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Ras acts in signalling pathways regulating the activity of multiple cellular functions including cell proliferation, differentiation, and
apoptosis. Amino-acid exchanges at position 12, 13, or 61 of the Kras gene convert the proto-oncogene into an activated oncogene.
Until now, a direct comparison of genome-wide expression profiling studies of Kras overexpression and different Kras mutant forms
in a single assay system has not been carried out. In our study, we focused on the direct comparison of global gene expression effects
caused by mutations in codon 12 or 13 of the Kras gene and Kras overexpression in murine fibroblasts. We determined Kras cellular
mRNA, Ras protein and activated Ras protein levels. Further, we compared our data to the proteome analysis of the same
transfected cell lines. Both overexpression and mutations of Kras lead to common altered gene expression patterns. Only two genes,
Lox and Col1a1, were reversely regulated in the Kras transfectants. They may contribute to the higher aggressiveness of the Kras
codon 12 mutation in tumour progression. The functional annotation of differentially expressed genes revealed a high frequency of
proteins involved in tumour growth and angiogenesis. These data further support the important role of these genes in tumour-
associated angiogenesis.
British Journal of Cancer (2009) 100, 656–662. doi:10.1038/sj.bjc.6604882 www.bjcancer.com
Published online 3 February 2009
& 2009 Cancer Research UK

Keywords: Kras mutation; Kras overexpression; murine fibroblast cell lines; gene-expression profiling

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The Ras gene family (Hras, Nras, Kras4A, and 4B) encodes small
intracellular, membrane-associated proteins, which are regulated
by the GDP/GTP cycle. Switching between the active GTP-bound
and the inactive GDP-bound state is regulated by GTPase-
activating proteins (Marshall, 1995) and guanine nucleotide
exchange factor proteins (Downward, 1996). Activated Ras
stimulates a cascade of serine/threonine kinases that control
diverse biological processes including cell proliferation, differ-
entiation, or apoptosis. The Kras proto-oncogene becomes
oncogenic by single point mutations in codon 12 or 13, which
locks the mutated Kras gene product in the GTP-bound activated
state (Barbacid, 1987). These mutant forms of Ras transduce
signals that result in oncogenic transformation, angiogenesis,
invasion, and metastasis by downstream pathways (Olson and
Marais, 2000). Frequently, activated Kras oncogenes were identi-
fied in human bladder, lung, breast, and kidney cancer (Fujita
et al, 1988; Solana et al, 1992; Yuasa et al, 1994; Orntoft and Wolf,
1998) as well as in carcinoma of the colon (Capon et al, 1983) and
in acute myeloid leukaemia (Neubauer et al, 1994). In addition to

the Ras mutants, the generation of multiple Kras gene copies has
been detected in murine mammary tumours.

Despite the prevalent role of Kras mutations in tumorigenesis,
only a few studies have assessed genome-wide transcriptional
changes in Kras-transfected cell lines. Transcript expression
analyses have been performed comparing normal rat embryo
fibroblasts and cells transformed by mutant Hras, Kras, and Nras
(Zuber et al, 2000). Neoplastic transformation driven by the
mutated Kras oncogene was analysed by expression profiling of rat
ovarian epithelial cells (Tchernitsa et al, 2004). Differentially
regulated genes in response to an activated mutation in Kras or
Hras were analysed in a colon adenoma cell line, employing
microarray technology (Roberts et al, 2006). Transcriptome
analysis described changes in gene expression levels of embryonic
mouse fibroblasts carrying a mutation in codon 12 of Kras
(Vasseur et al, 2003). These studies showed that genes regulated by
the activated forms of Ras involve cellular processes associated
with tumorigenesis.

Clinical studies have suggested that tumour cells carrying Kras
codon 13 mutations are less aggressive than those with codon 12
mutations (Bazan et al, 2002). Different levels of aggressiveness in
the transforming phenotype induced by mutations in Kras codon
12 or 13 and the overexpression of the Kras proto-oncogene in
transfected NIH3T3 cells were also described (Guerrero et al,
2000). These results suggest that despite many similarities in
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their oncogenic capacity, the different mutant forms and Ras
overexpression may activate also distinct downstream targets that
are responsible for the different oncogenic capacities.

So far, a direct comparison of genome-wide transcript profiles of
different Kras mutant forms and Kras overexpression in a single
assay system has not been performed. Because of these reasons we
used genome-wide expression profiling analysis to investigate
differences among samples of murine fibroblasts carrying Kras
codon 12 or 13 mutations and cells that constitutively overexpress
the wild-type (wt) Kras gene. In wt Kras, the codons at position 12
and 13 encode two adjacent glycines located in the GDP/GTP-
binding site of Ras. The G12V and G13D mutations lead to the
constitutive binding of GTP and as a consequence to a permanent
activation of the signal transduction cascade. We analysed Kras
NIH3T3 transfectants carrying mutations at codon 12 (KrasG12V)
or 13 (KrasG13D) or overexpress wt Kras (Krasoe). The
non-transfected parental (NIH3T3) and mock-transfected cells
(Krasmock) served as controls. The total amounts of Kras cellular
RNA, Ras, and active Ras proteins were measured in all cell lines.
Hierarchical clustering of differentially expressed genes was used
to compare the gene expression patterns of the distinct transfected
cell lines. Furthermore, we analysed the functional classification of
the regulated genes and their role in distinct carcinogenic
processes.

MATERIALS AND METHODS

Kras-transfected cell lines

Wildtype and mutated Kras genes were amplified by RT–PCR
from human cell lines and cloned into the pIREShyg expression
vector of murine NIH3T3 fibroblast as recently described
(Recktenwald et al, 2007). Total RNA from transfecants and
non-transfected cell lines was obtained according to the manu-
facturer’s protocols using RNeasy Midi kits (Qiagen, Hilden,
Germany). The RNA concentration was calculated from OD260/280

readings and 2 mg RNA aliquots were run on formaldehyde agarose
gels to check for RNA integrity.

DNA microarrays

Glass cDNA chips were produced as recently described (Horsch
et al, 2008). A full description of the approximate 21 000 probes on
the microarray is available in the GEO database under GPL3697.
The expression data of Kras-transfected NIH3T3 cell lines have
been submitted to the GEO database (GSE8372).

Four independent dual colour hybridisations including two dye
swap experiments were performed with RNA from each of the four
transfected cell lines (in total n¼ 16) using non-transfected cells as
reference. All experiments were performed according to a modified
TIGR protocol (Horsch et al, 2008). Slides were scanned with a
GenePix 4000A microarray scanner and the images analysed with
the GenePix Pro6.1 image processing software (Molecular Devices,
CA, USA).

Analysis of gene expression levels

Statistical analyses were performed with TIGR Microarray Data
Analysis System (TM4) including MIDAS (Microarray Data
Analysis System; Quackenbush, 2002) for normalisation and
SAM (significant analysis of microarrays; Tusher et al, 2001) for
identification of genes with significant differential regulation.
Cluster analyses were employed using HCL (hierarchical cluster
analyses; Eisen et al, 1998).

Expression data were processed (MIDAS) applying a total
intensity normalisation, and low-quality array elements were
eliminated by several filtering methods, such as background
checking for both channels with a signal/noise threshold of 2.0,

one bad tolerance policy parameter, and a flip dye consistency
check. First, a multiclass SAM analysis for the identification of
significant gene regulation in Krasoe, KrasG12V, and KrasG13D

transfectants was performed. Therefore, three groups of experi-
ments were specified: Four chip hybridisations of Krasoe-,
KrasG12V-, and KrasG13D-transfected cell lines built a separate
group. Genes were considered as significant if they were
differentially regulated in at least two of the three specified
groups. Second, significantly regulated genes in the Krasmock

transfectants were identified by one class analysis. The percentage
of genes identified by chance is the false discovery rate (FDR),
which was estimated by calculating 1000 permutations. For
hierarchical clustering of expression profiles, the average-linkage
method was applied. As distance metric the Euclidean distance was
chosen.

In silico pathway analysis

For in silico analysis of differentially expressed genes, EASE, a
module of the DAVID database (Dennis et al, 2003) assigning
genes to gene ontology (GO) functional categories, was employed.
EASE analysis, including a Bonferroni multiplicity correlation,
evaluated the set of differentially expressed genes for over-
representation of two categories of GO terms: biological processes
and molecular functions.

Real-time quantitative (qRT) PCR

Ten differentially expressed genes (Col6a1, Fapb5, Ftl1, H3f3b, Lox,
Prss23, S100a11, Sparc, Sqstm1, and Vim) as well as the expression
levels of Kras were assessed by qRT– PCR performed in a 7700 SDS
thermal cycler using the SYBR Green I system (Applied
Biosystems, Darmstadt, Germany). Two target-specific primer
pairs were designed for each selected gene using OligoPerfectt
Designer (Invitrogen, Karlsruhe, Germany) and purchased from
Sigma (Taufkirchen, Germany). Duplicate crossing points per
marker were averaged per independent experiment for both
primer pairs (n¼ 16, including two cDNA dilutions). Values were
normalised to levels of b-actin.

Analysis of total and activated Ras expression levels

Expression levels of active GTP-bound Ras as well as total Ras were
determined as described previously (Recktenwald et al, 2007).
Activated Ras molecules were isolated with a selective pull-down
assay with glutathione S-transferase-Raf1–Ras-binding domain
fusion protein (GST-Raf1–RBD) using the EZ-Detectt-Ras-Activa-
tion Kit (Perbio, Bonn, Germany). Cells were harvested, lysed, and
incubated with GST-Raf1-RBD and one swell gel glutathione disc.
After three washing steps with lysis buffer, GTP-bound Ras was
eluted with SDS sample buffer (Laemmli UK 1970) and boiled. Equal
protein amounts were separated on 12% SDS polyacrlyamide gels
and transferred onto nitro cellulose membranes. Ras molecules were
visualised by incubation of the membranes with anti-Ras primary
antibody followed by incubating with a horse-raddish peroxidase-
coupled antimouse secondary antibody. The complexes were
detected using the enhanced chemiluminescence Kit (Perbio).

RESULTS

Morphological changes of the Kras transfectants

As recently described (Recktenwald et al, 2007), the morphology of
Kras transfectants was characterised by a more spindle-like shape
and appeared less flat as parental and mock control cells.
Furthermore, the Kras transfectants exhibit long cell extensions
suggesting the development of filo- and/or lamellipodiae. These
morphological changes are most prominent in Kras mutants and

Kras mutation and overexpression in murine fibroblasts

M Horsch et al

657

British Journal of Cancer (2009) 100(4), 656 – 662& 2009 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



weaker in the Krasoe transfectants. In addition, all Kras
transfectants show an increased cell growth as indicated by
reduced doubling times (data not shown).

Kras transcript and protein expression levels

We measured the levels of Kras gene expression in all cell lines
investigated by qRT–PCR. No changes in the total amount of Kras
in Krasmock, KrasG12V, and KrasG13D cell lines compared with the
non-transfected cell lines were identified (Figure 1A). The over-
expression of Kras was only detected in Krasoe transfectants.
Additionally, for the determination of the Ras protein expression,
the activation status as well as the total cellular Ras expression of
the different Ras oncoproteins was analysed by western blot
analysis. KrasG12V and KrasG13D cells showed similar increased
levels of total cellular Ras proteins when compared with the
parental- (NIH3T3) and mock-transfected cell lines (Figure 1B).
Furthermore, activated GTP-bound Ras was only detectable in
these two cell lines (Figure 1B). Although the level of Kras
transcript was not influenced by the mutations, the protein levels
and its activity were increased in KrasG12V and KrasG13D cells. Kras
overexpression on transcript level had no influence on cellular
protein or active Ras protein level.

Comparative analysis of gene expression patterns

In this study, a comparison of global gene expression effects
caused by mutations in codon 12 (KrasG12V) or 13 (KrasG13D) of
the Kras proto-oncogene and Kras overexpression (Krasoe) in
murine fibroblasts was performed. A multiclass SAM analysis
identified 61 genes significantly regulated in at least two out of the
three Krasoe, KrasG12V, and KrasG13D transfectants compared with
non-transfected parental cells. Significance was assigned using an
FDR threshold of o0.05 in conjunction with a ratio threshold of
41.5. In all, 17 out of 34 genes significantly regulated in Krasmock

transfectants were also identified as differentially expressed in the
three experimental cell lines (KrasG12V, KrasG13D, and Krasoe).

On the basis of the rational that the altered expression level of
these 17 genes was most likely caused by the transfection
procedure itself, these genes were excluded from the subsequent
hierarchical clustering and GO term analyses.

Hierarchical cluster analysis was applied on the remaining 44
genes differentially expressed in at least two out of three
experimental Kras transfectants, but not in the Krasmock cell line.
The cluster algorithm classified the selected genes into three
groups based on the similarities in expression patterns across the
transfectants (Figure 2): the first group comprises upregulated
genes (Figure 2, indicated as ‘A’), the second group comprises the
downregulated genes (Figure 2, indicated as ‘B’) in the Krasoe-,
KrasG12V-, and/or KrasG13D-transfected cell lines. The genes of the
subgroup C were upregulated in Krasoe, downregulated in
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Figure 1 Kras transcript and protein expression levels. (A) Kras
expression levels were measured by qRT–PCR. The results are given as
the linear ratio of expression levels relative to the expression level of Kras
expression in the non-transfected NIH3T3 cells. Numbers on the Y axis
show the fold changes of gene expression levels. (B) Quantification of total
Ras and activated Ras molecules by western blotting. b-actin served as
loading control.
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performed using gene expression data from 44 probes significantly
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control and green indicates lower gene expression. Grey boxes represent
genes with expression levels below detection limits. Several subgroups of
genes with similar expression patterns are colour coded to the left of the
heat plots.
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KrasG12V, and showed no regulation in KrasG13D (Figure 2,
indicated as ‘C’). For Lox, both non-overlapping sequences
represent similar values of transcriptional changes compared with
the reference cells. Increased expression levels of 1.8/1.9-fold
changes for Lox/Col1a1 were found in Krasoe. In KrasG12V,
Lox/Col1a1 was downregulated (2.1/1.6-fold changes). Ratios of
�1.07 for Lox and 1.13 for Col1a1 in KrasG13D indicate no
significant differences between this transfected cell line and the
reference. These data indicate that the overexpression of Kras
(Krasoe) influences the regulation of genes similarly to the
regulation induced by the mutations in codon 12 or 13 of Kras.
Yet, cluster analysis revealed more similarities between gene
expression patterns of KrasG12V and KrasG13D transfectants
(Figure 2) when compared with Krasoe cells.

Changes in the expression levels of 10 genes (Col6a1, Fabp5,
Ftl1, H3f3b, Lox, Prss23, S100a11, Sparc, Sqstm1, and Vim)
identified as regulated in the microarray experiments were

validated by qRT–PCR. With the exception of H3f3b, the tendency
in terms of up- and downregulation was confirmed in all four cell
lines (Figure 3).

Functional classification of regulated genes

To analyse whether specific functional annotations were over-
represented among the regulated genes, EASE was used to classify
the genes for two categories of GO terms: biological processes and
molecular functions. The overrepresentation of nine molecular
functions was detected (Table 1A): for example, catalytic and
structural molecule activity or binding of calcium ions, nucleic
acids, lipids, or proteins. GO term analysis of biological processes
identified cell growth, development, nucleic acid metabolism, cell
proliferation, and protein metabolism as over-represented
(Table 1B). Thus, the upregulation of eight calcium-binding
proteins suggests that altered intracellular signalling might be
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associated with constitutive Kras activation. Additionally, several
genes functionally associated with cell growth, proliferation,
development, and structural molecule activity indicate pathways
involved in Kras-mediated tumour development and metastasis.

DISCUSSION

In this study, we focused specifically on the direct comparison of
the global gene expression effects caused by mutations in codon 12
or 13 of the Kras proto-oncogene and Kras overexpression. In
general, the significantly differentially expressed genes followed
the same tendency of regulation in the three transfected cell lines.
Yet, cluster analysis revealed more similarities between gene
expression patterns of KrasG12V and KrasG13D transfectants
compared with Krasoe cells. The level of cellular RNA was only
elevated in Krasoe, whereas the amount of activated Ras molecules
was increased in KrasG12V and KrasG13D cells. The differences in
transcript expression patterns among the transfectants might be
due to the mutation-mediated constitutive activation of Kras. In
contrast, the overexpressed form of Kras still can switch from the
activated to the non-activated state (Wittinghofer, 1998).

There is clear evidence that the activation of the Raf/MAPK
pathway is sufficient for oncogenic transformation mediated by
Ras (Ellis and Clark, 2000). The expression of wt and mutant Kras
alleles caused constitutive activation of this pathway as indicated
by the phosphorylation status of Raf, Erk1, and Erk2 (Recktenwald
et al, 2007). Our microarray experiments detected no significant
changes in gene expression levels of MAP kinases. However, for
the overexpressed genes, Rac1 and Sparc regulatory effects in the
MAP kinase pathways has been described (Frost et al, 1997; Kato
et al, 2001).

Proteome analysis of the transfected cell lines selected
differentially expressed proteins at least 2-fold up- or down-
regulated compared with NIH3T3 cells (Recktenwald et al, 2007).
Up to 52 differentially expressed proteins were detected in the
various Kras transfectants. Our expression profiling analysis
identified 44 differentially expressed genes in at least two out of
three transfectants (Krasoe, KrasG12V, and KrasG13D). In general, the
overlapping transcripts and the proteins followed the same
tendency of regulation in the different cell lines. Similar regulation

in both transcriptome and proteome studies were found for Anxa5,
S100a11, and Fapb5 in KrasG12V-transfectants as well as for Sod1 in
Krasoe. Furthermore, the genes Lox and Col1a1, and the protein
Hsp86 were reversely regulated between the Kras transfectants.
However, a few proteins (eg, Anxa2) showed a reverse regulation
compared with their transcripts. This comparison between
differentially expressed proteins and transcripts suggests that
changes at the protein level were associated in some cases with a
corresponding transcriptional regulation.

Several of the significantly regulated genes identified in our
study were annotated with cellular functions such as cell growth
(eg, Atp5a1, Fabp5, Runx, and S100a6) and cell death
(eg, S100a11), angiogenesis (eg, Anxa2 and Zfp36l1), tumorigen-
esis (eg, Fabp5, Prss23, and Runx), and metastasis (eg, Lox and
Sparc). Genes with very similar functional annotations were also
regulated in expression studies of KrasG12V-transformed rat
embryonic fibroblast (Tchernitsa et al, 2004) in tumours derived
from KrasG12V mouse embryonic fibroblasts (Vasseur et al, 2005)
and in a human colon adenoma cell line constitutive active Kras
due to a mutation in codon 12 (Roberts et al, 2006). These data
suggest that independent of the cellular system and species
background (mouse, rat, or human), the G12V mutation influences
the regulation of the same cellular processes.

Potential role of the regulated genes in tumour development and
progression were also identified by GO analysis. The genes under
the over-represented terms on structural molecular activity, cell
growth, and cell proliferation include several genes directly
annotated with tumorigenesis. For example, Runx3 was described
as a tumour suppressor in gastric carcinogenesis (Peng et al, 2008).
Significant overexpression of transcript Zfp36l1 was found in
lymph node and breast carcinomas (Abba et al, 2007), and
increased Fabp5 expression induces metastasis in human prostate
carcinomas (Morgan et al, 2008). Through such functional roles of
genes differentially expressed by constitutive Kras activation or its
overexpression, Kras potentially influence tumour progression.

Angiogenesis is a cellular function whereby solid tumours
recruit their own blood supply. In microarray studies, it was
hypothesised that fibroblast secrete molecules that both promote
and inhibit angiogenesis (Pollina et al, 2008). Lox, Sparc, and Sod1
genes with copper-binding capacity have been associated with
angiogenesis (Lane et al, 1994; Juarez et al, 2006; Shieh et al, 2007).
Those genes identified in our study to be associated with
angiogenesis indicate pathways involved in Kras-mediated tumour
development and metastasis.

Different levels of aggressiveness in the transforming phenotype
induced by mutations in Kras codons 12 or 13, and the
overexpression of the Kras proto-oncogene in transfected tumour
cells have been described (Guerrero et al, 2000; Bazan et al, 2002).
In our study, activated Ras was stronger increased in KrasG12V than
KrasG13D cells suggesting a diminished protein stability of the
KrasG13D oncoprotein. It would be speculated that due to the
possible switch from the activated to the non-activated state of
overexpressed wt Kras, this overexpression has no influence on the
amount of activated Ras molecules. Thus, despite many similarities
in their oncogenic capacity the different mutant forms and
overexpression of Kras may lead to a modulated activation of
downstream targets that are responsible for these distinct
oncogenic capacities. For example, the G12V mutation was more
prevalent in metastatic human colorectal carcinoma than the
codon 13 mutation (Al-Mulla et al, 1998).

The two genes, Lox and Col1a1, exhibiting either a reverse or
non-regulation in the various transfectants may contribute to the
different malignant phenotype. Despite the well-known physiolo-
gical activity of Lox, its role in oncogenesis is quite controversially
discussed. Elevated expression levels of Lox were detected in
hypoxic human tumour cells (Erler et al, 2006) and in invasive/
metastatic human breast cancer cell lines (Payne et al, 2005).
However, reduced Lox levels were also observed in many cancers

Table 1 Gene ontology

GO term Gene symbol

(A) Molecular functions
Calcium– ion binding Anxa2, Anxa3, Anxa5, Fbln2, S100A11, S100A6,

Sparc, Ssr4
Nucleic acid binding Nfic, RPl18, Runx3, Sfrs3, Snrpf, Zfp36l1
Catalytic activity Anxa3, Atp5a1, Cox7b, Lox, Rac1, Sod1
Transporter activity Atp5a1, Atp5 l, Cox7b, Fabp5, Sec61G
Structural molecule
activity

Col1a1, Fbln2, Rpl13a, Rpl18, Vim

Enzyme regulator
activity

Anxa2, Anxa3, anxa5, S100a6

Lipid binding Anxa2, Anxa3, Anxa5, Fabp5
Oxidoreductase activity Cox7b, Lox, Sod1
Protein binding S100A6, Sparc, Vim

(B) Biological processes
Cell growth Atp5a1, Atp5 l, Fabp5, Nfic, Rac1, Runx3, S100a11,

S100a6, Sec61 g, Ssr4, Zfp36l1
Development Anxa2, Col1a1, Cox7b, Fabp5, Rac1, S100a6, Sod1,

Sparc
Nucleic acid metabolism Atp5a1, Atp5 l, Nfic, Runx3, S100a11, Sfrs3, Snrpf
Cell proliferation Nfic, Ras1, Runx3, S100a11, S100a6, Zfp36l1
Protein metabolism Lox, Rpl13a, Rpl18, Sec61g
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and cancer-derived cell lines (Csiszar et al, 2002; Kaneda et al,
2004). Additionally, Lox expression could inhibit the transforming
activity of the Ras oncogene in NIH3T3 fibroblasts (Min et al,
2007) suggesting a possible role of Lox as tumour suppressor (Di
Donato et al, 1997). Paradoxically, Lox expression is associated
with both tumour suppression and tumour progression. Its role in
tumorigenesis seems dependent on cellular location, cell type, and
transformation status (Erler et al, 2006). The lower expression of
Lox in the KrasG12V-induced tumours may contribute to the higher
aggressiveness of this mutation. In contrast, the upregulation of
Lox in Krasoe transfectants could be interpreted as an important
inhibitory factor of the transforming activity of Kras.

The downregulation of type I collagen gene (Col1a1) is a
common feature of Ras transformation (Thomas et al, 2005).
However, the overexpression of wt Ras itself is apparently not
sufficient to reduce the expression of Col1a1 (Slack et al, 1992).
Decreased expression levels of Col1a1 were identified only in
KrasG12V transfectants showing the highest Ras activity. Further-
more, no effects of wt Ras overexpression in rat fibroblasts on
Col1a1 mRNA level were found (Slack et al, 1992), whereas the

gene was upregulated in Krasoe cells. We conclude that the
overexpression of Col1a1 may suppress the transformed pheno-
type, whereas the downregulation of Col1a1 mediated by the codon
12 Kras mutation contributes to the neoplastic phenotype with the
ability of tumour cells to metastasise.

Identification and characterisation of genes differentially
regulated by Kras overexpression and different Kras mutant forms
should shed light on the understanding of how this oncogene
regulates cell transformation and tumorigenesis.
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