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Integrative systems and functional analyses 
reveal a role of dopaminergic signaling 
in myelin pathogenesis
Sujun Ding1,2†, Yun Gu3†, Yunyun Cai4†, Meijuan Cai5, Tuo Yang6, Shuangxi Bao3, Weixing Shen7, Xuejun Ni2*, 
Gang Chen1,3,8* and Lingyan Xing3* 

Abstract 

Background:  Myelin sheaths surrounding axons are critical for electrical signal transmission in the central nervous 
system (CNS). Diseases with myelin defects such as multiple sclerosis (MS) are devastating neurological conditions for 
which few effective treatments are available. Dysfunction of the dopaminergic system has been observed in multiple 
neurological disorders. Its role in myelin pathogenesis, however, is unclear.

Methods:  This work used a combination of literature curation, bioinformatics, pharmacological and genetic manipu-
lation, as well as confocal imaging techniques. Literature search was used to establish a complete set of genes which 
is associated with MS in humans. Bioinformatics analyses include pathway enrichment and crosstalk analyses with 
human genetic association studies as well as gene set enrichment and causal relationship analyses with transcrip-
tome data. Pharmacological and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-
associated protein 9) genetic manipulation were applied to inhibit the dopaminergic signaling in zebrafish. Imaging 
techniques were used to visualize myelin formation in vivo.

Results:  Systematic analysis of human genetic association studies revealed that the dopaminergic synapse signaling 
pathway is enriched in candidate gene sets. Transcriptome analysis confirmed that expression of multiple dopaminer-
gic gene sets was significantly altered in patients with MS. Pathway crosstalk analysis and gene set causal relationship 
analysis reveal that the dopaminergic synapse signaling pathway interacts with or is associated with other critical 
pathways involved in MS. We also found that disruption of the dopaminergic system leads to myelin deficiency in 
zebrafish.

Conclusions:  Dopaminergic signaling may be involved in myelin pathogenesis. This study may offer a novel molecu-
lar mechanism of demyelination in the nervous system.
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Background
Myelin sheaths surrounding axons ensure rapid action 
potential conduction. Myelin pathogenesis derived from 
developmental deficits or demyelination is deleterious 
in the central nervous system (CNS), leading to irrevers-
ible and progressive neurological decline. Myelin deficits 
have been found in multiple neurological disorders, such 
as Parkinson’s disease (PD), schizophrenia, and multiple 
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sclerosis (MS) [1, 2], many of which have disturbed dopa-
minergic system. However, the relationships between 
dopaminergic signaling and myelin defects are not well 
understood.

PD and schizophrenia are neurological disorders at 
least partially attributed to disrupted dopaminergic sign-
aling [3, 4]. In patients with PD, abnormal CNS connec-
tivity was observed in several brain regions [5, 6]. White 
matter defects indicate that myelin abnormalities under-
lie some aspects of PD. The potential roles of dopamin-
ergic signaling in white matter and myelin integrity were 
further elucidated in patients with schizophrenia. The 
antipsychotic drug clozapine has been shown to improve 
white matter integrity in schizophrenia by way of block-
ing serotonin and dopamine receptors [7]; Another imag-
ing study specifically links dopamine D2/D3 receptor 
density to myelin indices in normal and schizophrenic 
white matter [8]. These indicate a potential role of dopa-
minergic signaling in myelin deficits.

MS is a neurological disorder characterized by demy-
elination and axon loss. Interestingly, concomitance of 
MS and PD as well as MS and schizophrenia has been 
observed [9, 10]. Altered dopamine receptor levels were 
found in the blood of patients with MS [11, 12]. Moreo-
ver, modulation of dopamine receptors can promote or 
prevent experimental autoimmune encephalomyelitis 
(EAE) in mouse, a rodent model for human MS [13, 14]. 
Based on these, we hypothesize that dopaminergic sign-
aling may be important for demyelination in MS.

In this study, we described a systems analysis which 
integrate  multi-source-based data from human genetic 
association studies and transcriptome data in patients 
with MS to investigate the role of dopaminergic signal-
ing in MS. This unbiased approach combined with in vivo 
functional analysis will provide us with insight into a role 
of dopaminergic signaling in MS.

Materials and methods
Identification of MS‑related genes
MS-related genes were obtained by a systematic analy-
sis of the human genetic association studies deposited in 
Pubmed (https​://www.ncbi.nlm.nih.gov/pubme​d) [15]. 
Similar to references [16–18], we queried for publications 
about MS with the terms (Multiple sclerosis [MeSH]) 
and (polymorphism [MeSH] or genotype [MeSH] or 
alleles [MeSH]) not (neoplasms [MeSH]). 2428 publica-
tions in total were found by June 8th, 2018. We selected 
only those genes reported to be associated with MS by 
manually reviewing abstracts and the full reports if the 
abstract was not clear. When multiple genes reported to 
act together were associated with MS, all of these genes 
were included. In addition, genes with a genome-wide 

significance level from the genome-wide association 
study (GWAS) were also included.

Enriched pathway and aggregated category analysis
Enriched Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways of MS gene sets were generated based 
on the latest KEGG database 90.1 (https​://www.genom​
e.jp/kegg/pathw​ay.html) [19]. Hypergeometric distribu-
tion was used to determine enrichment of the specified 
gene sets in pathways. P values were corrected with the 
Benjamini-Hochberg procedure. Only those pathways 
with >=10 target genes were examined further.

Gene interaction analysis
Gene interactions between genes in the dopaminergic 
synapse pathway (DS) and other literature-curated (oLC) 
genes in MS were analyzed with datasets from Pathway 
Commons (http://www.pathw​aycom​mons.org/) [20, 21] 
and high-confidence human interactome [22]. In Path-
way Commons (http://www.pathw​aycom​mons.org/) [21], 
only four common types of interactions were considered: 
controls-state-change-of, controls-expression-of, con-
trols-transport-of, and controls-phosphorylation-of. In 
Pathway Commons (http://www.pathw​aycom​mons.org/) 
[21], directed interactions are provided; that is, interac-
tions between genes of DS and oLC were analyzed with 
DS either as upstream or downstream genes. In high-
confidence human interactome, undirected interactions 
are provided.

Transcriptome analysis
To study the transcriptional profile of brain lesions in 
patients with multiple sclerosis, we downloaded micro-
array data in the GEO database (https​://www.ncbi.nlm.
nih.gov/geo/) [23] from GSE26927 for grey matter lesions 
and from GSE38010 for white matter lesions. GSE26927 
is the microarray data on the Illumina human Ref-8 v2.0 
expression beadchip [24, 25]. Data was normalized by 
Quantile algorithm. 15373 probes were detected after 
filtering low expression with a detection p value <0.01. 
GSE38010 is data from the Affymetrix Human Genome 
U133 Plus 2.0 Array [26]. Data was normalized by the 
Rosetta error models. Only probes with log2 transformed 
normalized signal >=6 in at least one sample were con-
sidered, of which 31275 probes were detected.

Gene set enrichment analysis
Differentially expressed gene sets in GSE26927 and 
GSE38010 were identified with the ROAST test (ROAST: 
rotation gene set tests for complex microarray experi-
ments) [27]. We used the ‘mixed’ test, in which the 
directionality of changes in expression was not consid-
ered. Multiple gene sets were selected based on their 
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importance in regulation of dopaminergic signaling 
from Gene Ontology: the dopamine catabolic process 
(GO:0042420), dopamine receptor activity (GO:0004952), 
dopamine receptor binding (GO:0050780), dopa-
mine secretion (GO:0014046), dopamine transport 
(GO:0015872), dopamine uptake (GO:0090494), L-dopa 
decarboxylase activity (GO:0036468), regulation of 
the dopamine biosynthetic process (GO:1903179), and 
regulation of the dopamine receptor signaling pathway 
(GO:0060159).

Gene set causal relationship analysis
To calculate the relationship between two gene sets, 
“Super Gene Set” causal relationship analysis was per-
formed as previously described [28]. Gene expression 
values were discretized as follows: the highest 1/3 abso-
lute gene expression was converted to +1, the lowest 1/3 
absolute expression values were represented as –1, while 
the other 1/3 in between were assigned to 0. Gene set-
gene set correlation was determined by hypergeometric 
distribution, in which p values <0.05 were considered sig-
nificantly different.

Dopamine enzyme linked immunosorbent assay (ELISA) 
on zebrafish larvae
Briefly, 25 larvae were collected for each sample, and both 
control and experimental groups were performed in trip-
licate. Tissues were minced, 200 ul PBS was added, and 
then they were sonicated by an ultrasonic cell disrupter. 
The homogenates were then centrifuged and the super-
natant was collected. Dopamine levels were determined 
with the Dopamine (DA) ELISA kit (Biovision) following 
the manufacturer’s instructions. Dopamine values were 
normalized to larvae weight, and were expressed as ng 
dopamine/larvae weight.

Otpa/otpb CRISPR/Cas9
One-cell stage  embryos  from  Tg(mbp:egfp-caax) [29] 
outcrossed to wild-type were injected with 300 pg of Ca
s9  mRNA  and  100  pg  of  otpa and otpb sgRNA. sgRNA 
was targeted to the following sequences in otpa and otpb: 
GGC​GGC​CGC​AGC​AGC​CAT​  and  GGC​CGC​GGC​
TGG​GAT​GCC​GG,  respectively. pCS2 with full length 
Cas9 was linearized by  XbaI [30]. Capped Cas9 mRNA 
was synthesized using the mMESSAGE mMACHINE 
mRNA transcription synthesis kit  (Ambion)  and  puri-
fied  with the Megaclear kit (Thermo Fisher Scien-
tific). The pMD 19-T vector with a gRNA scaffold was 
used  for  sgRNA  synthesis. Double-stranded DNA for 
specific gRNA synthesis was PCR amplified  as  fol-
lows:  otpa sgRNA forward: GGG​GCG​GCC​GCA​GCA​
GCC​AT, otpb  sgRNA  forward: GGC​CGC​GGC​TGG​
GAT​GCC​ GG, and universal reverse: AAA​AAA​AGC​

ACC​GAC​TCG​GTG​CCA​C. Amplicons were puri-
fied  with  the DNA  clean &  concentrator  kit (Zymo 
Research). After purification, sgRNA was synthesized 
using the MegashortscriptTM  kit  (Thermo  Fisher  Sci-
entific) and  purified  with  the Megaclear kit 
(Thermo Fisher Scientific).

Otpa/otpb mutagenesis verification
Genomic DNA from 24 hpf embryos was extracted and 
tested as previously described [31]. Briefly, embryos were 
lysed with 50 mm  NaOH at 95°C for 25 min to obtain 
PCR templates. DNA surrounding the otpa and otpb 
sgRNA regions was amplified and sequenced. To confirm 
the frequency of mutagenesis, the targeted DNA regions 
in F0 founders were cloned into pCR4-TOPO TA (Ther-
moFisher). Plasmids were isolated from individual colo-
nies and Sanger sequencing was performed (Genewiz, 
Inc).

Microscopy and image analysis
Images were acquired and analyzed as previously 
described [32]. Live Tg(mbp:egfp) embryos were immobi-
lized in 0.8% low-melt agarose and mounted on a petri 
dish. A confocal z-stack was taken in the regions of inter-
est using exactly the same confocal settings (20×water-
immersion objective, same PMT and imaging speeds). 
Confocal stacks of maximum intensity were projected 
in ImageJ. For quantification of myelination, ten slices 
of z-stacked images were used with the same lower and 
upper thresholds set to define parts with/without myelin 
formation. The myelin in the spinal cords was measured 
along the image window.

Results
Systematic analysis of genetic association studies 
in multiple sclerosis (MS)
In order to establish a complete list of genes associated 
with MS, we conducted a systematic analysis of human 
genetic association studies, examining 2428 papers pub-
lished through June 2018. In 1254 publications, 469 genes 
had a significant association with MS (Additional file 1). 
Of these genes, 164 genes were associated with MS in 
more than one study (Figure 1a). Among them were the 
HLA-DRB1 gene and the T-cell receptor gene (TCR), 
which are important in the pathogenesis of MS [33–35]. 
The diversity of MS-related genes indicates the complex-
ity and heterogenity of this disease.

Functional enrichment analysis
To better understand the molecular mechanisms in MS, 
we performed functional enrichment analysis of MS-
related genes. We found 56 enriched KEGG pathways in 
the candidate genes (Additional file  2). These pathways 
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included but were not limited to those related to the 
immune response (e.g., natural killer cell mediated cyto-
toxicity, Toll-like receptor signaling pathway, Th17 cell 
differentiation), signaling molecules and interaction (e.g., 
cytokine-cytokine receptor interaction, cell adhesion 
molecules), and the nervous system (e.g., the neurotro-
phin signaling pathway and the dopaminergic synapse 
signaling pathway) (Figure 1b, c; Additional file 2). These 
results indicated complicated interactions among multi-
ple systems in MS, which were consistent with what has 
been found previously [36].

Great efforts have been made to study the role of the 
immune response in MS, which was considered to be 
an inflammatory-mediated disease. However, we are 

particularly interested in the signaling pathways in the 
nervous system, because new evidence suggests that 
MS is primarily a neurodegenerative disease [37, 38]. As 
expected, in the nervous system category, the neurotro-
phin signaling pathway, disruption of which is known to 
account for neural degeneration [39, 40], was enriched 
(Figure  1c). The glutamatergic synapse pathway is also 
enriched, which is consistent with the findings that glu-
tamate is elevated in MS and that its receptor antagonist 
reduced secondary damage in EAE [37, 41–43]. Finally, 
the dopaminergic synapse signaling pathway, known 
for its role in multiple neurological disorders [3, 4], is 
enriched (Figure 1c), leading us to hypothesize that dopa-
minergic signaling may be important in MS.

Fig. 1  Functional enrichment analysis of literature-curated (LC) genes in multiple sclerosis (MS). a Number of studies about genes associated with 
multiple sclerosis (MS) in literature-curated (LC) genes. b Main categories aggregated by the enriched KEGG pathway. c Pathways of the immune 
system and nervous system are enriched in the LC gene set
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Validation of dopaminergic gene sets in MS
To validate the biological significance of the dopamin-
ergic synapse (DS) gene set, we first evaluated the inter-
actions between the protein products of DS genes and 
other literature-cured (oLC) MS genes with datasets 
either from Pathway Commons (http://www.pathw​aycom​
mons.org/) [21] or high-confidence human interactome. 

Datasets from high-confidence human interactome offers 
undirected protein-protein interactions, while datasets 
from Pathway Commons (http://www.pathw​aycom​mons.
org/) [21] provides directed protein-protein interactions 

Fig. 2  Networks between DS and other literature-curated (oLC) 
genes in MS. a, b in the high-confidence human interactome 
database. a Number of protein–protein interactions (PPIs) between 
DS and oLS (Line) and 1000 randomized networks, revealing high 
levels of interaction between DS and oLS. b Size of the largest 
connected component (LCC) between DS and oLS (Line) and 1000 
randomized networks, revealing a larger subnetwork between 
DS and oLS. c, d In the Pathway Commons database. Number of 
protein–protein interactions (PPIs) between DS and oLS (Line) and 
1000 randomized networks with the DS gene set as upstream (c) or 
downstream (d). e Gene interaction between DS and oLC genes in 
MS. Yellow nodes-DS genes; Grey nodes-oLC genes. Edges represent 
their interaction

Fig. 3  Transcriptome analysis of the DS gene set. a Expression of 
genes in the DS pathway in the transcription datasets GSE26927 
and GSE38010. Red corresponds to upregulated expression; blue 
corresponds to downregulated expression. b Expression changes 
of multiple dopaminergic gene sets. Red represents upregulation; 
blue represents downregulation. Numbers 1–3 and 6–8 indicate p 
values < 0.05. c Pathway associations between DS and oLC in two 
transcriptome databases

http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
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[20][22]. Protein-protein interactions between DS and 
oLC were significantly enriched relative to random 
expectations when analyzed with the datasets from high-
confidence human interactome (Figure  2a; Additional 
file  3). Interestingly, when we tested the protein inter-
actions between DS and oLC with the directed datasets 
from Pathway Commons (http://www.pathw​aycom​mons.
org/) [21], significant enrichment was observed when DS 
genes were used as upstream but not downstream bait 
(Figure  2c, d; Additional file  4), indicating a potentially 
causative role of dopamine in MS pathogenesis. Next, 
we calculated the size of the largest connected compo-
nent (LCC), which represents the density of interconnec-
tions, and found that the DS forms a significantly larger 
network with oLC genes relative to random expectations 
(Figure  2b). High levels of interaction between DS and 
oLC genes (Figure 2e) indicate an important role of the 
DS pathway in MS.

To identify pathways directly interacting with the DS 
pathway, PathNet (the Pathways based on Network infor-
mation) was applied to calculate their inter- and intrapa-
thway relationships [44]. We found that the dopaminergic 
synapse pathway has significant interaction with multiple 
pathways enriched in multiple sclerosis, including the 
complement and coagulation cascade, Rap1 signaling, 
and neuroactive ligand receptor interaction (Additional 
file 5).

Transcriptome analysis of dopaminergic gene sets
Though MS was traditionally considered to be a white 
matter disease, some clinical symptoms are attributed 
to grey matter lesions [45, 46]. We hypothesized that if 
dopaminergic signaling was critical in MS, the expres-
sion of related gene sets would be altered in patients 
with MS. To test that, we retrieved microarray data-
sets GSE26927 for grey matter and GSE38010 for white 
matter in MS patients [24–26]. Expression changes of 
multiple genes in dopamine pathways were observed in 
either white matter or grey matter lesions (Fig.  3a). To 
comprehensively understand the changes of dopaminer-
gic signaling, we used the ROAST test [27] to measure 
several gene sets critical for dopaminergic signaling: the 
dopamine catabolic process (GO:0042420), dopamine 
receptor activity (GO:0004952), dopamine receptor bind-
ing (GO:0050780), dopamine secretion (GO:0014046), 
dopamine transport (GO:0015872), dopamine 
uptake (GO:0090494), L-dopa decarboxylase activity 
(GO:0036468), regulation of the dopamine biosynthetic 
process (GO:1903179), regulation of the dopamine 
receptor signaling pathway (GO:0060159), as well as the 
dopaminergic synapse pathway. Interestingly, the expres-
sion levels of most dopamine gene sets show discrepan-
cies between white matter and grey matter lesions. The 

dopamine uptake gene set was upregulated in grey mat-
ter (p=0.015), but did not show differential expression in 
white matter. Expression of the dopamine catabolic pro-
cess and dopamine receptor binding were significantly 
downregulated (p=0.044, 0.001, respectively) and dopa-
mine secretion and regulation of the dopamine recep-
tor were upregulated (p=0.001, 0.006, respectively) in 
white matter, but were not altered in grey matter. The 
expression changes of the biosynthetic process gene set 
were opposite in grey and white matter (p=0.004, 0.005, 
respectively). The dopaminergic synapse gene set was the 
only one significantly upregulated in both grey and white 
matter (p=0.01, 0.037, respectively) (Fig. 3b).

Next, we tested the association between the DS path-
way and other pathways enriched in MS based on the 
expression data. This reveals a regulatory relationship 
regardless of direct or indirect interactions between 
pathways [28]. We found quite a few pathways cor-
related with the DS pathway in either grey or white 
matter (Fig. 3c, Additional file 6). The neuroactive ligand-
receptor, Rap1 signaling pathway, and complement and 
coagulation cascades were all negatively associated with 
the DS pathway in these two datasets. Of note, in white 
matter grey lesions, more pathways were associated with 
the DS pathway in MS, including the cyclic adenosine 
monophosphate (cAMP) signaling pathway, cell adhe-
sion molecules, Fc gamma R-mediated phagocytosis, and 
Th17 cell differentiation. These indicate that MS pathol-
ogy may exhibit distinct mechanisms in grey and white 
matters (Fig. 3c).

In vivo functional analysis
Demyelination can be partially recapitulated by defects 
in myelination during development. Multiple studies 
have used developmental models to study the mecha-
nisms of the pathology of myelination [47, 48].  To con-
firm a role of dopaminergic signaling in myelination, we 
used the zebrafish transgenic line Tg(mbp:egfp) to label 
myelin. In this line, enhanced green fluorescent protein 
(eGFP) is expressed under the control of the mbp (mye-
lin basic protein) promoter, which has been widely used 
for assessing myelin development and dysmyelination 
[29, 48–50]. In Tg(mbp:egfp), myelin can be specifically 
expressed along the spinal cord, where dopaminergic 
innervation is observable [51].

To deplete dopaminergic signaling, we used the spe-
cific toxin 6-hydroxydopamine (6-OHDA) to damage 
dopaminergic neurons [51, 52]. This treatment led to a 
reduction of dopaminergic neurons labeled by tyrosine 
hydroxylase (Additional file  7). With 6-OHDA treat-
ment from 48 hpf (hours post fertilization) to 72 hpf, 39% 
embryos exhibited obvious myelin deficits. Compared to 

http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
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controls, embryos with drug treatment exhibited a lower 
percentage of myelin formation (Figure 4a–c).

To confirm the specificity of the phenotype in embryos 
treated with 6-OHDA, we generated orthopedia (otp or 
otpa/otpb) crispants (F0 mosaic mutant animal) in which 
both otpa and otpb genes are disrupted (Figure  5a, b). 
Otp is a trancription factor important for dopaminergic 
neuron specification [53, 54]. As expected, dopamine 
levels were decreased in otp crispants as measured by 
ELISA (Figure 5i). Individual polymerase chain reaction 
(PCR) amplicons of otpa and otpb genes from injected 
embryos were cloned to confirm the extent of mutagen-
esis. Sequencing revealed that 14/14 otpa and 7/7 otpb 
PCR products exhibited mutations. Most amplicons were 
out of frame, which would lead to a stop and premature 
protein truncation (Figure 5c, d). Compared to controls, 
the otp crispants had a lower percentage of myelination 
(Figure  5e–g) and thinner myelin tracts (Figure  5e, f, 
h). Therefore, loss of dopaminergic signaling, either by 
6-OHDA or CRISPR gene disruption, leads to myelin 
deficiency.

Discussion
In this study, we used curated genetic-associated and 
transcriptome data to show that dopamine-related path-
ways are associated with MS. To our knowledge, this is 
the largest systematic analysis of MS-associated genes, 
which bridges the gap between dopaminergic signaling 

and demyelination. In addition, we confirmed the role of 
dopamine in myelination in vivo using zebrafish. Our in 
vivo analysis demonstrates that dopaminergic signaling is 
not just reflective of changes in myelination, but rather 
may play a causative role in MS.

Though it has been proposed that dopamine is asso-
ciated with some symptoms in MS, for example, fatigue 
and defective immune response [55, 56], few studies, if 
any, have characterized the role of dopamine in myelin 
deficits in MS patients. In animal models, the dopamine 
receptor 2 (DAR2) responds during lithium restoration 
of myelin loss under stress [57]. Similarly, experimentally 
induced demyelination of the corpus callosum in mice 
can be ameliorated by dopamine D2 receptor antago-
nists [58]. The potential role of dopamine in myelin defi-
cits observed in schizophrenia has attracted researchers’ 
attention. Myelin integrity was disturbed in multiple 
brain regions in patients with schizophrenia, as shown by 
diffusion tensor imaging (DTI). The antipsychotic clozap-
ine, which at least partly binds to the dopamine receptor 
D2,can reverse this deficit in schizophrenia [7]. Interest-
ingly, a strong inverse relationship between the dopa-
mine D2/D3 receptor density and white matter integrity 
is found in health subjects, but this relationship appears 
to be disrupted in schizophrenia [8]. In healthy subjects, 
carriers of the CC genotype of the rs6277 polymorphism 
in the dopamine D2 receptor gene have elevated striatal 
dopamine turnover and higher myelin integrity in terms 

Fig. 4  6-OHDA disrupts myelin. a, b Tg (mbp:egfp) at 72hpf by confocal microscopy imaging, maximum intensity z-stack projections. a Control. b 
Embryos treated with 6-OHDA. c Percentage of myelin formation along the tract (unpaired t test, p = 0.0037). N = 32 for the control, and N = 28 for 
the group treated with 6-OHDA

(See figure on next page.)
Fig. 5  otp crispants have disrupted myelin. a, b An example of Sanger sequencing shows that otpa and otpb genes were disrupted after 
injection with CRISPR/Cas9. The sgRNA sequence is underlined in red. c Percentage of in-frame and out-of-frame mutations from otpa and otpb 
PCR amplicons (all PCR products have mutations). d Representative sequences from individually cloned PCR products. The sgRNA sequence is 
underlined in red. Insertions and deletions are shown as red letters and dashes, respectively. e, f Tg (mbp:egfp) at 72hpf by confocal microscopy 
imaging. e control. f otp crispant. g h Quantification of myelin deficits. N = 12 for the control group, and N = 15 for the otp crispant group. g 
Percentage of myelin formation along the tract (unpaired t test, p = 0.0001). Two-headed arrows (e, f) show the intact myelin. The lengths of intact 
myelin are added and the percentage is calculated by dividing by the length of the entire image window. The same threshold is set in each z 
projection for each embryo, and the length is calculated for visible segments. h Thickness of myelin sheaths (unpaired t test, p = 0.0045). The red 
box (e, f) is drawn around the visible myelin and the height of the box was used to calculate the thickness of the myelin sheaths. i ELISA shows that 
the dopamine levels (ng dopamine/larvae weight) are decreased in otp crispants (unpaired t test, p = 0.0079)
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of fractional anisotropy [59]. The dopamine receptor ago-
nist bromocriptine changes neural activity during atten-
tional switching, also indicating a link between dopamine 

and white matter integrity [60]. The broad associa-
tion between dopaminergic signaling and myelin in 
healthy subjects and patients with different neurological 
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disorders suggests that the dopaminergic system could be 
a potential target for ameliorating myelination defects as 
well as improving cognition.

Demyelination, including that seen in MS, has defi-
cits in the immune response and in the nervous system. 
However, its etiology has not been well characterized. On 
one hand, dopamine may play a complicated role in the 
immune response. The expression of dopamine recep-
tor 5 (DAR5) in the peripheral blood mononuclear cells 
(PBMCs) is decreased in MS patients but progressively 
upregulated when treated with IFN-β [11, 12], though its 
exact role in the disease is not clear. In addition, DAR5 
is also expressed in dendritic cells, which is critical for 
regulating the activity of different T cell targets [61]. 
These indicate the potential role of dopaminergic sign-
aling in the innate and adaptive immune responses of 
MS. In our study, with both crosstalk analysis and tran-
scriptome analysis, we found that the DS signaling path-
way could interact or associate with the complement 
and coagulation cascade in both grey and white mat-
ter lesions, showing that dopamine may also function 
through the complement system, as a bridge between the 
innate and adaptive immune responses. We also found 
that the dopaminergic synapse pathway is associated 
with leukocyte transendothelial migration and cell adhe-
sion molecules, suggesting that dopaminergic signaling 
may be involved in MS by regulating leukocyte adhesion 
and transmigration across the endothelium in the brain. 
One limitation of this study is that the association analy-
sis only shows the expression regulatory relationships in 
gene sets without considering their direct interactions. 
Further studies are necessary to uncover the exact molec-
ular pathways regulated by dopaminergic signaling in 
MS.

On the other hand, dopaminergic signaling is known 
for its role in neurodevelopment and neurodegeneration 
[62, 63]. For example, the dopamine receptor 3 (DAR3) 
may regulate myelin-like processes in culture [64] and 
stress-induced myelin loss can be ameliorated by the 
dopamine receptor 2 (DAR2) [57]. We found that the 
dopaminergic pathway may interact or associate with 
the glutamatergic synapse and neurotrophin signaling 
pathways, suggesting a complex role of dopamine in the 
nervous system. In addition, demyelination is always 
accompanied, at least partially, with remyelination [65]. 
It is possible that dopaminergic signaling may regulate 
both demyelination and remyelination in MS.

The pathways associated with the DS pathway in grey 
and white matters are quite different, which indicate dis-
tinct mechanisms for signaling in grey and white mat-
ter lesions. In white matter lesions, more pathways were 
associated with the DS signaling pathway, for example, 
Th17 cell differentiation and leukocyte transendothelial 

migration. This is consistent with previous findings 
that immune cells are mainly distributed in white mat-
ter rather than grey matter in MS [66, 67]. In grey mat-
ter, the DS signaling pathway is associated with pathways 
that fall into the categories of the nervous system and the 
immune system, indicating a complicated role for dopa-
minergic signaling in this disease. Dissecting the role of 
dopaminergic signaling in grey and white matter may 
offer novel therapeutic targets for MS. In future studies, 
it would be interesting to explore in greater detail the 
mechanisms by which dopaminergic signaling is involved 
in myelin pathogenesis.

Conclusions
In this study, we did a literature search to systematically 
establish a complete set of genes which is associated with 
MS in humans and in which the dopaminergic synapse 
signaling pathway is enriched. Transcriptome analysis 
further confirms that the expression of multiple dopa-
mine gene sets is affected in patients with MS. Moreover, 
we utilized zebrafish as a model to validate the effects of 
dopaminergic signaling on myelination, employing both 
pharmacological and genetic manipulation. This study 
may provide us with insight into the molecular mecha-
nisms of myelin pathogenesis in the nervous system.
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