Over the past 65 years, RCTs have become the gold standard approach for evaluating treatments in human populations.
Their inherent ability to protect against sources of bias is undoubtedly one of their most attractive features and is also
the reason that many are unwilling to recommend the use of RAR rules, feeling that this would be a “step in the wrong
direction.”33 Recently, Thall et al3 have suggested that a severe type I error inflation could occur if RAR is used under the
presence of an unaccounted for time trend. The temporal heterogeneity of the study population is a reasonable concern
for trials in rare diseases as they tend to last several years. However, there remains a strong interest in the medical com-
munity to use RAR procedures in this very setting.34 The considerable patient benefit advantages offered by non-myopic
RAR procedures can increase trial acceptability amongst both patients and physicians and enhance patient enrollment.
Additionally, in the multi-armed case, the modified non-myopic procedures offer also increased statistical efficiency when
compared with a traditional RCT.

We have assessed the level of type I error inflation of several RAR procedures by creating scenarios that are likely to
be a concern in modern clinical trials that have a long duration. Our results suggest that the magnitude of the temporal
trend necessary to seriously inflate the type I error of the patient benefit-oriented RAR rules needs to be of an important
magnitude (ie, change larger than a 25% in its outcome probability) to be a source of concern. This supports the conclusion
of Karrison et al5 in a group sequential design context. However, we also conclude that certain RAR rules are effectively
immune to time trends, specifically those that are power oriented such as the CFLGI rule19 or the RSIHR rule.21 This
suggests that when criticising the use of RAR in real trials, one must be careful not to include all RAR rules in the same
class, as they have markedly different performances in the same situation.

In addition, we have recommended 2 different procedures that can be used in an RAR design to protect for type I error
inflation. For 2-armed trials, the use of a randomisation test (instead of traditional tests) preserves type I error under
any type of unknown temporal trend. The use of randomisation as a basis for inference provides robust assumption-free
testing procedures, which depend explicitly on the randomisation procedure used, be it a RAR procedure or not. The cost
of this robustness may be a computational burden and a reduction in statistical power (although most patients are still
allocated to a superior arm when it exists if using the FLGI procedures). This particular feature highlights the need to
develop computationally feasible testing procedures that are specifically tailored to the behaviour of a given RAR rule.
For example, as pointed out by Villar et al,27 bandit-based rules such as the FLGI are extremely successful at identifying
the truly best treatment but, as a direct result, often cannot subsequently declare its effect “significant” using standard
testing methods.

For multi-armed clinical trials, protecting allocation to the control group (the recommended procedure) preserves the
type I error while yielding a power increase with respect to a traditional CR design. However, despite rules such as the
CFLGI being more robust to a time trend effect, they also offer a reduced patient benefit in the case that there is a superior
treatment, when compared to the patient benefit-oriented RAR rules such as the FLGI.

Finally, we also assessed adjustment for a time trend both as an alternative protection procedure against type I error
inflation and to highlight estimation problems that can be encountered when an RAR rule is implemented. Our con-
clusion is that adjustment can alleviate the type I error inflation of RAR rules (if the trend is correctly specified and the
associated covariates are measured and available). However, for the multi-armed case, this strategy attains a lower power
than simply protecting the allocation to the control arm. Furthermore, the technical problem of separation also compli-
cates estimation after the patient benefit-oriented RAR rules have been implemented and severely impact the power to
detect a trend compared to an CR design.

Large unobserved time trends can result in an important type I error inflation, even if using restricted randomisation
algorithms that seek to balance the number of patients in each treatment group.28, Section 6.10; 35 Therefore, an important
recommendation of this work is that in the design stage of a clinical trial, when a RAR procedure is being considered, a
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similar detailed evaluation of type I error inflation and bias as done in this paper is performed to choose a suitable RAR
procedure for the trial at hand.

Further research is also needed to assess the potential size of time trends through careful reanalysis of previous trial
data (as Karrison et al5 do with data from Kalish and Begg36). Our results suggest that even in the case of a large time
trend being a realistic concern, there are still some RAR rules that, both for the 2-armed and the multi-armed case, remain
largely unaffected in all the cases we have considered. Of course, these rules offer increased patient benefit properties
when compared to a traditional CR design but reduced when compared to the patient benefit-oriented RAR rules.

Another area of future work is to explore the combination of randomisation tests with stopping rules in a group sequen-
tial context, specifically for the FLGI. Additionally, techniques for the efficient computation of approximate randomisation
tests for the FLGI could be studied, similar to those explored in Plamadeala and Rosenberger.37
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