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Abstract
Premise: With modern advances in genetic sequencing technology, plant phenotyp-
ing has become a substantial bottleneck in crop improvement programs. Tradition-
ally, researchers have manually measured phenotypic traits to help determine
genotype–phenotype relationships, but manual measurements can be time consuming
and expensive. Recently, automated phenotyping systems have increased the spatial
and temporal density of measurements, but most of these systems are extremely
expensive and require specialized expertise. In the present paper, we develop and
validate a low‐cost, scalable, high‐throughput phenotyping (HTP) system for
automating the measurement of foliar area and greenness.
Methods: During a greenhouse experiment on the effects of abiotic stress on Brassica
rapa, we collected images of hundreds of plants every hour for over a month with a
system that cost approximately US$1000.
Results: In comparison with manually acquired images, this HTP system was able to
produce similar estimates of foliar area and greenness, developmental trends, and
treatment effects. Foliar area was correlated between the two image sets, but greenness
was not.
Discussion: These findings highlight the potential of HTP systems built from low‐cost
hardware and freely available software. Future work can use this system to investigate
genotype–environment interactions and the genetic loci underlying morphological
changes resulting from abiotic stress.
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The ongoing worldwide food crisis emphasizes the need
for reducing the cost of agricultural production
(Von Braun, 2008; Ray et al., 2013; Challinor et al., 2014).
Investing time and money into research on
genotype–phenotype relationships for crops can improve
agricultural productivity in the long term (Von Braun, 2008;
Challinor et al., 2014). While high‐throughput genomics has
rapidly become cost‐ and time‐efficient, the throughput and
cost of phenotyping has become a major limitation in most
crop improvement programs (Casto et al., 2021). Tradition-
ally, phenotyping has involved manual measurements of
plant organs and yield. While manual measurements may
benefit from the expertise of the experimenter, manual

measurements by novices can also be useful given support-
ive devices or computer interfaces (Giuffrida et al., 2018).

Recent advances in hardware and software have allowed
the development of high‐throughput phenotyping (HTP)
systems for automatically measuring plant traits at higher
spatial and temporal densities (for a review, see Yang
et al., 2020). The more advanced systems consist of several
different imaging stations for non‐invasive measurements,
computer‐controlled conveyors for moving plant pots to
different stations, and automated plant care (Yang
et al., 2020; Casto et al., 2021). While these systems can
provide a wealth of data on a variety of phenotypes, they are
often costly to install and operate. To help address the
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worldwide food crisis, the cost and throughput of HTP
systems need to be improved (Prasanna et al., 2013; Casto
et al., 2021). Toward this end, the present study demon-
strates and validates the use of a low‐cost HTP system for
automatically quantifying foliar area and greenness.

The cost of HTP systems for crop improvement is often
driven by the automation of movement and plant care, the
temporal density of the measurements required to detect a
particular developmental pattern, and specialized hardware
for acquiring physiological and/or hyperspectral data (Yang
et al., 2020). The movement of plants toward sensors
reduces the number of sensors that need to be integrated
into the system. The automation of plant care also helps
standardize the environment in which plants are grown
(Brien et al., 2013). Compared to measurements by human
observers, automated measurements can be more precise,
provide spatially dense data to be archived for additional
analyses, and increase the temporal density with which
measurements can be taken. The temporal density of
measurements is an especially important consideration for
the study of phenotypic changes during plant development
(Berger et al., 2012; Ge et al., 2016).

Hyperspectral data (e.g., the amount of light reflected at
wavelengths beyond the visible spectrum) may be especially
useful for inferring physiological traits such as leaf water
content (Ge et al., 2016), but specialized hardware is
required for data acquisition (for a review, see Li et al., 2014).
Hyperspectral cameras are also more expensive than the
standard digital cameras that produce RGB images. The
need for such expensive hardware limits the temporal
density of measurements by requiring plants to be moved
toward the sensors (Casto et al., 2021). In addition,
hyperspectral data require more time to acquire and more
storage space to maintain. Compared to hyperspectral
images, RGB images may also be more useful for extracting
phenotypes from heterogeneous canopies in the field
because of the effects of leaf overlap on near‐infrared
reflectance (Kefauver et al., 2015). Consequently, RGB
cameras may be employed in both agricultural settings with
large plots of crops and greenhouse settings with smaller
plots that systematically vary with respect to treatment.
Similar analyses based on RGB images can also be used for
more precise measurements of individual plants. Indeed, for
a variety of settings, HTP systems with a larger number of
relatively cheap sensors (e.g., RGB cameras) may improve
the temporal density of measurements and scalability
without necessarily sacrificing data quality.

While RGB images for extracting morphological traits
are relatively easy and cheap to acquire, there are several
different indices that can be used to compute greenness and
extract plants/organs from these images. The simplest
greenness index is when the intensity of a pixel along the
G dimension is above a particular threshold (e.g., Kefauver
et al., 2015). The main challenges with this simple greenness
index are that it includes a wide range of wavelengths and
that it often does not produce enough contrast between the
plant/organ of interest and the background. To address the

former challenge, “greener area” has been defined as the
intensity of a pixel at a narrower set of wavelengths, thereby
excluding less healthy plants that may have become more
yellow (e.g., Kefauver et al., 2015). Similarly, Humplík et al.
(2015) converted RGB values to a hue‐saturation‐value
(HSV) color space and defined a greenness index as within a
particular range of H values. Depending on the range
selected for H values, this HSV‐based index may be more
similar to either the simple greenness index or the greener
area defined above. In addition, Awlia et al. (2016) divided
hues into several different greenness categories based on
RGB values and assessed treatment effects separately for
each category.

To produce more contrast between plants and the
background of RGB images, several different indices have
been defined as the difference or ratio of pixel values along
multiple spectra. For example, An et al. (2016) defined a
normalized green‐red difference index as the difference
between the G and R values of a pixel divided by the sum
of G and R values for that pixel. Ge et al. (2016)
incorporated the B value into their greenness index,
defined as twice the G value divided by the sum of the B
and R values for a pixel. Similarly, Richardson et al. (2007)
measured canopy cover at the landscape scale using a
greenness index defined as twice the G value minus the B
and R values. Although the incorporation of the B value
may improve the contrast between plants and background
for landscape scenarios with the sky as the background,
these indices have not yet been systematically compared.
In addition, many studies have employed machine learning
for separating plants from their background without an
explicitly defined greenness index (e.g., Minervini
et al., 2017). Regardless of the specific approach, the
ability to clearly separate plants from their background and
quantify useful traits using RGB images would allow HTP
systems to include additional sensors at a relatively low
cost while maintaining or even improving the temporal
density of measurements.

The present study demonstrates and validates the use
of a low‐cost and scalable HTP system that allows for
higher temporal density of measurements and can be
employed in a large variety of agricultural and experi-
mental settings. The primary goal of this study is to
demonstrate that such a system, developed with limited
resources, can accurately and automatically measure useful
plant traits in a scalable manner. The HTP system
described here consists of eight consumer‐grade digital
cameras that were installed above benches of greenhouse
plants and controlled wirelessly with a Raspberry Pi
computer. For validation, we deployed this system during
an experiment on salt stress for two genotypes of Brassica
rapa L. During this experiment, the system acquired nearly
6000 RGB images of greenhouse benches containing up to
70 plants each. We also manually acquired high‐resolution
RGB images of each individual plant at five different time
points during the experiment for comparison with the
images acquired by the HTP system.
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METHODS

Experimental design

Initially, we planted 280 pots of B. rapa, each pot containing
three seeds of either L58 or R500 genotypes. To maintain
the integrity of the different genotypes, seeds were manually
separated from chaff. L58 is a leafy vegetable variety of
B. rapa similar to Chinese cabbage or pak choi (Toxopeus
et al., 1987). R500 is a yellow sarson oil seed variety of
B. rapa that tends to grow taller and allocate more resources
toward seed production (Baker et al., 2019). Plants were
thinned to only the single healthiest plant per pot shortly
after germination.

The plants were grown on four benches in a greenhouse
(Miami University, Oxford, Ohio, USA; 39°30′11.7″N
84°42′0″W) with Pro 325e LED lamps (Lumigrow, Emery-
ville, California, USA) that extended the daylength to a
consistent 16 h. Each bench contained HOBO MX2202
sensors (ONSET, Bourne, Massachusetts, USA) to measure
temperature throughout the experiment. Three smartPAR
light sensors (Lumigrow) were spaced throughout the
greenhouse and above supplemental LED lights to log the
solar daily light integral (DLI). Each bench also contained
an equal number of pots for each of the two genotypes for
several different substrates and pot sizes. The pots were
either 5.08 cm × 5.08 cm × 8.89 cm or 7.62 cm × 7.62 cm ×
8.89 cm and contained either a 1:2 kg mix of M2
Professional Mix potting soil (BFG Supply, Burton, Ohio,
USA) and commercial‐grade fine sand (Quickrete, Atlanta,
Georgia, USA) with a slow‐release 18‐6‐12 Osmocote
fertilizer (ICL Specialty Fertilizers, Summerville, South
Carolina, USA), a similar potting soil/sand mix without
fertilizer, or a triple‐rinsed calcined non‐swelling illite clay
medium (Turface MVP, PROFILE products, Buffalo Grove,
Illinois, USA) with fertilizer. The purpose of testing these
different substrates was to determine whether water with or
without salt would readily flow through the media and keep
the salt concentration of the soil constant. All of the pots
were composed of highly reflective black plastic and were
randomly arranged on black plastic trays containing the
same pot sizes and substrates.

Immediately before planting, the media in each pot was
saturated with either tap water (control condition) or 0.3%
(54.34 mM) NaCl (Fisher Scientific, Waltham, Massachu-
setts, USA) water (salt condition) until the water had soaked
the media and began emerging from the bottom of the trays
(i.e., “flow‐through” method; Hasanuzzaman et al., 2018).
All pots continued to be watered with either tap or salt
water to field capacity throughout the experiment.

Two types of images were acquired during the
experiment. First, we collected images of whole benches
using the HTP camera system (i.e., with eight different
cameras) every hour throughout the experiment. A scale
diagram of each bench, with two lights and two GoPro
cameras, is provided in Figure 1. Second, we collected high‐
resolution images of each individual plant at five different

time points after thinning but before the plants had bolted
and flowered. These high‐resolution images were acquired
under controlled lighting conditions with a Canon DSLR
camera (Canon, Tokyo, Japan) with a fixed‐length lens.

Camera system

The main components of the system were eight GoPro
Hero3 cameras (http://www.gopro.com; GoPro Inc., San
Mateo, California, USA) and a Raspberry Pi 3B+ computer
(https://www.raspberrypi.org; Raspberry Pi Foundation,
Cambridge, United Kingdom). The GoPros were placed so
that each camera could capture an image from a similar
perspective approximately 1.6 m above a bench in the
greenhouse every hour for over a month (i.e., during the
course of a long experiment). Two GoPros were placed
above each of four benches, approximately 0.3 m apart. The
images acquired by each pair of GoPros overlapped to
provide some redundancy in the measurement of each
plant. During the experiment, the Pi computer communi-
cated with the cameras wirelessly from a different room.
This prevented the relatively fragile Pi computer from being
damaged by the sun and/or humidity in the greenhouse.

This model of Pi computer had a 64‐bit quad‐core
processor running at 1.4 GHz with 1 GB of RAM and a
dual‐band (2.4 and 5 GHz) wireless local area network
(LAN). The Pi also contained a 16 GB microSD card that
was pre‐loaded with several different types of software,
including NOOBS (for installing the Raspbian operating
system), Chromium (an internet browser for Linux
systems), Raspbian terminal, and a file manager (similar
to Windows Explorer). The Pi hardware also included an
HDMI port, four USB ports, and a microSD card reader.

The GoPro cameras were equipped with wireless
networks using the GoPro application for Android.
Although this wireless capability is primarily intended to
be used with either a GoPro remote or the GoPro phone
application, in principle the GoPros can be connected
to (and manipulated by) any modern computer. Each
GoPro was also equipped with a 128 GB microSD card in

FIGURE 1 A scale diagram of each bench with two lights and two
GoPro cameras. (A) Overhead view. (B) Side view.
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order to prevent storage problems over the course of a long
experiment. The cost of the system was approximately US
$1000. This cost estimate includes one Raspberry Pi
computer (US$35), eight GoPro Hero3 cameras (US$92
each), and eight 128 GB microSD cards (US$29 each).

All of the commands for connecting to each camera's
wireless network, capturing images on the cameras, and
copying images were executed as shell scripts in the
Raspbian terminal application. To automatically schedule
tasks for the camera system, the desired time to execute each
shell script was entered as a crontab. A crontab is a regular
schedule for Linux systems to automatically execute
particular functions.

Creating the shell scripts for connecting to each GoPro's
wireless network (and switching between them) required a few
additional steps. First, the GoPro's wireless network had to be
set up manually on the GoPro by defining the wireless
network name and password using the GoPro application for
Android. Only once during setup, the Pi had to be manually
connected to the wireless network of each GoPro. Once the Pi
was connected to one of the wireless networks, the key needed
to automatically connect to this network was available in an
automatically generated configuration file. The service set
identifier (SSID) and pre‐shared key (PSK) from this wireless
network were then copied into another text file. Once the key
information was saved for each GoPro's wireless network,
another shell script was created to connect to or switch
between them. An additional shell script was written to turn
on the GoPro (assuming the corresponding wireless network
was already connected) and take a picture.

Image acquisition began immediately after plant thin-
ning. During the experiment, the Pi computer took a picture
from each of the eight GoPros once every hour. Only images
taken during the day without supplemental lighting were
used for the analyses. Each of these pictures was initially
stored on the microSD cards of the GoPros themselves, but
at night, these pictures could be automatically and wirelessly
copied to an external hard drive that was mounted to the Pi
computer and remotely accessible. This approach allows
researchers to check on the system and, if desired, analyze
the data every night throughout the experiment for near
real‐time results without interfering with the system's
functioning.

Image processing and analyses

For images representing different steps in the image analyses,
see Figures 2 and 3. Several Python libraries were needed in
order to read raw image files (rawpy version 0.15.0, https://
pypi.org/project/rawpy/0.15.0/), convert between file formats
(imagio version 2.9.0, https://imageio.readthedocs.io/en/
stable/; numpy version 1.18.2, https://numpy.org/doc/1.18/;
PIL version 1.1.7, https://pypi.org/project/Pillow/1.0/), read
date and time data from the HTP images (exifread version
2.1.2, https://pypi.org/project/ExifRead/2.1.2/), read csv files
listing experimental conditions (csv version 3.7, https://docs.

python.org/3.7/library/csv.html), and extract and specify file
paths (pathlib version 3.7, https://docs.python.org/3.7/
library/pathlib.html). Initially, both image types (GoPro and
DSLR) were automatically cropped to remove extra space

FIGURE 2 Examples representing different steps of the bench‐level
image analyses. (A) One of the original images acquired using one of the
GoPro cameras toward the end of the experiment. (B) The same image
after correcting for the distortion caused by the camera's fisheye lens.
(C) An image representing the greenness index for each pixel of the camera
image after automatically cropping around the bench.
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around the bench/platform that did not contain plants. To
reduce the manual steps required for analysis, images from all
eight GoPro cameras were cropped using the same parame-
ters, despite occupying slightly different positions above the
different benches. For each image, we then automatically
corrected for any distortion caused by the camera's fisheye
lens using the lensfunpy (version 1.8.0, https://pypi.org/
project/lensfunpy/1.8.0/) and cv2 (https://pypi.org/project/
opencv-python/) libraries for Python. The greenness index
(2*G – R – B) was then calculated for each pixel of each
corrected RGB image. Pixels with extremely high values
(above 202) were removed because they most often
represented the highly reflective black plastic. Pixels with
extremely low values (below 29) were also removed because
they most often represented small non‐plant artifacts. To
calculate mean foliar area per bench, the number of
remaining “green” pixels were counted for each bench‐level
image and then divided by the number of plants on that
bench. Mean foliar area was determined for the DSLR images
by counting the number of green pixels for each individual
plant image and then averaging over the number of
individual plants on each bench. The mean greenness of
each image was then calculated as the mean greenness index
over pixels with values above zero.

All of the inferential statistics for correlational and
linear mixed effects modeling was conducted in RStudio
1.3.1073 with the lme4 (version 1.1‐23), lmerTest (version
3.1‐2), and ggplot2 (version 3.3.5) libraries.

RESULTS

Developmental trends for foliar area are shown in Figures 4
and 5. Increases in foliar area during plant development are
visible and similar in scale for the HTP and DSLR images.
This growth is also substantially greater for control plants
compared to plants grown under salt conditions for both
HTP and DSLR images. Developmental trends for greenness
are shown in Figures 6 and 7. The control and salt condition
plants do not appear to differ in development in terms of
greenness given the possible range of greenness values.

Although previous research has found that salt stress can
reduce chlorophyll content in Solanum nigrum L. (Abdallah
et al., 2016), researchers have had difficulty detecting
significant differences in greenness indices for other species
(e.g., Arabidopsis thaliana (L.) Heynh.; Awlia et al., 2016).
Notably, our HTP system derives similar growth patterns
and treatment effects as the manually acquired DSLR
images but at a much higher temporal density.

We also computed correlations between the HTP and
DSLR data sets in terms of both mean foliar size and mean
greenness separately for plants grown under control and salt
conditions. The correlated data include only days in which
both HTP and DSLR images were acquired. In terms of
foliar size, HTP and DSLR data were significantly correlated
for both control (r(3) = 0.996, P < 0.001) and salt (r(3) =
0.987, P = 0.002) conditions. In terms of greenness, HTP
and DSLR data were not significantly correlated for either
control (r(3) = −0.0002, P = 0.9997) or salt (r(3) = −0.266,
P = 0.665) conditions.

Linear mixed models were used to assess the fixed effects
of and interactions between treatment (salt versus control)
and calendar days since germination on mean foliar area
(cm2) and greenness (separately) for HTP and DSLR
images (separately). Bench number was included as a
random effect for all four models, and solar DLI was
averaged over the three sensors and included as an
additive covariate for the two models with the HTP data.
Across calendar days, the mean solar DLI ranged from
1.19 to 13.97 with a mean of 8.05 and a standard
deviation of 3.62. The exact models for these analyses in R
notation are available in Appendix S1.

The fixed effects and covariates for each model of the
bench‐level analyses are summarized in Table 1. To
summarize the bench‐level analyses, we found significant
fixed effects of days after germination and two‐way
interactions between treatment and days after germina-
tion in terms of (mean) foliar area for both the HTP and
DSLR images. This analysis also revealed a fixed effect of
solar DLI on mean foliar area for the HTP images and a
fixed effect of treatment on foliar area for the DSLR
images. For the HTP images, we also found a fixed effect

F IGURE 3 Examples of DSLR images that were manually acquired for the same plant on different days throughout the experiment (top) and images
representing the greenness index for each pixel of the DSLR image after cropping around the platform (bottom).
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of days after germination, a fixed effect of solar DLI, and
an interaction between treatment and days after germi-
nation in terms of greenness. However, for the DSLR
images, we only found a fixed effect of days after
germination on greenness.

DISCUSSION

The present paper describes the development and validation
of a low‐cost, automated, and scalable HTP system for
measuring foliar area and greenness. In comparison with

F IGURE 4 A graph depicting differences between control and salt treatments in terms of foliar area (cm2) for the HTP images and how these
differences increase over days since germination. Each data point represents the mean of 23 to 36 measurements (five to nine measurements per camera per
bench). Error bars represent the standard deviation of foliar area estimates across images from the same day.

F IGURE 5 A graph depicting differences between control and salt treatments in terms of foliar area (cm2) for the DSLR images and how these
differences increase over days since germination. Each data point represents the mean of between 102 and 141 measurements. Error bars represent the
standard deviation of foliar area estimates across images from the same day.
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manually acquired DSLR images, the HTP system acquired
images at a much higher temporal density and reproduced
developmental trends and treatment differences for bench‐
level analyses of foliar area. The HTP system also produced
estimates of greenness that were within a comparable range

as the estimates acquired from the DSLR images. While
there were significant correlations between the two image
types in terms of foliar area for both control and salt
condition plants, there were no significant correlations
between DSLR images and HTP images for measurements

F IGURE 6 A graph depicting changes in greenness as a function of days since germination for the HTP images after control and salt treatments. Here,
the y‐axis is truncated to represent the range of possible greenness values after image processing. Each data point represents the mean of 23 to 36
measurements (five to nine measurements per camera per bench). Error bars represent the standard deviation of greenness estimates across images from the
same day.

F IGURE 7 A graph depicting changes in greenness as a function of days since germination for the DSLR images after control and salt treatments. Here,
the y‐axis is truncated to represent the range of possible greenness values after image processing. Each data point represents the mean of between 102 and
141 measurements. Error bars represent the standard deviation of greenness estimates across images from the same day.
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of greenness after limiting the analyses to the five days on
which DSLR images were collected. Together, these findings
highlight the potential of HTP systems built from low‐cost
hardware and freely available software.

Our inability to detect an effect of the salt treatment
on greenness may be attributable to the relatively low
concentration of NaCl (54.34 mM) used for the present
study. Indeed, previous research on the effect of salt stress
on related measurements such as chlorophyll content
exposed plants to much higher concentrations of NaCl for
a relatively brief period of time (Han et al., 2013; Kim
et al., 2016; Navarro‐León et al., 2021). For example, Kim
et al. (2016) observed interveinal chlorosis and detected
significantly lower chlorophyll content in wild‐type B. rapa
after exposure to a 200 mM NaCl solution for one week
early in development. For the present study, a lower salt
concentration was necessary to allow a majority of the
plants to germinate and survive to flowering, but this design
makes it impossible to disentangle the effects of salt
concentration, duration of exposure, and developmental
phase on the greenness detected by the DSLR and HTP
camera systems.

The low cost of this HTP system (~US$1000) is
important to emphasize because reducing the cost of
research on genotype–phenotype relationships with an
aim toward crop improvement will help ensure the future
of the world's food supply in the long term (Von
Braun, 2008; Challinor et al., 2014). The costs of such
studies are also often prohibitive for smaller laboratories,
smaller farms, and governments with fewer economic

resources. Millions of farmers worldwide rely on relatively
low‐cost crops such as cereals, and advanced high‐
throughput phenotyping technologies for crop improve-
ment are often prohibitively expensive for these farmers
(Prasanna et al., 2013). By reducing these costs, we may help
researchers in disadvantaged areas improve crop yield
without extremely large investments in technology and
expertise.

In addition to its low cost, advantages of this HTP
system include that it is easily scalable to larger greenhouses
and field studies and is sufficiently flexible to be used for
different species, treatments, and developmental time scales.
This system is scalable because the images are acquired from
each camera sequentially. Unlike HTP systems with
conveyors for moving plants toward individual sensors
(e.g., Chen et al., 2014; Awlia et al., 2016), the present
system employs a larger number of cheap sensors,
increasing the temporal density of measurements without
adding substantial costs (Yang et al., 2020; Casto et al., 2021).
In addition, wireless communication between the Raspberry
Pi and the cameras allows the Pi to be stored in a nearby
office away from potentially damaging greenhouse condi-
tions (cf. Minervini et al., 2017; Tovar et al., 2018).

Because the analyses of the measurements presented
here are relatively simple (i.e., based on RGB images), they
can be flexibly applied in a large variety of experimental and
applied contexts (e.g., Humplík et al., 2015; Kefauver
et al., 2015; An et al., 2016; Ge et al., 2016). In addition,
the images captured by the HTP system are high definition,
allowing advanced users to apply powerful image analysis

TABLE 1 Inferential statistics for the linear mixed effects models fit to foliar area and greenness data.

Dependent variable Effect Estimate SE df t P

Mean foliar area (cm2) for
HTP images

Treatment 17.931 7.526 2.125 1.689 0.227

Day 3.988 0.043 1911.045 92.139 <0.001

Solar DLI −0.797 0.092 1911.098 −8.673 <0.001

Treatment × day −2.189 0.066 1911.362 −33.157 <0.001

Greenness for HTP images Treatment −8.063 5.012 2.240 −1.609 0.236

Day 0.083 0.031 1911.099 2.679 0.007

Solar DLI 0.245 0.066 1911.223 3.731 <0.001

Treatment × day 0.186 0.047 1911.794 3.937 <0.001

Foliar area (cm2) for DSLR
images

Treatment 46.620 7.611 6.498 6.125 <0.001

Day 6.512 0.0203 1242.027 32.124 <0.001

Treatment × day −3.802 0.287 1242.107 −13.243 <0.001

Greenness for DSLR images Treatment 1.271 3.932 5.834 0.323 0.758

Day −0.396 0.101 1242.025 −3.919 <0.001

Treatment × day −0.051 0.143 1242.095 −0.353 0.724

Note: DLI = daily light interval; HTP = high‐throughput phenotyping.
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pipelines such as PlantCV (Gehan et al., 2017; Tovar
et al., 2018) to address more detailed research or agronomic
questions that may be specific to different species or
growing conditions (cf. Chen et al., 2014).

One limitation to using a wireless HTP system in the
field is the possibility of interference among a large number
of GoPro networks, which may be needed to separately
monitor individual plants in the field. For example,
Mirnezami et al. (2021) mounted approximately 500
cameras to poles next to individual plants to detect anthesis
in maize. While the risk of interference may be attenuated
by using long‐range wide‐area network (LoRaWAN)
transmission technology for sending and receiving images
(Fort et al., 2021), this technology would impose a delay for
moderately large data files and is more expensive than
GoPro cameras. However, if fewer cameras are sufficient
and a researcher is primarily interested in effects spanning
blocks of plants, then HTP systems may benefit from
placing wireless RGB cameras on poles (Lu et al., 2017) or
unmanned aerial vehicles (Liu et al., 2020) to capture
overhead images.

Despite the benefits of our simple image analyses using
greenness indices, there are some limitations compared to
machine learning approaches. First, the system cannot distin-
guish between plants and objects near the plants that are visibly
green. Second, additional layers of classification would need to
be included in the image analyses in order to measure
individual plant organs such as the size of a specific leaf. Third,
for individual plant measurements rather than bench‐level
estimates, the plants need to be sufficiently spaced out so that
there is no overlap in the overhead view of the plants.

Altogether, the HTP system presented in this paper is
promising for low‐cost and automated data collection at high
temporal densities in a large variety of experimental and
applied contexts. Future work will focus on validating the use
of this system for the measurement of individual genotypes
and the study of genotype–phenotype relationships.
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Appendix S1. The exact models in R notation that were
used for analyzing the interaction between condition and
day on foliar area and greenness for both HTP and DSLR
images.
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