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In drinking water distribution systems (DWDS), a disinfectant residual is usually applied
to limit bacterial regrowth. However, delivering water with no or reduced chlorine residual
could potentially decrease the selection for antimicrobial resistant microorganisms,
favor bacterial regrowth and result in changes in bacterial populations. To evaluate
the feasibility of water reduction in local DWDS while ensuring water safety, water
quality was measured over 2 months in two different networks, each of them harboring
sub-areas with normal and reduced chlorine. Water quality remained good in chlorine
reduced samples, with limited development of total flora and absence of coliforms.
Furthermore, 16S rRNA amplicon-based metagenomics was used to investigate the
diversity and the composition of microbial communities in the sub-networks. Taxonomic
classification of sequence reads showed a reduced bacterial diversity in sampling
points with higher chlorine residuals. Chlorine disinfection created more homogeneous
bacterial population, dominated by Pseudomonas, a genus that contains some major
opportunistic pathogens such as P. aeruginosa. In the absence of chlorine, a larger and
unknown biodiversity was unveiled, also highlighted by a decreased rate of taxonomic
classification to the genus and species level. Overall, this experiment in a functional
DWDS will facilitate the move toward potable water delivery systems without residual
disinfectants and will improve water taste for consumers.

Keywords: chlorination, drinking water, biofilm, chlorine, microbiome, 16S rRNA, metagenomics

INTRODUCTION

Drinking water is one of the most closely monitored resource, strictly regulated by international
and national quality standards. Microbial characterization of drinking water mostly relies on
conventional culture-based methods, such as heterotrophic plate counts (HPC) and selective
plating of coliforms such as Escherichia coli (Schets et al., 2002). Avoiding microbial regrowth
is important since some bacterial pathogens such as Legionella pneumophila and Mycobacterium
avium, amoeba-infecting bacteria such as Chlamydia-related organisms (Greub and Raoult, 2004;
Corsaro et al., 2009), or free-living pathogenic amoebae such as Acanthamoeba, Hartmanella, and
Naegleria can grow in drinking water distribution systems (DWDS) and cause waterborne illnesses
(Poitelon et al., 2009; Marciano-Cabral et al., 2010; Koubar et al., 2011; Aw and Rose, 2012).
A minimal disinfectant residual concentration is usually maintained for this purpose. Excessive
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microbial growth and accumulation of biofilms can also lead to
the deterioration of water quality with associated undesirable
visual turbidity, taste, and odors and cause process malfunction
such as filter or pipe clogging, biofouling, and enhanced
corrosion (Zacheus et al., 2001; Hammes et al., 2008).

Biofilms are structurally complex populations of
microorganisms attached to a surface and embedded in a
matrix of extracellular polymeric substances (EPS) composed of
extracellular DNA, proteins, and polysaccharides (Lopes et al.,
2009). The EPS matrix provides physical stability against shear
forces and offers a protection to disinfectants (Flemming and
Wingender, 2010). The process of biofilm formation on plumbing
material in chlorinated DWDS is rapid, reaching 107 cells per
cm2 within a month (Morvay et al., 2011). An investigation of
early stages of biofilm formation in an experimental, chlorinated
DWDS showed the occurrence of significant changes in biofilm
composition, with a gradual increase in species richness over
28 days (Douterelo et al., 2014). However, stable biofilm
formation is a process that can take years (Martiny et al., 2003)
owing to the successive colonization by microorganisms slowly
providing additional adhesion sites that can be used by further
microorganisms (Lee et al., 2008; Andrews et al., 2010). In
DWDS, source water parameters (e.g., temperature, pH), as well
as pipe characteristics (material, diameter, roughness) and seed
bacterial cells can influence the formation of biofilm (Liu et al.,
2004; Simões et al., 2007).

The composition of bacterial populations in DWDS is strongly
influenced by water quality, and especially by the nature and
concentration of disinfectants (Mathieu et al., 2009; Hwang et al.,
2012; Pinto V.G. et al., 2012; Vaz-Moreira et al., 2013; Gomez-
Alvarez et al., 2015). Within a stable chlorinated DWDS, bacterial
composition was shown to remain stable over three seasons
(Pinto V.G. et al., 2012). Moreover, the bacterial community
in the distribution network reflected that of the drinking water
when leaving the treatment plant. More recently, Roeselers et al.
(2015) reported the presence of distinct microbial communities
in raw and processed water of various non-chlorinated DWDS
in the Netherlands. Surprisingly, network-specific communities
were stable in time, suggesting that drinking water samples from
different distribution systems may be distinguished by microbial
profiling.

The absence of pathogen proliferation in unchlorinated
distribution systems in The Netherlands indicates that increasing
bacterial biodiversity could protect against proliferation of
pathogens (Roeselers et al., 2015). This natural protection
offered by the presence of colonizing banal bacteria is
known as the “protective biofilm” concept, or the “probiotic
approach” (Wang et al., 2013). It is corroborated by the
observed increase in the proportion of bacteria resistant
to antimicrobial agents (chloramphenicol, trimethoprim, and
cephalothin) after chlorination (Shi et al., 2013). The use of
disinfectants or bacteriostatic agents such as copper also led
to a strong reduction in bacterial diversity and a selection
of more resistant and pathogenic microorganisms such as
Legionella and Mycobacterium species (Buse et al., 2014).
Furthermore, potential plasmids and mobile genetic elements
such as insertion sequences were more abundant in chlorinated

waters suggesting possible increased spread of antibiotic
resistance genes in the microbial population (Shi et al., 2013).
Finally, microbial quality of European unchlorinated waters,
as evaluated in terms of compliance for fecal indicators, was
demonstrated to be equal or superior to that of chlorinated
waters (Hambsch et al., 2007). Following the discovery
of disinfection byproducts, coupled with negative public
perceptions regarding the taste of chlorine, several countries,
including the Netherlands, Switzerland, and Germany, have
initiated a move toward potable water delivery systems
without residual disinfectants. Delivering water with no or
reduced chlorine residuals could decrease the selection for
antimicrobial resistance in colonizing communities, favor
bacterial regrowth, and result in positive changes in bacterial
populations.

In this context, this study aimed at investigating whether local
facilities could easily deliver safe drinking water with reduced
chlorine, hindering potential negative effects of disinfectants.
Chlorine concentration was minimized in isolated subnetworks
of two DWD S to evaluate its consequences on water quality and
microbial communities. 16S rRNA gene amplicon sequencing
was used to investigate the diversity and composition of microbial
communities in both subnetworks with normal and reduced
concentration of chlorine. The results obtained here offer the
grounds for a move toward safe potable water delivery systems
without residual disinfectants.

MATERIALS AND METHODS

Experimental Area in Drinking Water
Distribution Systems
To evaluate the effect of chlorination on the microbial
populations present in DWDS, experimental areas with reduced
chlorine concentration were defined in two cities in France
and submitted either to normal chlorination or to reduced
chlorination (Figure 1). The drinking water treatment plant
(DWTP) supplying City#1 uses influenced groundwater as
its source and includes the following treatment steps: direct
filtration, ozonation, ultrafiltration, and chlorination, with
a production capacity of 40,000 m3 per day for 155,000
inhabitants. The DWTP supplying City#2 is only composed
of groundwater pumping and chlorination, with a mean
production of 81,000 m3 per day for 220,000 inhabitants.
The DWDS are composed of 96% cast iron, 2.5% iron, 1.5%
other materials in City#1 and 74% cast iron, 16% polyethylene,
5% iron, 3% asbestos cement, and 2% other materials for
City#2.

For each city, a limited experimental area with minimized
residual chlorine concentration was defined and isolated from
the rest of the network where chlorine residual around
0.2 ppm was maintained (Figure 1, dashed line). Practically,
the entry of each zone consists of a drinking water tank
(points C and G, respectively) where chlorine injection was
turned off. The experimental zone of City#1 represents a
network length of 63 km (total network length: 340 km)
and served around 19,500 inhabitants while the experimental
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FIGURE 1 | Experimental design and drinking water distribution systems. The drinking water distribution systems (DWDS) of City#1 (A) and City#2 (B) comprised an
experimental zone (dashed circle) where residual chlorine concentration was minimized by turning off the re-chlorination station (C). Four biofilm incubators where
added at the outlet of the drinking water treatment plants and in the water network of each city. Biofilms A and E were recovered at the DWTP outlet, B and F
downstream a drinking water tank with a rechlorination system, C and G downstream a drinking water tank without chlorine injection, and D and H in the distribution
network. Biofilms were recovered after 8 and 10 weeks incubation for City#1 and City#2, respectively. A BACMON online sensor was set-up prior to the experiment
in point C, and during the biofilm formation on points D and G.

zone of City#2 represents a network length of 146 km
(total network length: 1450 km) and served around 24,000
inhabitants.

Sample Collection and
Physico-Chemical Measurements
Experimental periods with minimized residual chlorine were
between July 21st, 2014, and January 27th, 2015, and between

December 16th, 2014, and June 30th, 2015, for City#1 and
City#2, respectively. After at least 1-month wash out period
to allow reduction of free chlorine in the experimental area,
eight in-line biofilm incubators using borosilicate glass beads
(Loret et al., 2005) were installed for 2 months at each
sampling point (for City#1 between November 25th, 2014,
and January 19th, 2015, and City#2 between January 29th
and April 15th, 2015). Each incubator was composed of
a PVC compartment containing 700 autoclaved glass beads
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of 5 mm diameter (representing a contact surface with the
water of 550 cm2) and was fed with a constant water flow
of 30 L/h during the sampling period. For each sampling
point, physico-chemical parameters of water quality such
as temperature and free chlorine were measured on grab
water samples using a thermocouple thermometer (HI8757
Hanna instruments) and ISO 7393-2, respectively. Periodically,
heterotrophic plate counts (HPC) at 22◦C and 36◦C (ISO
6222:1999) as well as fecal contamination indicators (E. coli by
ISO 9308-1:2000 standard method and enterococci by ISO 7899-
2:2000 standard method) were also monitored at the sampling
points.

In three biofilm points (C, D, and G), a new on-
line bacteria sensor (GRUNDFOS BACMON) was used to
measure in a continuous way the concentrations of total
bacteria and abiotic particles in bulk water feeding the
biofilm incubators. With a 10-min resolution, the system is
capable of counting particles in water and classifying them
as either bacteria or abiotic particles, based on shape and
pattern of light diffraction (Højris et al., 2016). In sampling
point C, the system was placed in the period before and
during the minimizing chlorine experiment in order to follow
the impact of free chlorine concentration on the bacterial
biomass.

At the end of the biofilm formation period, the glass
beads were collected with 500 mL of drinking water sampled
at the same sampling point. After shipping within 24 h in
cooling conditions, all the water volume and glass beads
were sonicated in water bath (Branson 130 W) for 2 min to
recover the biofilm formed at their surface. Three hundred
milliliter of this suspension were sent in cooling conditions
to the Institute of Microbiology (Lausanne, Switzerland),
where samples were stored at 4◦C and processed within
3 days.

Sample Preparation and Sequencing
A 0.22-µm filter was used to filter 150 ml from the water sample
with as little non-soluble particle material as possible. After
removal, the filter was scraped in 1 ml PBS to resuspend bacteria.
DNA was extracted from 500 µl of the previous suspension with
the Wizard SV Genomic DNA Purification Sytem (Promega, ref.
A2361), protocol for tissue, and eluted in 50 µl TE buffer. The
samples were then prepared according to the “16S Metagenomic
Sequencing Library Preparation” (Part. # 15044223 Rev. B)
from Illumina (San Diego, United States) using the KAPA HiFi
HotStart Ready Mix (KAPA Biosystems, United States). Samples
were run on gel to verify the amplification of 16S DNA. The PCR
used in this study amplifies the region V3 and V4 of the 16S rRNA
gene using the best primer pair proposed by Klindworth et al.
(2013) and amplifies most known bacterial species: S-D-Bact-
0341-b-S-17 CCTACGGGNGGCWGCAG and S-D-Bact-0785-
a-A-21 GACTACHVGGGTATCTAATCC. A negative control
was performed using the same protocol, starting with the
filtering of DNA-free water. No amplification of 16S rRNA
was obtained by PCR, and the negative control was thus not
processed further. PCR products were purified and prepared
for sequencing using 16S Metagenomics Sequencing Library

protocol (Illumina, standard protocol). For each city, the four
samples were indexed and pooled in a single run of MiSeq
2× 300 bp for sequencing.

Bioinformatics and Statistical Analysis
Between 1.6 and 3.5 million reads were obtained for
each sample. The quality of raw reads was controlled
with FastQC (Andrews, 2010). For each sample, pairs
of reads were assembled using PandaSeq (Masella et al.,
2012) (parameters: −p CCTACGGGNGGCWGCAG −q
GACTACHVGGGTATCTAATCC −A simple_bayesian −l
390 −L 450 −B −N), and the resulting sequences were
dereplicated using vsearch (Rognes et al., 2016) (vsearch –
derep_fulllength). Sequences for all the samples were then
pooled and dereplicated again filtering out singletons (vsearch –
derep_fulllength –sizeout –minuniquesize 2), before clustering
(vsearch –cluster_size –sizein –id 0.97), removal of chimera
(vsearch –uchime_denovo –abskew 2 –sizein), dereplication of
nonchimeric reads and relabeling (vsearch –derep_fulllength –
sizein –relabel OTU_ –xsize). OTUs were assigned to a
taxonomical unit with QIIME (Caporaso et al., 2010) using
the RDP classifier (Wang et al., 2007) and the EzBioCloud
database (Yoon et al., 2017) for the V3–V4 region. For each
sample, the occurrence of OTUs was calculated starting from
the dereplicated sequences using the global alignment search
of vsearch (Rognes et al., 2016) (vsearch –usearch_global –id
0.97 –strand plus). Results were further processed using R 3.3.3
(Hornik, 2010) with packages dplyr, tidyr, dendextend, ggplot2,
RColorBrewer, Vegan, and lazyeval. Distance among samples
was calculated using Bray–Curtis model on the presence/absence
of each OTU, and the hierarchical clustering was inferred using
the Ward.d2 method. Non-metric multidimensional scaling was
used to represent differences in microbial composition in two
dimensions based on the presence-absence and quantification of
OTUs.

A subsampling of read counts to 1 Mio was performed
to normalize across samples. The number of different OTUs
identified, Shannon or Simpson indexes were not correlated to
the number of assembled paired-reads obtained in each sample
(correlation −0.04, p-value 0.91; 0.56, p-value 0.15; and −0.66,
0.07, respectively), before or after rarefaction. Raw read counts
for each OTU are available as Supplementary Table S1.

Sequence Data Availability
Raw sequencing reads were deposited in the European
Nucleotide Archive (ENA) under the project number
PRJEB27988.

RESULTS

Water Quality
The average and maximum values for free chlorine, temperature,
and heterotrophic plate counts (HPC) at 22 and 36◦C as
monitored during the biofilm formation are shown in Table 1.
Average temperatures varied from 9◦C to 13◦C in the DWDS
of City#1. The temperature was very constant around 10◦C
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TABLE 1 | Water quality parameters during biofilm formation.

City Sample ID Biofilm
collection
date

Location Minimized
residual
chlorine

Temperature ◦C Free chlorine
(mg/L)

HPC 22◦C
(cfu/100 mL)

HPC 36◦C
(cfu/100 mL)

Mean SD Mean SD Mean SD Mean SD

City#1 A January
19th

DWTP outlet No 13.3 0.6 0.13 0.07 0 0 0 0

B January
19th

DW Tank outlet
(21,000 m3 capacity)

No 11.0 0.1 0.23 0.01 ND ND ND ND

C January
19th

DW Tank outlet
(5,000 m3 capacity)

Yes 12.8 0.5 0.06 0.03 1 2 0 0

D January
19th

Upstream
re-chlorination station

Yes 9.7 1.5 0.00 0.00 32 24 24 19

City#2 E April 15th DWTP outlet No 10.2 0.4 0.11 0.01 1 5 1 3

F April 15th DW Tank outlet
(1,500 m3 capacity)

No 10.3 0.4 0.24 0.01 0∗ 0∗ 0∗ 0∗

G April 15th DW Tank outlet
(15,000 m3 capacity)

Yes 9.3 0.5 0.08 0.02 11 8 3 3

H April 15th Distribution network Yes 18.2 5.4 0.03 0.03 10 10 12 10

ND, not determined. ∗Only one value reported during monitoring. Mean and SD values were calculated from measures performed during the biofilm formation experiment.

in City#2, if we except sample H located in a public building
that reached an average temperature of 18◦C. In the main
distribution network, the average free chlorine concentration
varied between 0.11 and 0.24 mg/L in both cities. In the

experimental area with minimized residual chlorine, the average
concentration was reduced between 0.06 and 0.08 mg/L in
DW Tank outlets, thus representing a three- to fourfold
reduction compared to DW Tank outlets in the rest of the

FIGURE 2 | Water quality measures. (A) Chlorine concentration is negatively correlated with heterotrophic plate counts (HPC, CFU/100 mL) at different temperatures
when considering all samples from both cities. However, HPC remains lower than commonly accepted values at all chlorine concentrations. (B) The BACMON online
sensor shows the variation in bacteria/ml at the drinking water tank outlet of City#1 (Sample C) following the decrease of chlorine over a 5-month period at the same
location. The blank periods in early July and mid-October were due to an accidental switch-off of both on-line sensors. Each sensor generated more than 20.000
measurements. (C) Bacterial counts by the BACMON differ significantly between the three categories of chlorine concentration, even without taking into
consideration the latency in bacterial regrowth.
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network. Furthermore, chlorine concentration was reduced to
0 and 0.03 mg/L in samples further down in the distribution
network. As can be expected, HPC at 22◦C values are
negatively correlated to chlorine concentration (Figure 2A),
but remained much lower than the binding limit value
200 cfu/ml at consumer’s tap applied in Denmark where drinking
water is based solely on groundwater and distributed without
disinfection residual (Miljøstyrelsen, 2017). However, HPC tests
also recover microorganisms belonging to the natural and
typically non-hazardous microbiota of water. Further analyses of
coliforms, including E. coli and enterococci, measured in various
point of the experimental area during chlorine minimization
period did not show any non-conform measures of water
quality.

As shown in Figure 2B, during the extended experiment
period, residual chlorine values at sampling point C varied
from 0 to 0.32 mg/L mainly due to a constant dose together
with a varying flow at the waterwork. Free chlorine level
remained in a relatively stable operation in June and July,
before a decrease in August. Responses to changes in the
system are slow. Bacterial counts by the BACMON show a
steady but slow increase over the 1 month period with low
chlorine concentration. However, an increase of chlorine
concentration to higher levels (>0.2 mg/L) during only
approximately 1 week was sufficient to get the system back
at normal operation, with a large decrease in bacterial counts
per milliliter. When comparing bacterial concentration in
the distribution system at different level of residual chlorine,
a statistical difference (p-value <2.2e−16) was observed
between mean total bacterial counts at low (<0.1 mg/L),
intermediate (0.1–0.2 mg/L), and high (>0.2 mg/L) free
chlorine concentration (Figure 2C). Real-time monitoring
performed under minimized residual chlorine conditions
at the two other experimental points (D and G) showed
stable bacteria counts along the whole period, excepted
punctual variations due to hydraulic events (results not
shown).

In addition to these parameters, assimilable organic
carbon (AOC) determination was performed on six samples
during the experimental period. AOC is usually determined
to characterize the ability of water to support bacterial
growth. Nitisoravut et al. (1997) proposed a threshold

value of 30 µgC/l, considering the analytical sensitivity
and variability of AOC determination, to ensure a limited
bacteria growth in a non-chlorinated system. AOC was
determined according to van der Kooij (1992). The results
showed low average AOC concentrations in treated water
from DWTP in City #1 and #2, respectively, around 30 and
<10 µgC/L.

Diversity of Microbial Communities
16S amplicon sequencing was performed to investigate biofilm
composition in the DWDS with varying chlorine concentration
(Table 2). Whereas sequence assignment to genus level was
successful for over 95% of the dataset, species-level assignment
was more challenging, due to the presence of sequences
with lower than 97% identity to known bacterial species
or sequences equally distant to known bacterial species.
Using hierarchical clustering on the presence or absence
of OTUs, we observed two major groups corresponding
to the two cities (Figure 3A), indicating that each city
has a signature composition of bacteria in its DWDS.
This signature could also be affected by the sampling at
different time of the year (Dec–Jan and Feb–April). Samples
with similar concentrations of chlorine formed secondary
groups in City#1 only. The large number of bacterial phyla
identified in the samples suggests this hidden diversity of lowly
abundant species that contribute to forming the city signature
(Figure 3C).

A similar clustering taking into account the frequency of each
OTU, rather grouped samples with high chlorine (A, F, B, E,
and to a lesser extent G) and those with lower chlorine (C, D,
H), notably reflecting the large predominance of Pseudomonas
spp. in the samples with high chlorine (Figure 3D). The
non-metric multidimensional scaling highlights the particular
bacterial communities found in sample H (Figure 3B). Sample
H from the distribution network of City#2 exhibits a large
number of OTUs present in very small proportion in the sample
forming a biofilm with very particular bacterial composition
that could be linked to the sampling point (end of distribution
network).

Samples with low chlorine harbored significantly higher
bacterial diversity calculated with Shannon (p-value = 0.009502)
or Simpson (p-value = 0.01435) index that account for both

TABLE 2 | Sequencing results of samples with reduced (+) or normal chlorine concentration.

Sample ID Raw reads after QC Assembled reads Genus∗ Species∗ No OTUs◦ Shannon index Simpson index

A 3,456,830 2,697,877 100.00 99.87 67 0.086 0.022

B 2,549,074 2,002,047 100.00 80.85 75 0.739 0.371

C+ 2,417,863 1,857,971 99.99 87.85 125 1.386 0.623

D+ 1,606,927 1,170,238 100.00 80.05 104 1.639 0.692

E 2,929,766 2,558,840 99.98 99.61 174 0.903 0.522

F 3,331,979 2,905,145 99.98 99.75 93 0.833 0.399

G+ 1,886,251 1,577,627 99.97 98.88 134 1.691 0.758

H+ 2,311,235 2,030,530 95.04 75.28 1038 2.772 0.807

+Reduced chlorine concentration. ∗Reported as the percentage of reads classified at the taxonomic level among those belonging to kingdom “Bacteria.” ◦After rarefaction.
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FIGURE 3 | Taxonomic classification of 16S rRNA amplicons. (A) Hierarchical clustering of samples based on the presence/absence OTUs for City#1 (brown labels)
and City#2 (blue labels) sampling sites. A gradient from dark to light colors reflects chlorine concentration at each site. (B) Non-metric multidimensional scaling plot
of the sample based on the presence/absence and the quantification of reads classified in bacterial OTUs (Ward distance), displayed with the same color-code as in
(A). (C) Bacterial composition at the phylum level, showing the large predominance of Proteobacteria, and some Bacteroidetes, Cyanobacteria, and Chlamydiales in
a few samples. (D) Bacterial composition at the species level, showing the large predominance of Pseudomonas spp. in the samples with higher chlorine, and the
abundance of unknown proteobacterial clades as well as Sphingomonales in samples with lower chlorine concentration. Only identified species encompassing more
than 1% of reads were represented in (D).

abundance and evenness of OTUs in the samples (Table 2).
Pearson’s correlation coefficient between chlorine concentration
and Shannon index was −0.65 but did not reach statistical
significance due to the low number of samples considered
here (p-value = 0.07987). A larger sample size would have

been required to increase the power of the study and thus
the significance of the observed correlation and differences.
The higher bacterial diversity in samples with lower chlorine
concentration comprised several clades of poorly described
proteobacteria from the order Sphingomonadales. The many
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known and unknown species recovered in the various samples
were particularly prevalent in those with lower chlorine
concentration, although they were also present in small
proportion in other samples.

Chlamydia, Legionella, Mycobacterium,
and Pseudomonas in the Microbial
Communities
A closer analysis of bacterial phyla identified in these water
samples showed the presence of several known colonizers and
potential pathogens of water environments (Table 3). Obligate
intracellular bacteria belonging to the order Chlamydiales were
observed in six samples mostly in very small amounts only
retrieved due to the high number of reads per sample. However,
sample H showed a large diversity of OTUs classified as
belonging to the Chlamydiales order. Members of the family
Parachlamydiaceae were the most common (35 OTUs), followed
by Rhabdochlamydiaceae (17 OTUs). One OTU of an unknown
Parachlamydiaceae was particularly prevalent with over 2%
of the sample H reads. These so-called Chlamydia-related
bacteria are known to grow steadily within amoebae, and in
particular Acanthamoeba spp., that are found ubiquitely in
water environments (Greub and Raoult, 2004; Kebbi-Beghdadi
and Greub, 2014). The pathogenic potential of some of these
organisms is still debated, but many strains are proposed to
be rather environmental isolates with no, or little, pathogenic
potential (Horn, 2008; Greub, 2009; Taylor-Brown et al., 2015).
Known pathogens such as Legionella pneumophila or Legionella
lytica were only observed as traces once (0.001% of reads),
although other known and unknown Legionella species most
likely also growing in amoebae were recovered at very low
concentration (up to 0.3% of reads) in five samples. Their
occurrence in potable water plumbing systems has been widely
reported, and legionella are known to thrive in warmer and
stagnant water (Loret and Greub, 2010; Jjemba et al., 2015). The

TABLE 3 | Number of distinct OTUs (>97% identity) for major water pathogens
and chlamydia-related bacteria.

Order Family, genus, or
species

A B C D E F G H

Actinomycetales Mycobacterium 1 2 1 1 1 2

Chlamydiales Criblamydiaceae 2

Parachlamydiaceae 2 2 3 35

Metachlamydia 1

Neochlamydia 1 1

Parachlamydia 1 2

Protochlamydia 10

Rhabdochlamydiaceae 17

Simkaniaceae 1

Waddliaceae 1 1

Legionellales Legionellaceae 4 2 3 2 38

Pseudomonadales Pseudomonas
aeruginosa

1 1 1 1 1

Families are highlighted in bold, whereas genus and species are written with normal
case.

higher temperature observed in sampling point H, as well as
its particular situation in the DWDS could explain the higher
prevalence and diversity of legionella and chlamydia observed
(Table 3). Unknown Mycobacterium spp. were recovered in six
different samples comprising only up to 0.1% of the sample reads.
Finally, reads classified as Pseudomonas aeruginosa were present
in all samples of City#1 and sample G of City#2 in very small
proportion (between 0.0001 and 0.01%).

DISCUSSION

The presence of bacteria in drinking water networks has been
recorded in numerous systems throughout the world, whether
residual disinfectants are applied or not. Bacteria disinfectant
and water age were both observed to be strong factors in
shaping bacteria and eukaryotic community structures (Wang
et al., 2014; Gomez-Alvarez et al., 2016). We have investigated
here the changes in bacterial concentration after reduction of
chlorine concentration in subnetworks of DWDS, as well as
the composition of biofilms after a 2-month incubation in
several points of the DWDS serving about 20,000 inhabitants
in two cities. The results discussed below are coherent with
previous observations, although statistical significance of 16S
based observations was limited by the low number of samples
collected in this study.

Real-time monitoring performed under minimized residual
chlorine showed stable bacteria counts along the whole period at
points D and G. In one of the sampling points, the results showed
an increase in total bacterial cell counts with an online BACMON
system as well as HPCs at different temperatures. However, values
remained within the limits of water quality, such as the 200 cfu/ml
used as a cutoff in Denmark where no chlorination of water is
performed. Moreover, microorganisms recovered through HPC
tests generally include those that are part of the natural (typically
non-hazardous) microbiota of water. Evidence supports the
conclusion that, in the absence of fecal contamination, there is
no direct relationship between HPC values in ingested water and
human health effects in the population (Bartram et al., 2003).

Opportunistic pathogens that may be recovered among HPC
microbiota include strains of P. aeruginosa, Acinetobacter spp.,
Aeromonas spp., Klebsiella pneumoniae, Legionella, etc. In this
study, no Klebsiella or Aeromonas spp. were identified using
the 16S amplicon sequencing. A few Acinetobacter harbinensis
usually found in water samples (Li et al., 2014) as well as another
unknown species have been identified. Traces of P. aeruginosa as
well as Legionella spp. in the range of 10−2–10−5 percent of the
reads were observed in a few samples and likely do not represent
any risk for public health. Similar abundance of Legionella spp.
around 0.003% were previously reported in unchlorinated water
(Liu et al., 2017). A higher diversity and up to 0.3% of the
reads for un unknown species of Legionella was identified in
sample H that was located at the end of the DWDS and harbored
particularly high temperature. This sample hence harbored a very
different microbial community that could be rather influenced
by its physico-chemical properties and water flow than by the
chlorination level in this experiment.
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In unchlorinated DW systems (Liu et al., 2017), bacterial
diversity in biofilms was characterized with similar numbers
of OTUs (446 to 1416 OTUs) as in the present study.
We observed lower diversity of bacterial communities in
samples with high chlorine concentrations compared to those
in the experimental zone without re-chlorination. Similar
results were obtained, although with even greater diversity
(Shannon index between 2.45 and 3.16) in the study of
Gomez-Alvarez et al. (2016) describing the response of
microbial communities in bulk water and biofilm phase to
changes of operational parameter in chloraminated systems.
They observed that biofilms sampled immediately after a
chlorine burn were composed of low diverse communities of
closely related taxa, while bulk water were represented with
highly diverse populations of phylogenetically over-dispersed
communities.

Bacteria are present in the bulk water but also within
sediments and in the form of biofilms attached to the inside
of distribution pipe walls. Most frequent bacteria groups in
(bulk) drinking waters are Gram-negative bacteria members
of the phylum Proteobacteria, mainly of the classes alpha,
beta, and gamma (Hoefel et al., 2005; Pinto A.J. et al.,
2012; Vaz-Moreira et al., 2013), as also observed in this
study. Mathieu et al. (2009) reported that alphaproteobacteria
were more sensitive to residual chlorine (0.4 mg/L) than
beta and gammaproteobacteria. Pseudomonas resistance to
free chlorine is associated to their capacity to form biofilm.
Suboptimal chlorine treatment of drinking water was shown
to lead to the selection of multidrug-resistant Pseudomonas
aeruginosa (Shrivastava et al., 2004). All chlorine-resistant
isolated strains produced mucoid colonies characterized by an
overproduction of extracellular polysaccharide alginate (Grobe
et al., 2001). Alginate-containing slime confers protection on
P. aeruginosa against chlorine and may contribute to survival
of these bacteria in chlorinated water systems (Shrivastava
et al., 2004). Pronounced capsule layer (as observed on
swimming pool isolates of P. aeruginosa) may also provide
protection against disinfectants or antiseptics (Seyfried and
Fraser, 1980).

Similar to the situation observed in sample B, Bacteroidetes
also dominated microbial communities together with
proteobacteria in a recent study (Liu et al., 2017). The presence of
large proportions of Hyphomicrobium and Sphingomonadaceae
were previously suggested to be likely due to the biofilm inoculum
originating from chlorinated water that selects for bacterial
species able to survive by acclimating to the residual levels or
traveling through the system protected by particles (Williams
et al., 2005). Indeed, members of the Sphingomonadaceae are
known to be resistant to chlorine and were suggested to be a
reservoir of antimicrobial resistance genes (Vaz-Moreira et al.,
2011). Communities observed in the present study as well as
previous studies investigating the effect of changes in chlorination
level only represent a snapshot of bacterial biofilm formation in a
short time frame. The long-term development of more stable and
diversified bacterial communities, and its potential convergence
toward microbial communities observed in countries where

DWDS are free of chlorine are to be investigated further as
other parameters such as water origin, flow, or pipe material can
lead to major change heavily influence microbial communities.
Shifts in proteobacterial composition within the biofilm were
reversible when exposed to discontinuous chlorination (Mathieu
et al., 2009). The resilience of microbial communities to frequent
changes in oxidant stress questions the emergence of populations
more resistance to chlorine, another argument in favor of
a stable decrease, and perhaps abolishment of chlorine in
DWDS. Finally, under certain conditions biofilms harboring
mixed population may limit the survival of enteric bacterial
pathogens that could be introduced in DWDS by intrusion for
example (Banning et al., 2003), providing a desired protective
effect.

CONCLUSION

The reduction of chlorine in two functional local DWDS
facilities enabled us to evaluate the influence on bacterial
quantity and communities while ensuring water quality and
safety, with the absence of coliforms. 16S amplicon sequencing
enabled us to document a decreased bacterial diversity in highly
chlorinated samples, that were dominated by Pseudomonas spp.
The reduction of chlorine in potable water delivery systems
is a desirable objective that could contribute to the decrease
of antimicrobial resistance genes in the microbial communities
suggested by other studies (Shi et al., 2013; Jia et al., 2015)
and enhance the development of a diversified protective biofilm
(Wang et al., 2013). Moreover, it would enhance consumer
experience whose main complaint is often the taste of chlorine
in tap water.
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