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Abstract Metallo-b-lactamases (MBLs) degrade a broad spectrum of b-lactam antibiotics, and

are a major disseminating source for multidrug resistant bacteria. Despite many biochemical

studies in diverse MBLs, molecular understanding of the roles of residues in the enzyme’s stability

and function, and especially substrate specificity, is lacking. Here, we employ deep mutational

scanning (DMS) to generate comprehensive single amino acid variant data on a major clinical MBL,

VIM-2, by measuring the effect of thousands of VIM-2 mutants on the degradation of three

representative classes of b-lactams (ampicillin, cefotaxime, and meropenem) and at two different

temperatures (25˚C and 37˚C). We revealed residues responsible for expression and translocation,

and mutations that increase resistance and/or alter substrate specificity. The distribution of

specificity-altering mutations unveiled distinct molecular recognition of the three substrates.

Moreover, these function-altering mutations are frequently observed among naturally occurring

variants, suggesting that the enzymes have continuously evolved to become more potent

resistance genes.

Introduction
The rise of drug-resistant bacterial pathogens has been rapid and inevitable following the introduc-

tion of novel antibiotics to the clinic. Pathogens often acquired resistances through horizontal gene

transfer (HGT) using mobile genetic elements carrying antibiotic resistance genes, such as plasmids

or transposable elements (Wright, 2019; Surette and Wright, 2017; Codjoe and Donkor, 2017).

Under constant selection pressure from antibiotic use, these resistance genes continuously evolve to

improve their efficacy and alter and broaden their specificity to other classes of antibiotics

(Surette and Wright, 2017; Livermore, 2012). Understanding the molecular mechanisms and evolu-

tionary dynamics of antibiotic resistance genes is crucial to finding sustainable solutions against the

future dissemination and evolution of antibiotic resistance, such as through predicting future evolu-

tion and aiding in antibiotic and inhibitor design (Crofts et al., 2017; Tehrani and Martin, 2018).

Metallo-b-lactamases (MBL), or class B b-lactamases, are one of the major sources for the spread

of multi-drug resistance bacteria. MBLs are metal dependent hydrolytic enzymes that degrade a

broad spectrum of the widely used b-lactam antibiotics, including ‘last resort’ antibiotics such as car-

bapenems (Bebrone, 2007). Plasmid borne MBLs, such as VIM, NDM, IMP, and SPM-types, have

been particularly problematic as they can spread to different bacterial pathogens and have no clini-

cally effective inhibitors (Nordmann and Poirel, 2002). All major MBLs have also been undergoing

continual evolution; VIM-type MBLs have diversified up to 70 amino acid mutations (26% sequence

difference) into over 50 isolated variants, and some variants seem to have developed new substrate
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specificity (Yan et al., 2001; Schneider et al., 2008; Bogaerts et al., 2012; Mojica et al., 2015;

Martı́nez-Garcı́a et al., 2018). Much effort has been made to characterize the molecular mecha-

nisms and identify key residues in several major MBLs using diverse biochemical and structural

approaches (Lauretti et al., 1999; Franceschini et al., 2000; Wommer et al., 2002; Jin et al.,

2004; King and Strynadka, 2011; Baier and Tokuriki, 2014; Makena et al., 2016; González et al.,

2016a; González et al., 2016b; Socha et al., 2019; Sun et al., 2018). However, the contributions of

the majority of residues in these enzymes remain unexplored, and little is known of the molecular

mechanisms governing substrate recognition.

One way to resolve these questions is through comprehensive, large-scale characterizations of

mutations affecting the MBLs’ efficacy and specificity. Deep mutational scanning (DMS) is a recently

developed method for the characterization of thousands of mutations within a protein using deep

sequencing (Fowler et al., 2010; Fowler et al., 2014; Rubin et al., 2017). The resulting high-resolu-

tion and comprehensive mutational datasets provide invaluable information for deciphering a subset

of mutations related to monogenetic disease (Starita et al., 2015; Weile et al., 2017;

Matreyek et al., 2018), understanding evolutionary dynamics of proteins—including viral coat, anti-

biotic resistance genes and hormone receptors (Starr et al., 2017; Stiffler et al., 2015;

Steinberg and Ostermeier, 2016; Lee et al., 2018)— as well as elucidating protein sequence-struc-

ture-function relationships (Araya et al., 2012; Firnberg et al., 2014; Thyagarajan and Bloom,

2014; Klesmith et al., 2017; Roscoe et al., 2013; Romero et al., 2015; Gray et al., 2017). In par-

ticular, conducting DMS on a protein of interest under varying conditions—for example against dif-

ferent substrates or in different environments—has further unveiled in-depth molecular details of a

protein, such as residues contributing to substrate specificity (Melnikov et al., 2014;

Wrenbeck et al., 2017) and protein–environment interactions (Mavor et al., 2016; Noda-

Garcı́a et al., 2019; Thompson et al., 2019).

In this work, we use DMS to characterize the functional behavior of all ~5600 single amino acid

variants of VIM-2 against three classes of b-lactam antibiotics (ampicillin, cefotaxime, and merope-

nem) and at two different temperatures (25˚C and 37˚C), and gain deep insights into the molecular

and evolutionary determinants of VIM-2’s behavior. We generate a series of comprehensive and

high-quality datasets, and develop a global understanding of VIM-2 by identifying residues that are

critical for its function, stability and/or substrate specificity. We also examine VIM-2’s signal pep-

tide—an often overlooked feature despite its importance in expression and transport. Moreover, we

use the data to assess the resistance characteristics and rationalize evolutionary outcomes of the clin-

ically isolated natural variants of VIM-type genes, revealing that several mutations in the natural var-

iants are functionally beneficial and lead to changes in substrate specificity.

Results and discussion

Deep mutational scanning of VIM-2 metallo-b-lactamase
DMS was conducted on a library of VIM-2 variants, each encoding a single amino acid substitution.

The wild-type (wt) VIM-2 (UniProt ID: A4GRB6) was sub-cloned into a custom pIDR2 vector with a

chloramphenicol resistance marker, where VIM-2 expression is controlled by the constitutive AmpR

promoter (Supplementary file 1); an extra Gly was inserted at position two to facilitate cloning (See

‘Generation of a VIM-2 mutagenized library’ in methods), which was also further mutated and

selected. We constructed the library of all possible single amino acid variants of wtVIM-2 through

PCR based saturation mutagenesis, where each codon position is mutated to an ‘NNN’ codon using

restriction-free (RF) cloning (Figure 1A; van den Ent and Löwe, 2006); there are 5607 possible var-

iants in the library ((20 a.a. + stop codons)�267 positions). The plasmids of mutagenized codon

libraries were pooled into seven groups—six groups of 39 codons (117 bp, 819 variants in each

group) and 1 group of 33 (99 bp, 693 variants)—so the mutagenized region of each group can be

covered by Illumina NextSeq deep sequencing. We estimated the mutation rate of our library con-

struction by determining the full sequence of 87 variants by Sanger sequencing: only one nucleotide

substitution was found outside the intended codon—which corresponds to a mutation rate of

1.4 � 10�5—while two other variants had a large insertion or deletion, which would be filtered out

during the variant identification process (see ‘Variant identification and noise filtering’ in methods).
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Figure 1. Deep mutational scanning (DMS) overview. (A) The workflow for DMS. All single amino acid variants are first generated using RF cloning,

subsequently transformed into E. coli and then subject to selection for antibiotic resistance conferred to E. coli. The effects of selection (fitness score)

were evaluated by deep sequencing and comparing the enrichment of each variant with and without selection. (B) Chemical structures of the antibiotics

used in this study. (C) The dose-response growth curve of E. coli transformed with wtVIM-2 or an empty vector control for each antibiotic. Percent

growth is calculated as OD600 selected / OD600 non-selected�100 after 6 hr of selection at 37˚C. The vertical dashed lines indicate antibiotic

concentrations at which selections were performed in this study. The dose-response curves of E. coli transformed with each of the seven library groups

are in Figure 1—figure supplement 1. The number of variants represented in the mutated library is in Table 2. Other aspects of the cloning and data

processing are described in Figure 1—figure supplement 2 (PCR cloning method), Figure 1—figure supplement 3 (deep sequencing error rates) and

Figure 1—figure supplement 4 (improving variant identification by an error filtering process).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Antibiotic dose-response curves of VIM-2 libraries for all antibiotics.

Figure supplement 2. Outline of steps for generating all single amino acid variants of VIM-2.

Figure supplement 3. Measurement of deep sequencing error rates using sequencing data of wtVIM-2 DNA.

Figure 1 continued on next page
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Thus, we constructed a high quality variant library, comparable to other libraries constructed and

deep sequenced in a similar manner (Melnikov et al., 2014).

Cultures of E. coli cells—specifically, E. cloni 10G, chosen for their high transformation efficiency

and lack of endA and recA—transformed with VIM-2 libraries (each group was treated separately)

were subjected to antibiotic selection by incubating the culture at 37˚C with LB media in the pres-

ence (selected) and the absence (non-selected) of three different classes of b-lactam antibiotics—

ampicillin (AMP), a 3rd generation penicillin, cefotaxime (CTX), a 3rd generation cephalosporin and

meropenem (MEM), a carbapenem (Figure 1B). To determine the selection conditions, the growth

of E. coli cells harboring the plasmid encoding wtVIM-2 was examined at a range of antibiotic con-

centrations (1.0–1024 mg/mL AMP, 0.0625–64 mg/mL CTX, 0.002–2.0 mg/mL MEM) (Figure 1C and

Figure 1—figure supplement 1). We chose to test the highest antibiotic concentration where

wtVIM-2 can grow almost 100% relative to growth in media without b-lactam antibiotics, and at suc-

cessive lower concentrations at 8-fold decrements where the range permits; selected conditions are

128, 16 and 2.0 mg/mL of AMP, 4.0 and 0.5 mg/mL CTX, and 0.031 mg/mL MEM (Figure 1C). The

selection process for each antibiotic was conducted in duplicate on separate days. After selection,

the plasmids were isolated, the mutagenized region of each group was amplified by PCR, and the

amplicons were sequenced by the Illumina NextSeq 550 platform. The sequencing reads were error

filtered, and the fitness score of each variant relative to wtVIM-2 was calculated using Equation (1).

(see methods for ‘Deep sequencing and quality control’).

fitness score¼ Log2

frequency of variant Selected
frequency of variant Non�selected

frequency of wt Selected
frequency of wt Non�selected

 !

(1)

Where the frequency of a variant (or wt) is the deep sequencing read count of the variant divided

by the total reads in the corresponding sample. Variants with frequencies below the threshold of

deep sequencing errors that was estimated from the deep sequencing of wtVIM2 (see methods for

‘Variant identification and noise filtering’) were excluded during scoring. The non-selected library

shows excellent coverage, with 5535 of 5607 (98.7%) variants present after filtering in at least one

replicate while 97.8% are observed in both replicates (Table 2). For selected libraries, we calculate

the fitness score for any variants present in at least one non-selected replicate then average the fit-

ness scores between the two selection replicates (see Supplementary file 2A for all fitness scores).

Our DMS experiments show high replicability in all conditions tested. The R2 of a linear regression

between variants observed in both replicates is 0.94 for selection with 128 mg/mL AMP, 0.91 for 4.0

mg/mL CTX and 0.85 for 0.031 mg/mL MEM (Figure 2 and Figure 2—figure supplement 1). As

expected, variants with synonymous mutations have near neutral fitness and variants with nonsense

mutations (stop codons) have the lowest fitness scores. At the highest concentration of each antibi-

otic, variants with stop codons have fitness scores centered around �4 and lower, thus a fitness

score of �4 is considered the lowest score cut-off for downstream analyses and fitness scores below

this cut-off are set to �4 (Figure 2). Like previous DMS studies with other proteins, the overall fitness

distribution of all variants exhibit a bi-modal distribution with a peak at neutral fitness and a long tail

stretching toward negative fitness to another peak at the cutoff of �4 (Figure 2; Stiffler et al.,

2015; Firnberg et al., 2014; Roscoe et al., 2013; Jacquier et al., 2013).

We confirmed the DMS fitness scores reflect the actual resistance level of variants (Figure 2 and

Supplementary file 2B). We isolated 45 unique variants (61 unique codons), and determined the

half maximal effective concentration (EC50) of E. coli culture harboring each variant for three antibi-

otics by measuring antibiotic dose-response curves. We fit the relationship using a sigmoidal func-

tion and identify a linear range of correlation for fitness scores within �3.1 to 0.1 for AMP (EC50 28–

81 mg/mL), �2.7 to 0.6 for CTX (EC50 1.8–4.1 mg/mL) and �2.4 to 1.8 for MEM (EC50 0.012–0.066

mg/mL), which correspond to a 2.9, 2.3 and 5.5-fold range of EC50 values for AMP, CTX and MEM,

respectively (Sebaugh and McCray, 2003). All fitness scores outside the linear range are still qualita-

tively consistent with EC50—where higher fitness scores correspond to higher EC50 values and lower

Figure 1 continued

Figure supplement 4. Rationale and support for estimating deep sequencing noise for filtering variants observed in non-selected libraries.
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Figure 2. Quality control of DMS data and general mutational properties of VIM-2. In the horizontal panels, data are shown for (A) 128 mg/mL AMP

selection, (B) 4.0 mg/mL CTX selection and (C) 0.031 mg/mL MEM selection. The color legend in panel A) is shared by all panels. For each horizontal

panel, the left plot shows correlation between fitness scores of all variants in the two replicates of DMS; replicate correlation of selection conditions not

shown here are in Figure 2—figure supplement 1. The middle plot shows distribution of fitness effects for all variants separated into synonymous,

missense and nonsense distributions, where the vertical grey lines indicate fitness score cut-offs used to classify fitness effects as positive, neutral or

negative. The proportion of variants in each fitness effect category can be found in Figure 2—figure supplement 2. The right plot shows the

relationship of DMS fitness scores with antibiotic resistance (EC50) of isolated variants measured in a dose-response curve; variants with resistance lower

than the tested range could not be fitted for EC50, leading to EC50 values for 39 unique variants in AMP, 39 for CTX and 45 for MEM—some points are

an average of the same codon or amino acid variant isolated multiple times. The filled rectangle in the background indicates the region of linear

association between fitness scores and EC50. The text at the top of each plot indicates the Spearman rank-order correlation coefficient and the P-value

of the correlation. Individual EC50 measurements can be found in Supplementary file 2B.

Figure 2 continued on next page

Chen et al. eLife 2020;9:e56707. DOI: https://doi.org/10.7554/eLife.56707 5 of 31

Research article Biochemistry and Chemical Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.56707


fitness scores correspond to lower EC50 values—which is supported by a Spearman rank-order corre-

lation between fitness and EC50 of at least 0.85 for selection using each antibiotic.

Global view of VIM-2 enzyme characteristics
The fitness scores for variants selected at 128 mg/mL AMP are shown in Figure 3 (See Figure 3—fig-

ure supplements 1 and 2 for CTX and MEM); the inserted Gly2 is omitted to match the numbering

for wtVIM-2 (For Gly2 fitness scores, see Supplementary file 2A). At a glance, there are several

interesting trends in the DMS data of VIM-2. Variants with Cys mutations are highly deleterious

throughout the catalytic domain (positions 27–266) (Figure 3—figure supplement 3). As wtVIM-2

possesses only one Cys for metal binding, additional Cys may cause the formation of undesired

disulfide bonds, leading to misfolding (Mehlhoff, 2020). Pro variants are also often deleterious, as

this residue disrupts secondary structures (Stiffler et al., 2015; Firnberg et al., 2014; Gray et al.,

2017). We found 112 positions (42% of all residues) are highly sensitive to mutations, where over

75% of missense variants (excluding synonymous and nonsense mutations) display a fitness

score <�2.0. These positions are likely key requirements for catalytic activity or protein stability and

folding in wtVIM-2. Indeed, these positions include all six active-site metal coordinating residues

(His114, His116, Asp118, His179, Cys198, His240), as well as 3–4 residues adjacent to each metal

binding residue in the amino acid sequence that are likely to play important roles in the metal con-

figuration and enzymatic function. Additionally, 92% of positions with high mutational sensitivity—

including all metal binding residues—are located in the core of the protein (accessible surface area,

ASA, of residue <30%) and 63% are almost completely buried (ASA <5%), congruent with previous

findings (Fowler et al., 2010; Stiffler et al., 2015; Thyagarajan and Bloom, 2014; Melnikov et al.,

2014; Thompson et al., 2019; Kitzman et al., 2015; Figure 4A). The association between muta-

tional sensitivity and ASA is also evident at the level of individual variants, where the distribution of

variants at positions with ASA <30% exhibits significantly lower fitness than the distribution of var-

iants at positions with ASA �30% (two-tailed Mann-Whitney U test, P-value<0.001, Figure 4A).

To examine the distribution of fitness effects (DFE) of VIM-2 variants, we classified the 5291 non-

synonymous variants as having negative (<�0.7), neutral (�0.7 to 0.7) or positive (>0.7) fitness by

performing Z-tests of each variant’s fitness scores against the fitness distribution of 244 synonymous

variants (the null model distribution), adjusting for 5% false discovery rate using the Benjamini-Hoch-

berg procedure. The DFE of VIM-2 variants is similar across all selection antibiotics at the highest

screening concentration (128 mg/mL AMP, 4.0 mg/mL CTX, 0.31 mg/mL MEM), with ~65% of variants

being negative, ~30% being neutral and ~5% being positive (Figure 2—figure supplement 2). The

overall DFE also agrees with observations found in DMS of other enzymes, such as E. coli amidase,

TEM-1 b-lactamase and levoglucosan kinase (Stiffler et al., 2015; Firnberg et al., 2014;

Klesmith et al., 2017; Wrenbeck et al., 2017).

Next, in order to determine biophysical properties that explain the fitness scores, a linear model

was constructed using the fitness score of variants as the response factor and various parameters

such as ASA, DDG predicted by Rosetta, change in amino acid volume and polarity, and the wt and

variant amino acid states as predictors (Table 1, Supplementary file 3A and 3B for CTX and MEM

models, Supplementary file 2C for data used in models). We first modeled each predictor alone

with the response, then selected predictors that account for at least 10% of variance in the response

(R2 >0.10) and modeled them in combinations of 2 or more as individual terms and as interacting

terms. The final model accounted for the greatest amount of variance using the fewest predictors—

that is optimized for adjusted R2—and combined four predictors (ASA, DDG, wt and variant amino

acid) capable of explaining 55% of the variation in fitness scores (adjusted R2 = 0.55). The ASA alone

can explain 21% of fitness score variation (Table 1) and ASA of the wt amino acid alone show a sig-

nificant correlation (R2 = 0.50) to the average fitness scores of the position, with mutations at

exposed residues having less deleterious fitness effects on average (Figure 4B). The DDG explains

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Replicate correlation of fitness scores in the DMS experiments.

Figure supplement 2. Proportion of fitness effects for VIM-2 nonsynonymous variants selected in AMP, CTX and MEM.
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Figure 3 continued on next page
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an additional 18% (Table 1) and there is overall correlation between DDG and fitness score while

individual predictions are relatively scattered, similar to previous findings that compared fitness to

Rosetta folding energies or solubility scores (Figure 4C; Firnberg et al., 2014; Klesmith et al.,

2017). Knowing the wt and variant amino acid can further explain another 10% and 5% of variation

respectively (Gray et al., 2017; Gray et al., 2018). Thus, the results indicate structure and biophysi-

cal factors can explain the majority of fitness score tendencies.

Codon and amino acid optimization in the signal peptide
The first 26 residues of VIM-2 has been identified as the signal peptide (Lauretti et al., 1999;

Franceschini et al., 2000; Garcia-Saez et al., 2008), which is a sequence used to translocate the

enzyme to the periplasm, then cleaved after transport (Oliver, 1985; Pugsley, 1993; Freudl, 2018;

Paetzel and Peptidases, 2019). Our DMS data supports the known length of the signal peptide as

mutations to Cys are much less deleterious before residue 26, suggesting these positions are not

incorporated into the mature enzyme in the periplasm. In general, the signal peptide sequence has

an amino terminal (N) region (residues 1–7) with one or more positive residues, a hydrophobic (H)

region (residues 8–21) and a carboxy terminal (C) region (residues 22–26) that precedes the cleavage

site containing a PXAXS motif (Figure 5A; Oliver, 1985; Pugsley, 1993; Freudl, 2018; Paetzel and

Peptidases, 2019). The signal peptide is conserved at 17 of 25 positions (Met one excluded) across

all VIM variants, and the remaining are binary differences between the conserved sequences of the

VIM-1 and VIM-2 clades (Figure 5A, clades are defined by Figure 8—figure supplement 1).

Mutations in the signal peptide are generally tolerated (67% of missense mutations are neutral

with 128 mg/mL of AMP) and even beneficial (10% of missense mutations are positive), which is con-

sistent with a previous DMS study with TEM-1 (Firnberg et al., 2014; Figure 5B). Overall, the DFE

for missense variants in the signal peptide is significantly more neutral than the DFE of missense var-

iants in the catalytic domain (two-tailed Mann-Whitney U test, P-value<0.001, Figure 5B). In the

N-terminal region, mutations to Lys3 are especially deleterious, likely due to the importance of a net

positive charge in the N-region for efficient translocation (Oliver, 1985; Inouye et al., 1982;

Iino et al., 1987). In contrast, Lys7 is tolerant to substitution—in fact, half of the natural VIM variants

have a Ser at this position—suggesting that Lys3, rather than Lys7, is critical for translocation. In the

H-region, residues Val10 through Ile16 are the most sensitive to mutation, especially when changed

to a charged amino acid (Firnberg et al., 2014; Mehlhoff, 2020; Oliver, 1985). The C-region is

most negatively affected by the mutation of Leu23 to Cys (fitness of �2.5) or Trp (�2.7), while 95%

of variants are neutral or positive, including those in the PXAXS motif.

Interestingly, variants with evolutionarily conserved residues in the signal peptide often do not

have the highest fitness, and we note both residue level and codon level dependencies in fitness

(Figure 5C). Across the signal peptide, 10% of variants with missense mutations have positive fitness

relative to wtVIM-2, with fitness ranging from 0.7 to 1.3. In terms of codon level fitness within synon-

ymous variants, we find a small but statistically significant association between a mutated codon’s

change in mRNA folding energy (including the 5’UTR and excluding the 3’UTR) and fitness within

mutants close to the start codon, supporting previous findings that avoidance of secondary structure

near the start codon is favored (Figure 5—figure supplement 3, Supplementary files 2D and 2E,

see Materials and methods for ‘RNA folding energy calculation’) (Bhattacharyya et al., 2018;

Bentele et al., 2013). We also found that 73 of 143 ‘codon dependent variants’—variants in which

any pair of synonymous codon scores differ by more than 2.0—are within the signal peptide, which

Figure 3 continued

Corresponding heat maps for variants under selection with CTX and MEM can be found in Figure 3—figure supplement 1 and Figure 3—figure

supplement 2, respectively. A comparison between the distributions of variants with each mutated amino acid can be found in Figure 3—figure

supplement 3. All fitness data used in the heat maps can be found in Supplementary file 2A.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Fitness of all VIM-2 single amino acid variants under 4.0 mg/mL CTX selection.

Figure supplement 2. Fitness of all VIM-2 single amino acid variants under 0.031 mg/mL MEM selection.

Figure supplement 3. Comparison of fitness score by variant residue in 128 mg/mL AMP.
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is also suggestive of the importance of codon choice near the start of the coding region

(Kelsic et al., 2016; Figure 5—figure supplement 2).

The less than optimal residue level fitness of wtVIM-2 may be because we employ E. coli as a host

while natural VIM variants are often found in Pseudomonas (Jia et al., 2017), and/or the signal pep-

tide is not selected to produce maximum expression in natural environments. It has been shown that

different signal peptides produce variable expression levels and translocation rates for a given pro-

tein, both of which affect the final resistance, especially in different host organisms (Socha et al.,

2019; Mehlhoff, 2020; Inouye et al., 1982; Iino et al., 1987; Brockmeier et al., 2006;

Mathiesen et al., 2009; Hemmerich et al., 2016). Meanwhile, fitness variation at the codon level

may be due to the presence of a different 5’UTR compared to the plasmid sequence found in clinical

VIM-2 (Bhattacharyya et al., 2018; Kelsic et al., 2016). The inclusion of an extra Glycine at position

two may affect the observed fitness, though this effect is expected to be small since signal peptides

are highly variable in length and composition in the N-region (Oliver, 1985; Pugsley, 1993); 13/19

missense variants are neutral or positive at Gly2. Overall, the signal peptide is sensitive to changes

in organismal and genetic context which would affect the outcome of horizontal gene transfer. Nota-

bly, the signal peptide is frequently mutated in naturally occurring VIM-type variants (see section on

‘Natural VIM variation’ below), suggesting changes in the signal peptide sequences may have played

significant roles in dissemination of MBL genes to different hosts and adaptation to higher antibiotic

concentrations.

Elucidation of the role of residues in the catalytic domain
We sought to further examine the functional and structural roles of residues in the catalytic domain

(positions 27–266) of wtVIM-2. We compare fitness scores of missense variants between selection in

128 mg/mL and 16 mg/mL AMP, as fitness at different AMP concentrations reflect a residue’s degree

of involvement in the enzyme’s stability, expression and/or catalytic activity. Selection was also per-

formed at 25˚C in addition to 37˚C to examine temperature dependent mutational effects, highlight-

ing residues involved in protein folding and stability; in general, lower temperatures are permissive

to variants with poor folding and high aggregation propensity while having a uniform effect on cata-

lytic rate. To assess the role of each residue, we classified all positions in the catalytic domain into

four types: i) ‘tolerant’, if 75% of variants are neutral even in the most stringent condition with 128

mg/mL AMP at 37˚C, ii) ‘essential’, if 75% of variants are highly deleterious even in the least stringent

condition with 16 mg/mL AMP at 25˚C, iii) ‘temperature dependent’, if the difference in the fitness
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Figure 4. Correlation of fitness with structural attributes. Fitness scores are from DMS at 128 mg/mL AMP selection. (A) To the right, is the crystal

structure of wtVIM-2 (PDB: 4bz3) colored by the average fitness of 20 amino acid mutations at each position. The inset to the left shows distributions of

fitness scores for variants at positions with relative accessible surface area (ASA) <0.3 in wtVIM-2 or positions with ASA �0.3, with the number of variants

in each distribution shown at the bottom and the results of a two-tailed Mann-Whitney U test between the two distributions at the top. (B) The

correlation between accessible surface area and the average fitness of 20 amino acid mutations at each position. (C) The correlation between the

changes in folding energy predicted by Rosetta and the DMS fitness scores for all variants.
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score between 25˚C and 37˚C is more than 2.0 in either 128 or 16 mg/mL AMP, and iv) ‘residue

dependent’, if variants are temperature independent (similar scores at the two temperature) and

exhibit a range of fitness rather than being mostly neutral or negative (Figure 6A–B,

Supplementary file 2F for all classifications, also see ‘Identification of critical residues and tempera-

ture dependence’ in the Materials and methods).

As expected, the 55 ‘tolerant’ positions are scattered around the surface of the protein and are

mostly solvent exposed (80% of positions have greater than 30% ASA) (Figure 6C–D). The 20 ‘essen-

tial’ residues include all six metal binding residues and deeply buried residues (70% have less than

5% ASA), which form the central core of the protein (Figure 6C). This core is further expanded into

a larger scaffold by the 93 ‘temperature dependent’ positions that are mostly buried in the structure

(76% have less than 30% ASA) and largely hydrophobic—75% of the temperature dependent resi-

dues are non-polar (A, G, I, L, P, V) or aromatic residues (F, W, Y) compared to 58% for the entire

catalytic domain. The 72 ‘residue dependent’ positions tend to be near the surface or at packing

interfaces between a-helices and b-sheets (Figure 6D).

The fitness of variants at temperature and residue dependent positions show equally strong asso-

ciation with the Rosetta predicted DDG, indicating both classes of residues have contributions to

structural packing (Figure 6—figure supplement 1). However, the location and hydrogen bonding

Table 1. Linear model output for DMS fitness scores under 128 mg/mL AMP selection

Predictor* Estimated effect† Adjusted P-value (a = 0.05)‡ Variance explained§

(Intercept)¶ �1.73 <0.001

ASA** 2.83 <0.001 21%

Rosetta DDG†† �0.28 <0.001 18%

Starting(wt) residue C �1.53 <0.001 10%

D �1.33 <0.001

E �0.53 <0.001

G �0.92 <0.001

H �1.09 <0.001

I �0.50 <0.001

L �0.43 <0.001

N �0.62 <0.001

R �0.35 0.001

S �0.23 0.018

V �0.36 <0.001

W �1.35 <0.001

Variant residue C �1.69 <0.001 5%

D �0.40 0.002

P �0.61 <0.001

W �0.45 <0.001

*Each predictor indicates a class of wtVIM-2 derived values that were used as explanatory variables to model a linear relationship with the observed fitness

score.

†The estimated effect is the predicted change in fitness score away from the intercept with a one unit increase in a continuous predictor or a binary change

in a categorical predictor.

‡P-values indicates whether a predictor makes a significant contribution to the change fitness score, and are adjusted for a false discovery rate of 5% using

the Benjamini-Hochberg procedure.

§The adjusted R2 of each predictor when correlated with fitness, which is a measure of how much variation in the fitness score can be explained by each

predictor in the linear model.

¶The intercept is the average fitness of all variants where the continuous variable is 0 (ASA and Rosetta DDG) and the wt or variant residue is Ala.

**ASA ranges from 0.0 to 1.0.

††Rosetta DDG ranges from �5.0 to 5.0 Rosetta energy units.
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behavior of each class of residues suggest different functional roles. Essential and temperature

dependent residues display an enrichment of sidechain-backbone h-bonding relative to the propor-

tion of h-bonding residues in each class (Figure 6—figure supplement 2, Supplementary file 2G),

suggesting—when combined with the formation of a hydrophobic core—these residues are largely

involved in protein folding and stability (Roscoe et al., 2013; Thompson et al., 2019; Flynn, 2019).

In contrast, ‘residue dependent’ positions are prominent in the two major active site loops (14/23

positions from 60 to 68 and 201–214) and on packing interfaces on these loops’ distal faces from the

active site. The loop holding metal-binding residues His114, His116 and Asp118, and the helix posi-

tioning the loop into the active-site (positions 112–129) are also enriched in residue dependent posi-

tions (10/15 non-metal-binding positions), suggesting possible effects on metal and substrate

positioning. Thus, many of the ‘residue dependent’ positions are likely to be involved in catalysis

through direct or indirect substrate interactions, and also affect the overall shape of the active site.

Distinct recognition for different classes of b-lactam substrates
VIM-2 is known for its broad spectrum activity against all classes of b-lactam antibiotics except

monobactams, but how residues achieve substrate recognition remains unknown. We examined
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Figure 5. Conservation patterns and fitness scores in the signal peptide. (A) Sequence logo of the signal peptide region aligned across all VIM natural

variants generated using WebLogo (https://weblogo.berkeley.edu/). Positions with two major naturally occurring residues are conserved differences

between the VIM-1 and VIM-2 clades (clades are defined in Figure 8—figure supplement 1). (B) The distribution of fitness effects of all missense

variants, separated into signal peptide variants and catalytic domain variants. The number of variants in each distribution are displayed in the legend

below the distributions. The results of a two-tailed Mann-Whitney U test between the distributions are displayed above the distributions. (C) DMS

fitness scores of all variants at each position of the signal peptide. Synonymous variants of wtVIM-2 and conserved variants observed in the VIM-1 clade

are highlighted as labelled circles. Additional information on codon variant fitness in the signal peptide can be found in Figure 5—figure supplement

1 (replicate correlation of codon variant fitness), Figure 5—figure supplement 2 (heat map of codon variant fitness) and Figure 5—figure supplement

3 (correlation between RNA folding energy and codon variant fitness).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Replicate correlation for fitness scores of all codon variants under selection in 128 mg/mL AMP.

Figure supplement 2. Heat map of codon variant fitness scores for the signal peptide of VIM-2 under selection in 128 mg/mL AMP.

Figure supplement 3. Correlation between the fitness score under selection in 128 mg/mL AMP and predicted DDG of RNA folding for codon variants

in the signal peptide.
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Figure 6. Distribution of mutational tolerance and temperature dependence of wtVIM-2 residues. (A) Scatterplots comparing fitness scores under

selection at 25˚C and 37˚C (128 mg/mL AMP). Variants within the classified positions are highlighted in dark blue while all variants are plotted in grey for

reference. (B) Proportion of residues in the wtVIM-2 catalytic domain that have been classified into each behavioral category. (C–D) The wtVIM-2 crystal

structure (PDB: 5yd7) is colored by the behavioral classifications, the active-site zinc ions are colored in lime green. (C) View of the spacial distribution of

Figure 6 continued on next page
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mutations that alter substrate specificity to identify wt residues responsible for substrate recognition

by comparing fitness scores between the three antibiotics (128 mg/mL AMP, 4.0 mg/mL CTX, 0.031

mg/mL MEM). First, we identified 29 ‘globally positive’ variants across 10 positions in the catalytic

domain that increase fitness score to >1 in all antibiotics, which is more conservative than the cut-off

of >0.7 for variants with positive fitness effects relative to wtVIM-2 and is above the upper fitness

score range of the peak centered at neutral fitness in the DFEs (Figure 2; Supplementary file 2H).

Residues at positions 47, 55, 66, 68 and 205 each give rise to at least three globally positive variants

(24 total) while 57, 65, 115, 180 and 201 each give rise to one; 9/10 positions with globally positive

variants are near the active site, having at least one atom within 15 Å of the active site zinc ions

(Figure 7A). Next, we compare fitness scores of different antibiotics in pairs, and identified variants

with a change in fitness effect classifications (negative, neutral or positive) combined with a 2.0 fit-

ness score difference between antibiotics. We identified 78 specificity altering variants across 25

positions, with 23/25 positions near the active site (Figure 7B, Table 3 and Supplementary file 2I

for individual specificity variants, Figure 7—figure supplement 1 for fitness heat maps at specificity

positions). We confirm the specificity by comparing the fitness scores with the log2(EC50 var /EC50 wt)

of the variant in the three antibiotics (Figure 7—figure supplement 2). Of the 25 positions, five are

shared by both specificity and globally positive variants, and specificity changes are enhanced by the

positive fitness at three of these positions (68, 201 and 205). However, most changes in specificity

are due to decreases of fitness in one or two substrates, and only three variants (R205H/I/V) maintain

neutral or higher fitness in all antibiotics (Melnikov et al., 2014; Wrenbeck et al., 2017). When

examining the roles of these positions, we find nine ‘residue dependent’ and one ‘tolerant’ position,

as expected for positions that interact with substrate rather than affect folding (Dellus-Gur et al.,

2013). However, the other 15 positions are ‘temperature dependent’ positions, suggesting residues

that are involved in substrate specificity are also embedded in the protein core.

Table 2. Variants observed in each library group.

37˚C* 25˚C*

Group Number of positions Total possible variants Both replicates† At least one replicate‡ Both replicates At least one replicate

1 39 819 808 811 808 812

2 39 819 812 813 811 814

3 39 819 803 807 802 807

4 39 819 802 813 809 812

5 39 819 801 812 804 811

6 39 819 775 793 789 796

7 33 693 682 686 678 690

Total 267 5607 5483 5535 5501 5542

% coverage 97.8% 98.7% 98.1% 98.8%

*Non-selected libraries were grown, sequenced and filtered separately at 37˚C and 25˚C.

†The observed number of variants that passed noise filtering in both sequencing replicates of the non-selected library.

‡The observed number of variants that passed noise filtering in at least one sequencing replicate of the non-selected library.

Figure 6 continued

temperature dependence in wtVIM-2, with residues depicted as spheres. The upper row depicts all residues, while the lower row depicts only essential

and temperature dependent residues. (D) Cartoon representation of wtVIM-2 with metal-binding residues shown as sticks. All classifications can be

found in Supplementary file 2F. Additional analysis of temperature dependence can be found in Figure 6—figure supplement 1 (correlation of

Rosetta DDG with temperature dependence) and Figure 6—figure supplement 2 (proportion of sidechain-backbone hydrogen bonding by

temperature dependence).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Rosetta DDG in relation to temperature dependence classifications.

Figure supplement 2. Hydrogen bonding behavior in relation to temperature dependence classifications.

Chen et al. eLife 2020;9:e56707. DOI: https://doi.org/10.7554/eLife.56707 13 of 31

Research article Biochemistry and Chemical Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.56707


Interestingly, there is a strong bias in specificity changes depending on mutations and their posi-

tions in the active site. In 21 of 25 positions, specificity variants decrease AMP fitness, while in 10

positions variants decrease CTX fitness and variants decrease MEM fitness at only one position

(Figure 7B). This bias is maintained at the level of individual specificity variants, where 96% decrease

the fitness in either AMP and/or CTX—29 only decrease AMP, 33 only decrease CTX and 10

decrease both—while only three variants decrease MEM. The residues specific to AMP—where
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Figure 7. Visualization of VIM-2 specificity determining positions. The wtVIM-2 crystal structure (PDB: 5yd7) is featured in all panels, with the active site

Zn ions depicted as lime green spheres. (A) Positions with at least one globally positive mutation are highlighted as orange spheres, which are also

found in Supplementary file 2H. (B) Positions classified as being responsible for specificity towards certain antibiotics in wtVIM-2 are color coded by

antibiotic and highlighted as spheres; the positions are listed by specificity in Table 3. Individual variants classified as having changes in specificity are

listed in Supplementary file 2I. Heat maps of specificity positions for fitness under selection in each antibiotic and fitness differences between

antibiotics can be found in Figure 7—figure supplement 1. (C–E). Close-up views of the specificity residues in the active site with (C) hydrolyzed

ampicillin (PDB: 4hl2), (D) cefuroxime (PDB: 4rl0) and (E) meropenem (PDB: 5n5i) from VIM-1 and NDM-1 structures that have been aligned to the

wtVIM-2 structure using the active site residues. Residues are colored by the inferred substrate specificity as in B). Substrates are shown in stick and ball

representation. Comparison of fitness changes with EC50 changes in individual variants are found in Figure 7—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Fitness landscapes of VIM-2 at substrate specificity positions.

Figure supplement 2. Comparison of fitness scores and EC50 of specificity variants.
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mutations to the residue decrease AMP fitness, but are neutral for CTX and/or MEM—are spread

around the active site, including the two active site loops (60–68 and 201–214) as well as residues in

the protein scaffold. In contrast, the residues specific for CTX are restricted to the two active site

loops (Mojica et al., 2015; Martı́nez-Garcı́a et al., 2018; Moali et al., 2003; Merino et al., 2010;

Leiros et al., 2014; Leiros et al., 2015); mutations in positions 62, 67 and 68 are fully specific to

CTX, while positions 202, 205, 210 and 211 all have mixed specificity for CTX and AMP. To visualize

residue-substrate interactions, we overlaid AMP, cefuroxime and MEM substrates in the active site

of VIM-2 through alignment with VIM-1 and NDM-1 structures crystallized in complex with these sub-

strates. Some substrate interactions are apparent from proximity, such as the packing of hydropho-

bic residues in loop 60–68 to the non-polar, aromatic substituents on the AMP (C6) and cefuroxime

(C7) that is missing in most carbapenems (Figure 7C–D). However, Glu202 and Arg205 seem to be

in better position to interact with the C2 substituent of MEM and are further from AMP or cefurox-

ime, yet both residues are specific for AMP and CTX. Moreover, many residues in the protein scaf-

fold that are affecting AMP specificity do not directly interact with the substrates. We hypothesize

that these distant residues may contribute to solvent related phenomenon—such as displacement of

solvent and/or bridging solvent with ligand to affect substrate binding energy (Maurer and Oosten-

brink, 2019; Spyrakis et al., 2017)—or alter protein dynamics to affect substrate specificity

(González et al., 2016b; Petrović et al., 2018; Campbell et al., 2018; Campbell et al., 2016;

Singh et al., 2015).

Although wtVIM-2 degrades all three b-lactams, our observations suggest that the enzyme inter-

acts with each substrate in a different manner. AMP interacts with many residues around the active

site and is the most sensitive to mutations, while CTX specificity relies exclusively on interactions

with residues in the active site loops. Interestingly, MEM seems to rely on contacts shared with other

antibiotics, which suggest that carbapenem resistance of VIM variants may have coevolved with

other antibiotics.

Natural VIM variation favors neutral, adaptive and specificity mutations
Currently, 56 unique VIM-type MBL sequences (including wtVIM-2) have been found on plasmids in

b-lactam resistant clinical isolates (Supplementary file 2J; Martı́nez-Garcı́a et al., 2018; Jia et al.,

2017). The DMS data of VIM-2 enable us to characterize these naturally occurring mutations com-

prehensively. We classified these sequences into four clades, represented by VIM-1 (between 25–29

mutations from VIM-2 each, 45 unique mutations total), VIM-2 (1–6 mutations, 31 total), VIM-7 (70

mutations), and VIM-13 (32–33 mutations, 34 total) (Figure 8A, Figure 8—figure supplement 1),

with 131 unique point mutations relative to VIM-2 across 99 positions (Figure 8—figure supplement

2, Supplementary file 2K).

As expected, the fitness distribution of naturally occurring mutations in the VIM-type MBL for all

antibiotics (128 mg/mL AMP, 4.0 mg/mL CTX, 0.031 mg/mL MEM) shows enrichment for neutral and

positive mutations (Figure 8B). The trend suggests that natural variants have adapted to higher

resistance as 31% of all ‘globally positive’ catalytic domain variants in DMS are also naturally occur-

ring mutations, and 17% of all natural mutations have positive fitness effects for at least one antibi-

otic. At least 66% of variants have neutral fitness effects within each antibiotic. Natural mutations are

disfavored in residues crucial for activity or stability (Figure 8C): Of the 99 mutated positions, only a

small proportion of ‘essential’ (1/20 positions) and ‘temperature dependent’ (21/93) positions have

been mutated while large proportions of the signal peptide (20/26) and ‘tolerant’ positions (32/55)

Table 3. Inferred specificity of residues in wtVIM-2.

Specificity Positions*

AMP 39, 55, 57, 63, 117, 119, 142, 143, 153, 196, 219, 222, 243, 248

CTX 62, 67, 68

AMP or CTX 60, 61, 202, 205, 210, 211, 216

MEM 201

*Positions in bold are temperature dependent. The underlined position is tolerant. The unformatted positions are

residue dependent.
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Figure 8. Behavior of natural VIM variants inferred from DMS fitness. (A) Maximum likelihood phylogenetic tree of all natural VIM variants examined in

this study, colored by major clades (a larger version of the tree is presented in Figure 8—figure supplement 1). The wtVIM-2 sequence is highlighted

in white. (B) Distribution of fitness for all unique individual mutations found in VIM natural variants compared to all missense variants measured in DMS

for all three antibiotics. (C) All residues mutated in the natural variants are shown in sphere representation and colored by mutational tolerance and

temperature dependence. The pie chart on the left shows the proportion of natural variant positions in each classification. (D) wtVIM-2 residues that are

both mutated in at least one natural variant and affect specificity are highlighted as sticks, colored by the clade(s) in which the residue is mutated. All

positions mutated in natural VIM-type variants relative to wtVIM-2 can be found in Figure 8—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure 8 continued on next page
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have been mutated. Interestingly, 44% (11/25) of specificity altering positions have been mutated,

which suggests that VIM variants may have changed their substrate specificity during evolution

(Figure 8D).

However, 10% of mutations are still highly deleterious (fitness score <�2.0) in 128 mg/mL AMP

(6.9% for 4.0 mg/mL CTX, 6.1% for 0.031 mg/mL MEM), indicating other factors that affect natural

variation (Figure 8B). These 13 deleterious mutations are spread over 11 positions, where one posi-

tion is in the signal peptide, and 10 are in the catalytic domain. The signal peptide mutation (K3Q)

occurs only in VIM-7 and eliminates the Lys3 critical to translocation, but this is likely neutral as VIM-

7 has a S6R mutation that replaces the positive charge. Two mutations are only deleterious to AMP

(Q60H, A143T), thus altering substrate specificity. Furthermore, we suspect the neutral I185V muta-

tion (all 55 natural variants have Val185 while our wtVIM-2 has Ile185) acts as a global suppressor

(Brown et al., 2010; Huang and Palzkill, 1997), and permit the accumulation of four mutations that

are deleterious in all antibiotics (T139A, T139I, V236G and V255A) as I185V is the only other muta-

tion in these natural variants. The remaining six deleterious mutations are likely neutralized by spe-

cific intramolecular epistasis, or the background dependence of mutational effects (Starr and

Thornton, 2016; Miton and Tokuriki, 2016; Breen et al., 2012; Sarkisyan et al., 2016;

Pokusaeva et al., 2019), as these mutations occur in natural variants with at least 25 mutations rela-

tive to VIM-2. While such epistasis will hamper our ability to perfectly predict the effect of mutations,

the VIM-2 dataset presented in this study contributes to further our understanding of MBL evolution,

and can help orient our predictions concerning the emergence of future resistance.

Conclusion
In this work, we report the first comprehensive mutational analysis of an enzyme in the MBL, class B

b-lactamase family, one of the most important enzyme families underlying the dissemination of

multi-drug resistance to pathogens. We uncover a sensitivity to variation in the signal peptide of

VIM-2, that may be due to codon dependent RNA folding or incompatibility with the host transloca-

tion system. Such findings highlight the importance of genome and host context in resistance gene

compatibility (Socha et al., 2019; Bentele et al., 2013; Hemmerich et al., 2016). By performing

DMS at various conditions, three different antibiotics, and two temperatures, we enhance the under-

standing of sequence-structure-function relationships by unveiling a set of mutations for protein sta-

bility, catalysis and substrate specificity of VIM-2.

We find VIM-2’s substrate specificity altering residues to be enriched near the active site, which

enables us to elucidate the molecular basis of enzyme-substrate interactions. This finding is in con-

trast to a previous DMS study that tested multiple substrates: specificity-altering mutations of E. coli

amidase (amiE) were distributed across the entire structure in a global mode of specificity determi-

nation (Wrenbeck et al., 2017). Thus, it is likely that each enzyme takes different mechanisms for

recognizing diverse substrates. The monomeric MBLs have large, solvent-exposed active site clefts

to recognize a wide range of substrates, while amiE which has a small, occluded active site and a

hexameric quaternary structure that potentially favors controlling specificity through packing and

subunit interactions (Wrenbeck et al., 2017). However, determinants of reaction enantioselectivity

in 4-OT—another enzyme active as a hexamer—are concentrated in the active site, which further

highlights unique behaviors in different enzymes (van der Meer et al., 2016). Regardless, under-

standing distinct mode of enzyme-substrate interactions will lead to design and development of new

antibiotics and inhibitors to re-sensitize the MBL enzymes.

We have demonstrated that VIM-type variants have been continuously evolving by enhancing

their resistance as well as altering their substrate specificity in nature. The study of natural variation

also reinforces the observation that mutations found to be neutral or beneficial in an experimental

setting tend to be enriched in nature as well (Lee et al., 2018; Flynn, 2019). The tendency for muta-

tions at specificity positions to cause collateral sensitivity to AMP and CTX hints at some possibility

for a combined treatment using carbapenems as the main antibiotic with penicillins or

Figure 8 continued

Figure supplement 1. Maximum likelihood phylogenetic tree of wtVIM-2 and 55 VIM-type variants.

Figure supplement 2. Mutated positions in natural VIM variants.
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cephalosporins added as supplement. Though the possibility of a combined treatment will require

extensive investigation using specific b-lactams used in the clinics, and for tests to be conducted on

clinically isolated strains that often contain multiple sources of b-lactam resistance including other

MBLs like NDM-1 and serine b-lactamases like KPC-1 (Monogue et al., 2018). Given that we also

observe natural variants with globally positive mutations, it is doubtful that use of b-lactams alone

will be a long-term solution and inclusion of antibiotics with different mechanisms and b-lactamase

inhibitors will be required to sustain effective treatments, combined with general surveillance and

mitigation of spread for resistant pathogens (Codjoe and Donkor, 2017; Crofts et al., 2017). It is

likely that many new VIM variants will emerge in the future, and our results will provide a valuable

basis to predict likely mutations and estimate the resistance of newly found variants.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Pseudomonas
aeruginosa)

wtVIM-2 UniProt UniProtKB:A4GRB6

Strain, strain
background
(Escherichia coli)

E. cloni 10G Lucigen 60061 Electrocompetent cells

Recombinant
DNA reagent

pIDR2-wtVIM-2 this paper Plasmid housing the
wtVIM-2 sequence,
maintained by the
Tokuriki lab.
See Supplementary file 1
for full sequence.

Sequence-
based reagent

primers with
Nextera transposase
adapter sequence

this paper Primers used to extract regions
of the VIM-2 gene from variant
libraries after a selection
experiment, attaching the
Nextera transposase adaptor
sequence in the process.
See Supplementary file 2L
for all primer sequences.

Chemical
compound, drug

Ampicillin Fisher Scientific BP1760

Chemical
compound, drug

Cefotaxime Fisher Scientific BP29511

Chemical
compound, drug

Meropenem Sigma Aldrich M2574

Commercial
assay or kit

NextSeq 500/550
High Output Kit
(300 cycles)

Illumina 20024908

Software, algorithm DMS-FastQ-
Processing script

this paper Script used to merge and
quality filter paired end
FastQ reads. Code available
at https://github.com/
johnchen93/DMS-
FastQ-processing (Chen, 2020;
copy archived at https://github.com/elifesciences-
publications/DMS-FastQ-processing)

Materials
LB Broth, Miller (BP1426), ampicillin sodium salt (BP1760) and cefotaxime sodium salt (BP29511)

were purchased from Fisher Scientific. Meropenem trihydrate (M2574) was purchased from Sigma-

Aldrich (Millipore sigma). E. cloni 10G electrocompetent cells (60061) and E. cloni 10G chemically

competent cells (60107) were purchased from Lucigen Corp. The KAPA HiFi PCR Kit (KK2102) was

purchased from KAPA Biosystems Inc, the E.Z.N.A. Cycle Pure Kit was purchased from OMEGA Bio-
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tek Inc and the QIAprep Spin Miniprep Kit was purchased from Qiagen. The NextSeq 500/550 High

Output Kit (300 cycles) (20024908) was purchased from Illumina Inc.

Generation of a VIM-2 mutagenized library with all possible single
amino acid substitutions
The wild-type (wt) VIM-2 gene including its signal peptide sequence from Pseudomonas aeruginosa

was synthesized (Bio Basic Inc) and subcloned into an in-house plasmid, pIDR2 (chloramphenicol

resistance) (Supplementary file 1), under a constitutive AmpR promoter using Nco I and Xho I

restriction enzymes (Fisher Scientific). The ATG codon in the Nco I site was used as the start codon.

However, the cut site requires an extra G nucleotide to follow the start codon and an additional Gly

(GGA codon) residue was inserted into the second position of the VIM-2 sequence; this extra Gly rel-

ative to wtVIM-2 will be labeled as G2 to distinguish it from position two in the wt sequence. The

pIDR2 plasmid containing the wtVIM-2 gene will be referred to as pIDR2-wtVIM-2.

To generate all single amino acid variants, a library of codon mutants was made for each codon

(267 positions) in the wtVIM-2 gene using restriction-free cloning (RF cloning) (van den Ent and

Löwe, 2006; Figure 1—figure supplement 2). We designed a forward primer for each codon posi-

tion that contains a degenerate ‘NNN’ codon—using a MATLAB script used to design primers for

the PFunkel method (Firnberg and Ostermeier, 2012)—and a single reverse primer, allowing a PCR

to amplify part of the wtVIM-2 gene while incorporating the mutation. The PCR reaction to amplify

part of the gene was done using a KAPA HiFi PCR Kit (Kapa Biosystems, Inc) for 30 cycles of amplifi-

cation each with denaturation at 98˚C for 20 s, annealing at 62˚C for 15 s and extension at 72˚C for

15 s; 1 ng of pIDR2-wtVIM-2 was used as template in a 20 mL reaction, with 1 mL each of the forward

and reverse primer (10 mM). The first PCR products were purified using E.Z.N.A. Cycle Pure Kit

(OMEGA Bio-tek, Inc). Afterwards, 10 mL of the first PCR product was then used as a primer to

extend the entire plasmid, where the cycling conditions were identical to the first reaction except

the extension time (90 s) and 1 ng of pIDR2-wtVIM-2 was freshly added as the template. Product

from the second PCR was treated with Dpn I for one hour at 37˚C to degrade the original wtVIM-2

plasmids, and then the amplified plasmids were purified and concentrated by the ethanol precipita-

tion method. Subsequently, the purified plasmids were transformed into E. cloni 10G chemically

competent cells (Lucigen Corp.) using the supplier’s recommended heat-shock transformation proto-

col and plated on LB-Cm (containing 25 mg/mL chloramphenicol) agar plates. We then counted the

number of colony forming units (CFU) obtained after the transformation for every mutagenesis

library. Using CASTER (Reetz and Carballeira, 2007) and GLUE (Firth and Patrick, 2008), we con-

servatively estimated that at least 700 CFU after transformation is needed to achieve 100% coverage

of all 64 codon variants per position. If a transformation met the required CFU, all colonies were col-

lected and the plasmids were purified using QIAprep Spin Miniprep Kit (QIAGEN N.V.), while those

that did not were re-transformed or re-cloned until the count was met.

Antibiotic selection of the VIM-2 mutagenized library
Mutant libraries at individual codons were mixed into seven groups of 39 (33 for the last group) con-

secutive codons (see ‘Deep sequencing and quality control’). E. cloni 10G electrocompetent cells

(Lucigen Corp.) were transformed with 1 ng of the plasmid DNA from each of the seven groups

using the supplier’s recommended electro-transformation protocol and grown overnight in 10 mL

LB-Cm shaking at 30˚C. We plated 1/1000 of the transformed culture on LB-Cm agar plates to esti-

mate total CFU after transformation. Using CASTER and GLUE, it was estimated that 20,000 CFU

are needed to fully cover 2496 codon mutants (64 codons � 39 positions) and all groups trans-

formed had at least 100,000 CFU. The transformed libraries were suspended in LB media and pre-

served in 1 mL aliquots at �80˚C in LB with 25% final volume glycerol.

Antibiotic selection was conducted in duplicate on two separate days. For each experiment, the 1

mL glycerol stock from each group was thawed and grown in 10 mL LB-Cm shaking at 30˚C for 16

hr, with optical density at 600 nm (OD600) of the cell culture reaching ~1.5. The cultures were then

diluted by 1000 fold into fresh LB-Cm and grown at 37˚C for 1.5 hr. After 1.5 hr of growth (OD600 of

the culture is between 0.01 and 0.02), 960 mL of each culture was directly introduced to 40 mL of the

antibiotics at 25 � concentration (final concentrations are 128, 16 and 2.0 mg/mL for AMP, 4.0 and

0.5 mg/mL for CTX, and 0.031 mg/mL for MEM, prepared in water) or water (no selection) into the
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wells of a 2.2 mL deep-well 96 well plate, and grown for 6 hr at 37˚C. The cultures were also selected

at the same AMP concentrations or grown without selection at 25˚C. A culture of E. cloni 10G elec-

trocompetent cells transformed with pIDR2-wtVIM-2 was also grown for 6 hr at 37˚C.

After placing the cultures under selection, antibiotics and DNA from lysed cells were removed by

washing the selected cultures three times using a Biomek 3000 (Beckman Coulter Inc) liquid handling

robot. For each wash, the culture was centrifuged at 4000 RPM for 12 min, and the supernatant was

removed using the Biomek. Subsequently, 800 mL of fresh LB was manually dispensed into the wells,

the plate was sealed with plastic film, and the pellets were resuspended by vortexing. The resus-

pended cultures were centrifuged again for the next cycle of the wash. After the final wash, all cul-

tures were propagated overnight shaking at 30˚C in 1 mL of LB-Cm. Plasmid DNA was purified from

the cultures using a QIAprep 96 Turbo Kit (QIAGEN N.V.).

Determination of half maximal effective concentration (EC50)
We isolated 12 variants from codon libraries at positions 55, 62, 67, 68 and 11 variants from codon

libraries at positions 205, 209, 210, 211 by transforming the libraries into E. coli, plating on agar

plates, and picking single colonies. The identity of each variant was obtained by Sanger sequencing.

The variants are grown into glycerol stocks in a 2.2 mL 96 well deep well plate; two single colonies

transformed with pIDR2-wtVIM-2 and empty vector were also placed on this plate as controls.

The variants in the plate were then placed under the same liquid culture selection procedure as

the DMS selection experiments (see ‘Antibiotic selection of the VIM-2 mutagenized library’ above),

up to the end of the 6 hr of selection where the cell growth (OD600) was measured. The range of

selection is 1–1024 mg/mL for AMP, 0.0625–64 mg/mL for CTX and 0.002–2 mg/mL for MEM, sepa-

rated in two fold increments. All variants were also grown without antibiotics as a growth control.

We calculate the EC50 by fitting Equation (2) using the ‘curve_fit’ function of the ‘Scipy.optimize’

package.

% growth¼ bottomþ
top� bottom

1þ EC50
drug concentration

� �Hill Coef f icient
(2)

Initial estimates were 100% for top, 0% for bottom, �1.0 for the Hill coefficient and 1.0 for the

EC50. In the case where a variant’s growth curve did not produce a successful fit based on the initial

estimate, only the Hill coefficient and EC50 were adjusted until the fit was successful. Variants where

the EC50 do not appear in the growth curve (stop codons, highly deleterious mutations and empty

vector) could not be fitted and were excluded.

The DMS fitness scores (y-values) for each antibiotic were fitted against the EC50 (x-values) using

a similar sigmoidal curve in Equation (3) with the ‘curve_fit’ function.

DMS fitness score¼ bottomþ
top� bottom

1þ x0
EC50

� �Hill Coef f icient
(3)

The initial estimates for top, bottom and Hill coefficient are 2.0,–4.0 and 1.0 respectively for all

antibiotics. The initial estimate for x0, the inflection point of the curve, was 64 mg/mL for AMP, 4.0

mg/mL for CTX and 0.031 mg/mL for MEM.

The linear region of the sigmoidal curve for the DMS fitness scores was calculated using Equa-

tions (4-7), based on the final fitted values for each antibiotic (Sebaugh and McCray, 2003).

Ylower ¼ topþ
bottom� top

1þ 1=4:6805

� �

(4)

Yupper ¼ topþ
bottom� top

1þ 4:6805

� �

(5)

Xlower ¼ x0
bottom�Ylower

Ylower � top

� � 1

Hill Coefficient

(6)
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Xupper ¼ x0
bottom�Yupper

Yupper � top

� � 1

Hill Coefficient

(7)

Deep sequencing and quality control
We grouped individual codon libraries into seven groups of 39 consecutive codons (33 for the last

group) so that all mutations are within a distance of 117 bp (99 bp for the last group), allowing 150

bp forward and reverse deep sequencing reads to generate full overlap of each group. PCR ampli-

cons of each library group and wtVIM-2 were generated using primers that flank the 117 bp region

of each group, where primers have a Nextera transposase adapter sequence (Illumina, Inc) in the 5’

overhangs. We used KAPA HiFi PCR Kit (Kapa Biosystems, Inc) for 15 cycles of amplification each

with denaturation at 98˚C for 20 s, annealing at 65˚C for 5 s and no extension time. The amplicons

were extended by PCR again to include the sample indices (i7 and i5) and flow cell binding

sequence, then sequenced using a NextSeq 550 sequencing system (Illumina, Inc); all samples were

sequenced in the same NextSeq run. The raw sequencing data can be found on the NCBI Sequenc-

ing Read Archive (SRA) (BioProject accession: PRJNA606894). Each group under each condition

received between 400,000 to 1,000,000 reads, which is at least 160 reads per codon variant on aver-

age. There were five samples that received as low as 100,000 reads in one of the two replicates, but

the correlation of fitness scores between both replicates still showed an R2 of at least 0.72 and the

scores were retained.

To process the deep sequencing data, including merging paired-end reads, quality filtering, vari-

ant identification and fitness score calculation, we use a set of in-house Python scripts (https://

github.com/johnchen93/DMS-FastQ-processing; Chen, 2020; copy archived at https://github.com/

elifesciences-publications/DMS-FastQ-processing). Paired-end reads in FastQ format were first

merged, where quality (Q) scores of matching read positions were combined using a posterior prob-

ability calculation to obtain posterior quality (Q) scores, measured on the Phred scale for sequencing

quality (Edgar and Flyvbjerg, 2015). In the case of a base mismatch between the forward and

reverse reads, the base was taken from the read with the higher Q score at the position.

Reads that had more than 20 base mismatches between the forward and reverse reads, or that

had any bases with a posterior Q score less than 10 were discarded. It was found that above a

posterior Q score cut-off of 10 or more, the average proportion of sequencing errors per position

stabilized and no sizeable reduction of sequencing errors can be obtained by posterior Q score cut-

offs (Figure 1—figure supplement 3A). Usually, 75–85% of all reads passed these filters. Addition-

ally, the expected number of errors per read was calculated from adding the error rates calculated

from the posterior Q Scores of every position in the entire read (Edgar and Flyvbjerg, 2015). Reads

that had an expected number of error greater than one would also be discarded, however no reads

exceeded this limit after the previous filters.

Variant identification and noise filtering
Once forward and reverse reads were merged and filtered by read quality, codon mutants were

identified and counted, then aggregated into amino acid (or stop codon) variants. Codon mutations

were identified by comparing to the wtVIM-2 DNA sequence as a reference. Since we only intended

for single codon mutants in the library, any sequence with mutations in more than one codon was

discarded, leading to retention of 80–90% of the filtered reads.

To exclude variants that may be due to sequencing errors alone, we estimated the expected fre-

quency of each variant generated by sequencing errors and excluded variants that have less than

2 � the expected frequency in the non-selected library. Using sequencing data from wtVIM-2, we

calculated the error rates that originates from culture growth, sample preparation (PCRs) and

sequencing. The error rates at each position was calculated by dividing the errors observed by the

total number of reads at that position (Figure 1—figure supplement 4D). The mean of the distribu-

tion of the positional errors was used as the estimate for error rates (0.072%) in all positions across

the VIM-2 gene. The proportion of each type of nucleotide error (A > T, A > C, A > G, etc.) was cal-

culated to estimate the likelihood of each type of nucleotide error given a starting nucleotide (Fig-

ure 1—figure supplement 3B).

We made the observations that 1) sequencing errors in wt sequences will generate single codon

mutants, but errors in single codon variants are most likely to be turned into double codon mutants
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(Figure 1—figure supplement 4A) 2)~5–10% of reads in each library group were occupied by wt

sequences while other variants are rarely higher than 0.5% (Figure 1—figure supplement 4B) and 3)

single nucleotide sequencing errors are the most abundant type of errors affecting up to 10% of all

reads, while higher numbers of sequencing errors are nearly negligible (Figure 1—figure supple-

ment 4C). In summary, single nucleotide errors on wt sequences are the main source of single codon

variants arising from sequencing errors. Thus, we first calculated the chance of each of the 64 codons

to mutate into the nine adjacent codons by single nucleotide sequencing errors using Equation (8)

(Figure 1—figure supplement 4E).

chance of codon with substitution X! Y ¼

error rate per position � frequency of substitution X! Y
(8)

For example, to gauge how often AAA gets mutated to GAA by chance, we multiplied the per

position error rate by the proportion of G mutations when starting from an A, leading to

0.0719% � 70.7% = 0.000719�0.707 = 0.00051. This means for each 100,000 wt reads that has an

AAA codon at a given position, we expect 51 GAA mutants on average that arise by chance at the

same position. We calculated expected codon error frequencies from every codon, then summed

the expected error frequencies of the codons mutant for each amino acid variant (Figure 1—figure

supplement 4F). The error frequency is multiplied by the count of the wt reads in each non-selected

library group to arrive at an expected error count for that group. Subsequently, we compared the

observed count of amino acid (or codon) variants in the non-selected library to the expected count

from errors alone and we accepted a variant as truly existing if the observed count is at least twice

the expected count from errors. In addition, because our filtering method only accounts for the nine

codons with a single mutation relative to the wt codon, we also applied a count cut-off of 5 for all

variants to reduce noise by excluding very low count data.

Fitness score calculations
The fitness score of each variant was calculated according to Equation (1) (see main text). To calcu-

late the fitness score of a given amino acid (or codon) variant, the read count of the variant was first

normalized to frequencies within the non-selected or selected library group. Variants that exist in the

non-selected library but disappear in the selected library were interpreted to have been removed by

antibiotic selection, and were given a dummy count of 1 to emulate the minimum frequency observ-

able for that variant. The frequency of the variant after selection was divided by the frequency of the

same variant in the library grown without selection for an enrichment ratio; synonymous codon var-

iants were also considered as variants rather than wt during scoring. The variant enrichment ratio

was then normalized to the enrichment ratio of the wt. The final score was expressed in Log2 units,

and scores were calculated separately across the seven groups and separately for each replicate.

When combining all data across the seven groups, we subtracted the mean fitness scores of all

synonymous variants in each group from all variants of that group to center the mean fitness of syn-

onymous variants at a fitness score of 0. To combine scores from replicates, we simply averaged the

fitness scores across the two replicates, and take the single score if only one replicate contained the

variant above noise in the non-selected library.

Fitness effect classification
To classify each amino acid variant as positive, neutral or negative for each of the three selection

antibiotics, we use the score of each variant in a two tailed z-test on a normal distribution (null-

model) with the same mean and standard deviation as our synonymous distribution (244 synonymous

variants total). The P-values were then FDR corrected to an a of 0.05 using the Benjamini-Hochberg

procedure; only nonsynonymous variants were tested and the total number of tests was 5291. The

variants with scores that are significantly different from the synonymous distribution after FDR cor-

rection are then classified as ‘positive’ if their score is greater than the synonymous mean and ‘nega-

tive’ if the score is less, while the remaining variants are classified as ‘neutral’.

Linear model of DMS scores with various predictors
We generated a linear model in R using a combination of terms to try and find properties that best

explain the behavior we see in the DMS fitness scores. Using the fitness score as a response, we
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tried using 1) wild-type (wt) amino acid 2) variant (var) amino acid 3) accessible surface area (ASA) of

the residue calculated from the crystal structure of wt VIM-2 (PDB: 4bz3) using ASA view

(Ahmad et al., 2004) 4) change in amino acid volume (Perkins, 1986) (Dvolume = volumevar volu-

mewt) 5) change in amino acid polarity (hydrophathy index Kyte and Doolittle, 1982) (Dpolarity =

Dpolarityvar – Dpolaritywt) 6) distance of the alpha carbon of each residue in the crystal structure to

the active site water held between the Zn ions 7) Rosetta predicted stability change between the

variant and the wt (DDG = DGvar-DGwt) (also see ‘Rosetta DDG Calculation’ below) and 8) BLOSUM62

score for the substitution from wt to variant. Only variants from positions observable in the crystal

structure were modelled (positions 32 to 262), and synonymous variants were excluded.

All parameters were first modelled individually as predictors with DMS fitness score as the

response, and the predictors with R2 higher than 0.10 are then modelled in combinations of two or

more until the combination with the least predictors and the highest adjusted R2 was found. Predic-

tors with R2 less than 0.10 are also retried in combination with the best predictors when optimizing

for adjusted R2. Interaction between predictors were tested, but they did not improve adjusted R2

and were excluded for the sake of simplicity. The relative contribution of each term to the overall

adjusted R2 were calculated using the R package ‘relaimpo’, using the ‘lmg’ method

(Groemping, 2006).

The final equation of the linear model is shown in Equation (9) where the fitness score of a given

variant is the additive combination of the model intercept b0 and the various properties and the

coefficients of the properties (e.g. bASA and ASA) plus a random error term e.

FitnessScore¼ b0 þbASA�ASAþb
DDG�DDGþbwt �wtþbvar� varþ � (9)

The categorical predictors wt and var are simplified in the equation and each is actually a collec-

tion of terms in the model, where every amino acid is a single binary term represented by 0 or 1

such that 1 indicates the presence of the amino acid. For example, the variant Q60V has Q = 1 for

wt and V = 1 for var, while all other wt and var amino acids are set to 0. Ala is not present as one of

the estimates in either wt or var, because they are used in calculating the intercept; this is the mean

fitness of all data points where either wt = 1 or var = 1 for alanine.

Rosetta ddg calculation
To estimate the effects of each VIM-2 variant on the stability of the protein, we used the Rosetta

‘ddg_monomer’ application to calculate the folding energy of a monomeric protein crystal structure.

Rosetta was run on the Compute Canada server Cedar using a Rosetta 3.8 installation. Following the

‘ddg_monomer’ documentation, the VIM-2 structure (PDB: 4bz3) was first processed using ‘premini-

mize’ to pre-optimize the packing of the crystal structure and generate a constraints file. Then, all

single amino acid variant structures and the wt structure at each position were simulated 50 times

each using ‘ddg_monomer’, configured to protocol 16 as specified in Kellogg et al., 2011 while

using Talaris 2014 as the scoring function. We store the simulated structures (variant and wt) as PDB

files and scored them using the Rosetta ‘score’ function with Talaris 2014 weights to obtain the pre-

dicted DG in Rosetta Energy Units (REU). We average the predicted DG of all 50 replicates of each

variant or wt. The DDG is calculated using Equation (10) as the difference in average DG between

variant and wt at the same position.

DDG¼ DGvar �DGwt (10)

RNA folding energy calculation for single codon mutants
The RNA folding energy contribution of the 5’ UTR and signal peptide region is calculated according

to a previously described method (Bhattacharyya et al., 2018). The DG of folding of the 5’ UTR and

signal peptide is calculated using equation (11).

DG1;118 ¼ DG1;841�DG119;841 (11)

Each DG term is calculated using the NUPACK software package (Zadeh et al., 2011), using the

‘pfunc’ program which calculates the DG of all RNA secondary structures from the partition function.

All folding energies were calculated using default conditions, with [Na+]=1 M and T = 37˚C, and the

results are in units of kcal mol�1. The subscripts for each DG term indicates the first and last
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nucleotide position in the transcript that is used for calculating the DG of folding, respectively. Thus,

DG1,841 represents the calculated folding energy of the full transcript (including the 5’ UTR and cod-

ing region, but excluding the 3’ UTR), while DG119,841 is the folding energy of the transcript after the

signal peptide. The interpretation of DG1,118 is that it is the folding energy contribution of the RNA

transcript up to the end of the signal peptide, including energy from non-local interactions with

downstream parts of the transcript but excluding folding energy of interactions exclusively within

positions downstream of the signal peptide. The DNA sequence of the wtVIM-2 transcript used to

calculate the folding energies is shown below, with positions 1–118 italicized and the translated sig-

nal peptide region underlined for clarity; the sequence is converted to RNA for calculation.

5’-CTGATAAATGCTTCAATAATATTGAAAAAGGAAGCCCATGGGATTCAAACTTTTGAGTAAG

TTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGCCCGCTCGCTTTTTCCGTAGATTC

TAGCGGAGAATATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGA

TTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAA

TGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACA-

CAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTC

TCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGG

TGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGA

TTCCCACGCACTCTCTTGAAGGACTTTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAG

TAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAATTGTGTACGTCCCGTC

TGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACG

TGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCG-

GAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTTGACTTGCTCAAGCACA-

CAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAA-3’.

Equation (12) is used to calculate the DDG of folding upon codon mutations in the signal

peptide.

DDGsigpepRNA ¼ ðDG1;118var �DG1;118wtÞ=ðkTÞ (12)

DG1,118wt is the folding energy of the wtVIM-2 signal peptide sequence shown above, while

DG1,118var is the folding energy of the signal peptide sequence with a single codon mutation. The dif-

ference in folding energy is normalized to the thermal energy factor kT, where k = 0.0019872041

kcal mol�1 K�1 and T = 310.15 K (37˚C).

Identification of critical residues and temperature dependence
We classify the role of residues in wtVIM-2 by examining the DMS fitness scores of selection con-

ducted at 128 mg/mL and 16 mg/mL AMP at 37˚C and 25˚C (four data sets), excluding signal peptide

residues 1–26. Residues are classified as ‘essential’ when > 75% of variants are below a fitness score

of �2.0 (halfway between zero and the lower score limit of �4) when selected at the least stringent

condition of 16 mg/mL and 25˚C. Residues are classified as ‘tolerant’ when > 75% of variants are

above a fitness score of �1.0 (capturing the lower end of the peak centered at neutral fitness) when

selected at the most stringent condition of 128 mg/mL and 37˚C. Residues are classified as ‘tempera-

ture dependent’ when the fitness score of 25˚C selection is higher than 37˚C selection of the same

AMP concentration by at least 2.0, for two or more variants at either 128 mg/mL or 16 mg/mL AMP.

The ‘temperature dependent’ classifications overwrite ‘essential’ or ‘tolerant’ classifications (four

occurrences total). Residues that do not fall into the three other classifications are defined as ‘resi-

due dependent’.

Detecting hydrogen bonds in the wtVIM-2 crystal structure
Potential hydrogen bonding pairs in the wtVIM-2 crystal structure (PDB: 5yd7, chain A only) were

extracted using the ‘Polarpairs’ script in PyMol (https://pymolwiki.org/index.php/Polarpairs). The

script filters for pairs of h-bond donor and acceptor atoms within a defined distance and h-bond

angle; we set the distance limit to be within 3.6 Å and the h-bond angle to be greater than 63˚. The

script returns atom indices, which were converted to PBD atom IDs using pymol’s built in ‘id_atom’

function. The atoms were then extracted from the 5yd7 pdb file using the atom IDs, and the atom’s

name was used to determine if the h-bond was formed between backbone atoms only (‘N’ and ‘O’

atoms indicate backbone amides and carbonyls, respectively), between sidechain atoms only or
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between backbone and sidechain atoms. All extracted h-bonds can be found in Supplementary file

2G.

Analysis of specificity variants
We define variants with altered specificity by filtering for variants with a change in fitness effect clas-

sifications (positive, neutral and negative, defined in ‘Fitness effect classification’) as well as a fitness

score difference of 2.0 between at least 2 of the three antibiotics being compared.

Specificity positions are visualized on the wtVIM-2 structure (PDB: 5yd7) using PyMol, with sub-

strates overlaid from aligned MBL homolog structures (AMP - NDM-1(PDB:4hl2), cefuroxime –

NDM-1(PDB:4rl0), MEM – VIM-1 (PDB:5n5i)). To overlay the substrates, the six metal binding resi-

dues (structure positions 114, 116, 118, 179, 198, 240 for VIM-1/VIM-2 and 120, 122, 124, 189, 208,

250 for NDM-1) and the two active-site Zn ions were selected from each structure, and the PyMol

‘align’ function was used with the VIM-2 active-site as the target object and the other structure’s

active-site as the mobile object. When structures have more than one chain (PDB: 5yd7, 4hl2 and

4rl0), only chain A was used in the alignment. The protein portions of the homolog structures are

hidden after alignment, to visualize just the substrates with the wtVIM-2 structure.

Collection of naturally occurring VIM variants
Amino acid sequences of naturally observed VIM variants were extracted by performing a BLASTP

search of the NCBI non-redundant protein database (NCBI Resource Coordinators, 2018), using

the protein sequence of our in-house VIM-2 with Gly removed from the 2nd position, identical to the

VIM-2 discovered in Pseudomonas aeruginosa isolates (UniProt accession: A4GRB6). We retained all

BLASTP results with at least 70% identity and >90% query coverage. We also retrieved protein

sequences from the Comprehensive Antibiotic Resistance Database (CARD) (Jia et al., 2017). All

sequences from both sources were merged and sequences that are exactly identical in length and

sequence were combined, while sequences that are less than 250 or greater than 290 residues were

excluded. Recombinant variants VIM-12 and VIM-25 were excluded from this analysis, as well as

VIM-14 (UniProt accession: Q6GUL7) which is a member of the VIM-1 clade despite being labeled as

both VIM-11 and VIM-14 (UniProt accession: A0SWU7) (both are in the VIM-2 clade).

To identify all mutations different between wtVIM-2 and the 55 other variants, a multiple

sequence alignment (MSA) was constructed using the MUSCLE method in MEGA 7 (version 7.0.26)

(Kumar et al., 2016). Equivalent positions bearing a different amino acid from VIM-2 were identified

as mutations, while deletions are ignored (one in VIM-1, one in VIM-7, four in VIM-18). The MSA was

also used to generate a maximum likelihood phylogenetic tree using MEGA 7 (default settings). The

tree was used to identify separate VIM clades which were labeled using the VIM variant with the low-

est number in the clade (VIM-1, VIM-2, VIM-7, VIM-13).
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Martı́nez-Garcı́a L, González-Alba JM, Baquero F, Cantón R, Galán JC. 2018. Ceftazidime is the key
diversification and selection driver of VIM-Type carbapenemases. mBio 9:e02109-17. DOI: https://doi.org/10.
1128/mBio.02109-17, PMID: 29739906

Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG. 2009. Genome-wide analysis of signal
peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 10:425. DOI: https://doi.org/10.1186/
1471-2164-10-425, PMID: 19744343

Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, Kircher M, Khechaduri A, Dines JN,
Hause RJ, Bhatia S, Evans WE, Relling MV, Yang W, Shendure J, Fowler DM. 2018. Multiplex assessment of
protein variant abundance by massively parallel sequencing. Nature Genetics 50:874–882. DOI: https://doi.org/
10.1038/s41588-018-0122-z, PMID: 29785012

Maurer M, Oostenbrink C. 2019. Water in protein hydration and ligand recognition. Journal of Molecular
Recognition 32:e2810. DOI: https://doi.org/10.1002/jmr.2810, PMID: 31456282

Mavor D, Barlow K, Thompson S, Barad BA, Bonny AR, Cario CL, Gaskins G, Liu Z, Deming L, Axen SD, Caceres
E, Chen W, Cuesta A, Gate RE, Green EM, Hulce KR, Ji W, Kenner LR, Mensa B, Morinishi LS, et al. 2016.
Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife 5:
e15802. DOI: https://doi.org/10.7554/eLife.15802, PMID: 27111525

Mehlhoff JD. 2020. Collateral fitness effects of mutations. bioRxiv. DOI: https://doi.org/10.1073/pnas.
1918680117

Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS. 2014. Comprehensive mutational scanning of a kinase in
vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Research 42:e112. DOI: https://doi.org/10.
1093/nar/gku511, PMID: 24914046
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