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Abstract

Background: Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a
better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large
number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological
process remains particularly difficult. The challenges include: (1) Most eukaryotic genomes encode thousands of
TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation,
making it difficult to recognize TFs for a biological process; (2) Transcription usually involves several hundred genes
that generate a combination of intrinsic noise from upstream signaling networks and lead to fluctuations in
transcription; (3) A TF can function in different cell types or developmental stages. Currently, the methods available
for identifying TFs involved in biological processes are still very scarce, and the development of novel, more
powerful methods is desperately needed.

Results: We developed a computational pipeline called TF-Cluster for identifying functionally coordinated TFs in
two steps: (1) Construction of a shared coexpression connectivity matrix (SCCM), in which each entry represents
the number of shared coexpressed genes between two TFs. This sparse and symmetric matrix embodies a new
concept of coexpression networks in which genes are associated in the context of other shared coexpressed
genes; (2) Decomposition of the SCCM using a novel heuristic algorithm termed “Triple-Link”, which searches the
highest connectivity in the SCCM, and then uses two connected TF as a primer for growing a TF cluster with a
number of linking criteria. We applied TF-Cluster to microarray data from human stem cells and Arabidopsis roots,
and then demonstrated that many of the resulting TF clusters contain functionally coordinated TFs that, based on
existing literature, accurately represent a biological process of interest.

Conclusions: TF-Cluster can be used to identify a set of TFs controlling a biological process of interest from gene
expression data. Its high accuracy in recognizing true positive TFs involved in a biological process makes it
extremely valuable in building core GRNs controlling a biological process. The pipeline implemented in Perl can be
installed in various platforms.
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Background
Identifying the TFs potentially involved in a biological
process is critical to unveiling regulatory mechanisms.
Examples of the importance of identifying a small list of
potentially crucial transcription factors include repro-
gramming somatic cells to a pluripotent state [1,2], the
transdifferentiation of cells via forced TF expression [3]
and genetic engineering of plants for increased produc-
tivity and adaptability[4]. Except for TF-finder [5], there
is currently no methods or software specifically tailored
to identifying TFs from expression data. Although some
very well-performing network construction methods, for
instance, CLR [6], NIR[7] and ARACNE [8], can be
used to identify TFs from expression data, these meth-
ods are strictly TF-target oriented and output a well-
connected regulatory network. Given that microarray
data only measure a small component of the interacting
variables in a genetic regulatory network[9] and that
some portions of the nonlinear relationships between
TF-targets are difficult to simulate and predict [10,11],
identifying via TF-target modeling a short list of crucial
TFs controlling biological processes in either mammals
and plants is inefficient. As prior knowledge of target
genes often do not exist, there is a need to develop new
approaches for recognizing a short list of TFs control-
ling a biological process
With few sequence features among TF family that can

be used to infer the functions of TFs, effective methods
for identifying TFs that control a biological process have
to rely on gene expression data or other datasets. Due
to the challenges in generating time-series data with
small intervals for higher plants and mammalian models,
developing new methods that are applicable to compen-
dium data sets pooled from multiple microarray experi-
ments or public data resources is very useful. In this
study, we collected microarray gene expression data
from the same tissue types under similar conditions
from multiple experiments to facilitate method
development.
Genome-wide microarray data have shown that the

coordination of functionally associated TFs is very noisy.
This is because transcription is very complicated, with
at least several TFs involved in establishing the tran-
scriptional activity of any particular gene. An early study
showed that transcription noise is partly due to a com-
bination of variability in upstream signaling [12]. In
addition, transcription for a particular gene can occur in
bursts and can fluctuate, sometimes (but not always) in
synchrony with biological processes such as the cell
cycle [13] somitogenesis [14], or slow transitions
between promoter states [12]. The abundance of TFs for
a given gene or the number of transcription-factor bind-
ing sites within its promoter or enhancer can affect the

amplitude, periodicity, and duration of transcriptional
bursts [15]. In addition, the nucleosome positions and
activities of chromatin remodelers can also cause tran-
scriptional perturbation by the interconversion of a pro-
moter between active and inactive states [16,17].
Moreover, chromatin domains also contribute to tran-
scriptional variability; a change in the chromosome posi-
tion of a gene affects not only its expression level but
also its noisiness [18]. It has been shown that multiple
copies of a given gene exhibit coordinated bursting
when integrated in tandem, but exhibit uncorrelated
responses when integrated at different chromosomal
positions [19]. Noise in gene expression can disturb or
impair the correlation and thus make the identification
of coordinated TFs more challenging. In this regard, we
should not anticipate that the TFs functioning in coordi-
nation have a perfect correlation or coordination and
the mathematical methods that emphasize approximate
“correlations” may recognize the functionally coordi-
nated TFs more efficiently.
In this study, we developed a novel approach for iden-

tifying TFs involved in a biological process by building a
conceptually new coexpression network represented by
SCCM and then decomposing it into multiple subnet-
works (or subgraphs) using Triple-Link, a heuristic algo-
rithm that works as follows: it first searches all
connected node pairs (genes) in the SCCM, and identify
the one with highest connectivity, which is used as a
primer for growing into a TF cluster. All TFs that are
subsequently joined in need to have at least three signif-
icant connectivities to the TFs already in the cluster,
with the exception of the third TFs that is required to
have two. The cluster stops growing until there are no
more nodes (TFs) meeting the requirement. A TF clus-
ter is then produced. All TFs in this cluster are removed
from the TF pool and SCCM matrix, and they do not
participate in the next round of analysis. This process is
repeatedly executed until all TFs are placed into clus-
ters. The SCCM can be broken down into many subnet-
work graphs because it is sparse and symmetric with
both dimensions containing the same set of TFs. For
such a graph, a few other graph clustering methods,
including Markov Cluster Algorithm (MCL) [20] and
affinity propagation (AP) [21], can also be applied to
decompose it into multiple subgraphs. However, these
methods were not developed specifically for decompos-
ing the coexpression network we built in this study and
thus may not produce outputs optimal for biological
interpretation. In contrast to our other method TF-Fin-
der [5], TF-Cluster does not require the use of any
existing knowledgebase. We applied TF-Cluster to the
microarray data from human embryonic stem cells dur-
ing a transition from the undifferentiated ES state to a
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variety of differentiated states, and also applied to
microarray data from Arabidopsis roots under salt
stress. TF-Cluster recovers non-overlapping clusters
containing important TFs recently identified as involved
in controlling the pluripotency of human embryonic
stem (hES) cells, human neural development and multi-
directional differentiation, as well as Arabidopsis root
growth and development in response to salt stress. In
this study, functionally coordinated TFs refer to a group
of TFs that are loosely coordinated in expression pro-
files as measured by the number of shared coexpressed
genes. We postulate that these TFs control multiple
facets of a biological process independently or combina-
torially by controlling a set of target genes that may
function in various subcellular components, in different
cell types, or even in different organs if only they can
function coordinately in time. As a result, the identified
TF in the same cluster may not bind to the same group
of target genes though it is very likely that a subset of
TFs may bind to a subset of targets.

Results
Using the pipeline containing Spearman rank correla-
tion, the coexpression analysis was applied to both
human and Arabidopsis data sets, and a SCCM was
built for human and Arabidopsis respectively. We then
decomposed the SCCM into subgraphs (clusters) with
the Triple-Link algorithm. Since TF clustering was
always initiated with a pair of TFs with maximal con-
nectivity, a significant and also well-coordinated cluster
is usually extracted earlier than a less significant one.
To demonstrate the efficiency of this package and the
Triple-Link algorithm, we examined some TF clusters
derived from human and Arabidopsis data.

Identification of functionally coordinated TFs during
differentiation of human embryonic stem cells
As described in Methods, the microarray data set for
human stem cells was collected from 17 experiments in
which hES cells were treated with various differentiation
reagents. Therefore, these datasets include states
involved in many regulatory events underpinning pluri-
potency, such as ES maintenance, exiting the pluripotent
state, and differentiation. If TF-Cluster is adequately
efficient, we anticipated that those TFs involved in pluri-
potency would be identified at an early stage of execu-
tion. In fact, the first cluster identified was the one
containing many known pluripotency-controlling tran-
scription factors (see Table 1).
1. TF cluster indentified with pluripotency of human
embryonic stem cells
To demonstrate that this cluster is strongly correlated
with human embryonic stem cell pluripotency, we
examined each gene and the literature support for its

involvement with pluripotency. PHC1 is implicated in
pluripotency because its expression is repressed with the
master pluripotency genes, OCT4 and NANOG, upon
differentiation with retinoic acid (RA) [22]. ZFP206
(ZSCAN10) is a TF that controls pluripotency of
embryonic stem cells by activating transcription of the
OCT4 and NANOG promoters [23,24]. ZNF589,
DNMT3A/B and SALL2 have been defined as pluripo-
tency associated factors [25]. A novel DNMT3B splice
variant was found to be expressed in pluripotent and
cancer cells [26]. ES cells lacking the nucleosome assem-
bly factor HIRA exhibit elevated levels of unbound his-
tones, and the formation of embryoid bodies is
accelerated, indicative of the onset of differentiation
[27]. Embryoid bodies are aggregates of cells derived
from embryonic stem cells. Upon aggregation, differen-
tiation is initiated and the cells begin to recapitulate
embryonic development to a limited extent. ETV1 is a
direct target of NANOG and OCT4 in ES cells [28,29].
CITED2, as a TF playing key roles in mouse embryonic
development, is involved in self-renewal and prevents
spontaneous differentiation of E14Tg2a mouse ESC [30].
In addition, CITED2 is an essential regulator in adult
hematopoietic stem cells [31]. Although their roles in
ES cells are not clearly defined, TRIM22 and ZIC3 are
believed to play a role in ES cells and have been used as
ES markers [32].
This suggests that the TF-Cluster method is viable

and can easily identify many of the key TFs reported in
the literature as controlling the pluripotency of human
stem cells. Of the 24 TFs in this cluster, 16 (~67%) have
literature support for either being directly involved in
the ES network or associated with ES cells. In the case
of NANOGP8 and LOC653441, the literature contains
evidence of a potential cross-hybridization with probes
for known pluripotency regulators NANOG and PHC1
respectively. Although the other eight TFs - CSRP1,
HES6, TRIM65, OTX2, FOXA3, ELF4, HOXB4, and
ZNF101 - do not currently have supporting evidence,
this does not indicate that they are not involved in plur-
ipotency. For instance, HOXB4 has been indicated to
play a role in the renewal of hematopoietic stem cells
[33,34]. We believe future research will provide more
clues regarding these particular genes. Nevertheless, our
rediscovery of many important TFs involved in pluripo-
tency maintenance using TF-Cluster suggests that it is
highly efficient.
Cluster 1 contains three master TFs: Nanog, Sox2, and

Oct4, which can bind to 1,330 active genes in stem cell
independently or combinatorially. Among the 24 TFs of
this cluster, only TRIM22 is bound by these three mas-
ter TFs as indicated by the CHIP-on-chip data produced
in previous study (Boyer, 2005). The same data also
indicated that SALL2 is bound by Nanog only but at a
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Table 1 TF cluster identified with pluripotency of human embryonic stem cells

Genes Symbol Description Evidence

Cluster 1: TFs control pluripotency renewal of human
stem cells

NM_024865 NANOG Nanog homeobox [96]

BC099704 NANOGP8 Nanog homeobox pseudogene 8 Pseudogene with
similarity to Nanog.

NM_003106 SOX2 SRY box 2 [96]

NM_002701 POU5F1 POU class 5 homeobox 1 [96]

NM_006892 DNMT3B DNS methyltransferase 3 beta [26,97]

NM_004078 CSRP1 cysteine-rich protein

NM_080618 CTCFL CCCTC-binding factor (zinc finger protein)-like [98]

NM_016089 ZNF589 Zinc finger 589 [25,32]

NM_004426 PHC1 Polyhomeotic homolog 1 [22]

NM_005407 SALL2 SAL2 like [25]

NM_018645 HES6 Hairy and enhancer of split 6

NM_173547 TRIM65 Tripartite motif containing 65

NM_004427 PHC2 Polyhomeotic homolog 2 [99]

NM_032805 ZFP206 Zinc finger protein 206 (ZSCAN10) [23,24]

NM_001421 ELF4 ETS domain TF

NM_003325 HIRA HIR Histone Cell Cycle regulator [100]

NM_033204 ZNF101 Zinc finger protein 101

BC098403 ETV1 ETS variant 1 [28,29]

NM_006079 CITED2 Cbp/p300-interacting transactivator [30,31]

NM_021728 OTX2 Orthodenticle homeobox 2

NM_024015 HOXB4 Homeobox B4

NM_006074 TRIM22 Tripartite motif-containing 22 [32]

XM_929986 LOC653441 Similar to polyhomeotic 1-like Gene with sequence
similarity to PHC1

NM_004497 FOXA3 Forkhead box 3

Cluster 22: TFs control neural development in earlier
differentiation of human stem cells

BC008687 NEUROG1 Neurogenin 1 [101]

NM_006161 NEUROG1 Neurogenin 1 [101]

NM_001965 EGR4 Early growth response

NM_033178 DUX4 Double homeobox 4 [38]

NM_006732 FOSB FBJ oncogene homolog B [35]

NM_003317 TITF1 NK2 homeobox 1 [39]

NM_002478 MYOD1 myogenic differentiation 1 [43,44]

NM_006192 PAX1 Paired box 1 [36]

NM_002700 POU4F3 POU class 4 homeobox 3 [37]

BC10493 POU4F3 POU class 4 homeobox 3 [37]

Cluster 17: TFs control differentiation towards multiple
directions in human stem cells

NM_001002295 GATA3 GATA binding protein 3 Trophectoderm [45]

NM_012258 HEY1 Hairy/enhancer-of-split related with YRPW motif
1

Trophectoderm [46]

NM_001804 CDX1 Caudal type homeobox 1

NM_001430 EPAS1 Endothelial PAS domain protein 1

NM_032638 GATA2 GATA binding protein 2 Trophectoderm [47]
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location around 6.3 kb upstream. Nothing else is bound
by these three TFs, suggesting the dominance of coop-
eration and synergy among the genes in a TF cluster. In
addition, among these 1,330 active genes, 180 genes are
controlled by these three master TFs, indicating that
combinatorial control is not employed at a high rate
(14%).
2. TF cluster controlling neural development
Among the 189 human microarray data sets we used,
about 60 were from early differentiation in which very
earlier neural development can be tracked. We showed
here that TF-Cluster can be used to identify the TFs
controlling earlier neural differentiation. We simply
searched a neural development marker, NEUROG1,
which is contained in the 22nd cluster. This cluster also
contains several other genes involved in neural develop-
ment (Table 1). Among these genes, NEUROG1 is
involved in cortical neuronal differentiation. FOSB func-
tions as a molecular switch underlying long-term neural
plasticity [35]. PAX1/E2A double-mutant mice develop
non-lethal neural tube defects that resemble human
malformations [36]. Although the underlying mechan-
ism is unclear, mutation of POU4F3 causes progressive
hearing loss in humans [37]. DUX4 is highly expressed
in embryonic neural tube by in situ hybridization [38].

TITF1 is implicated to play a role in the enteric nervous
system [39]. MYOD1 is such a solid marker for muscle
development [40-42] that its involvement in central neu-
ron development in the brain is sometimes overlooked
[43,44]. The literature support suggests that 90% (9 of
10) of the genes in this cluster are involved in neural
development, indicating that TF-Cluster is capable of
identifying clusters with a cohesive set of TFs that func-
tion in a biological process.
3. TF cluster controlling differentiation towards multiple
directions
The 189 human chips were collected from multiple
experiments in which stem cells were treated with dif-
ferent reagents that triggered multiple types of differen-
tiation. Usually the stem cells commit to differentiation
at 48 hours upon treatment, and then enter a transition
stage followed by further differentiation. We collected
our data before 96 hours by which time early stages of
differentiation, such as early neural differentiation, may
be tracked, but more terminal differentiation to heart,
brain, liver, kidney has not yet taken place. This early
stage involves the formation of various lineage cells that
are still in small quantity. All these various cell types,
with no a priori knowledge, make it extremely challen-
ging to interpret many clusters derived from this data

Table 1 TF cluster identified with pluripotency of human embryonic stem cells (Continued)

NM_030379 GLI2 GLI family zinc finger 2 Mesoderm [48]

NM_017410 HOXC13 Homeobox C13 Ectoderm[51]

NM_002202 ISL1 ISL LIM homeobox 1 Mesoderm [49]

NM_033343 LHX4 LIM homeobox 4

NM_002315 LMO1 LIM domain only 1 (rhombotin 1)

NM_005461 MAFB v-maf musculoaponeurotic fibrosarcoma
oncogene Homolog B (avian)

Neural [53]

NM_002448 MSX1 Msh homeobox 1

NM_002449 MSX2 Msh homeobox 2 Mesoderm[50]

NM_175747 OLIG3 Oligodendrocyte transcription factor 3 Neural [54]

NM_006099 PIAS3 Protein inhibitor of activated STAT, 3 Neural [55]

NM_019854 PRMT8 Protein arginine methyltransferase 8 Neural [56]

NM_030567 PRR7 Proline rich 7 (synaptic) [102]

BC071571 RFX2 Regulatory factor X, 2 (influences HLA class II
expression)

NM_003068 SNAI2 Snail homolog 2 (Drosophila) Neural Crest[57]

NM_031439 SOX7 SRY (sex determining region Y)-box 7 Endoderm (Parietal) [52]

NM_003150 STAT3 Signal transducer and activator of transcription 3
(acute-phase response factor)

NM_003221 TFAP2B Transcription factor AP-2 beta (activating
enhancer binding protein 2 beta)

NM_016267 VGLL1 Vestigial like 1 (Drosophila)

NM_007129 ZIC2 Zic family member 2 (odd-paired homolog,
Drosophila)

Neural [103]

NM_152320 ZNF641 zinc finger protein 641
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set. We have shown the identification of the cluster
involved in pluripotency renewal and the cluster
involved in neural development. If we could identify a
TF cluster controlling earlier differentiation towards
multiple directions, it is an indication that the TF-Clus-
ter pipeline is sensitive and efficient in identifying TFs
from data in a chaotic stage. We examined the outputs
and found Cluster 17 contains 24 genes, among which
15 TFs are marker genes for trophectoderm[45-47],
mesoderm[48-50], ectoderm[51], endoderm[52] and
neural [50,53-57] differentiation (Table 1), clearly indi-
cating that the differentiation of these cell types, from
which different organs will be derived later, is well
coordinated.

Identification of functionally coordinated TFs during salt
stress response of Arabidopsis roots
The Arabidopsis data sets used in this study were from salt
stress microarray experiments on Arabidopsis roots. The
same data set was used earlier [5] for identifying the TF
regulators that control root growth in response to salt
stress. In this study, we were mainly interested in the TFs
involved in root growth and abscisic acid (ABA, a hor-
mone induced by salt/water stress) responsive TFs. There-
fore, we selectively interpreted a few clusters produced by
TF-Cluster. These include Cluster 1, 2,5, 7, and 19, and
the genes contained in these clusters are shown in Table
2. The TFs in Cluster 1 seem to function in root hair
development. LRL3, for instance, is involved in root hair
development [58]. Constitutive expression of RSL4 pro-
grammed constitutive root growth, leading to the forma-
tion of very long root hairs [59]. RHD6 is involved in the
early formation of root hairs from epidermal cells [60,61].
Overexpression of the counterpart of RAP2.11 of barley in
Arabidopsis results in root growth tolerance to high sali-
nity [62]. TINY encodes a member of the DREB subfamily
A-4 of ERF/AP2 transcription factor family (TINY). The
mutant of TINY has short roots[63]. The expression of
this gene is induced by ethylene, and appears to stimulate
cytokinin biosynthesis. Both affect root growth [63]. FRU
mRNA is detected in the outer cell layers of the root and
accumulates in response to iron deficiency [64,65]. In
Cluster 1, 83% of the TFs are involved in root growth. The
TFs in Cluster 2 are clearly dominated by these genes
known to control the stem cells in root cap (Table 2). We
successfully discovered a subset of TFs that coordinately
control cap growth and maturation. They include BRN1
[66], BRN2 [66], SMB [67], FEZ [67] TOM7 [68], PTL2
[69] and TCP20 [70], which were recently identified as
functioning coordinately in the stem cell niche and periph-
ery tissues in root caps. For instance, FEZ and SMB con-
trol the orientation of cell division plane in Arabidopsis
root stem cells, where FEZ promotes periclinal, root cap-
forming cell divisions while SMB repress stem cell-like

divisions in the root cap daughter cells via negatively regu-
lating FEZ activity. In predivision stem cells FEZ activates
expression of its negative regulator, SMB, constituting a
feedback loop for controlled switches in cell division
planes[67]. Interestingly, these TFs’ activities are in concert
with the activity of IAA33. Although there is currently no
evidence supporting the idea that IAA33 plays a major
role in root cap growth, auxin is the major hormone con-
trolling many aspects of root growth and development
[71]. In Cluster 2, there are also a few TFs that are
involved in lateral root development. We visualize this as a
coordinated event that happened near the root cap. The
TFs in Cluster 5 are mainly involved in second wall
growth and vascular development. These include VND7
[72], VND4 [72], SND2 [73], ADOF2[74], AT1G68810,
LBD18 [75], MYB46[76], MYB52[76], MYB103[76],
MYB20[76], and MYB54[76]. Some of these TFs have
recently been identified to function in a TF interactive
subnetwork as evidenced by the cited references and the
information therein. In this circumstance, 69% of the TFs
in Cluster 5 are involved in the vascular development. The
TFs in Cluster 7 mainly control cell cycle and root growth.
For instance, AtXR6 [77], DEL3 [78], and HMG1/2 [79]
are involved in cell cycle control and progression. Three
growth factors that include AtGRF, 1, 2, and 3, were iden-
tified by TF-Cluster. These TFs control growth and mor-
phology although their exact functions in root have not
been characterized [80,81]. Ectopic expression of MNP
causes growth retardation, aberrant cell division patterns,
and loss of meristem activity [82]. Finally PS1 is involved
in meiosis and mutation of this gene causes cellular
diploidy [83]. For Cluster 7, 89% of the TFs are associated
with cell cycle. Finally, Cluster 19 contains TFs that are
involved in ABA signaling or response, an event incurred
by water deprivation or salt stress. These TFs include
GBF3 [84], ABF4 (Yoshida et al. 2010), ANAC019 [85],
ATHB7 [86], ATHB12 [86], ABF3 (Yoshida et al. 2010),
RD26[87], MYB102[88]. In this case, 47% of the TFs are
associated with ABA signaling.

The efficiency of Triple-Link in decomposing SCCM
network
Compared to existing graph methods, Markov cluster
(MCL) algorithm [20] and affinity propagation (AP) [21],
Triple-Link can decompose the SCCM more efficiently
and results in biologically interpretable TF clusters. This is
demonstrated by the functionally cohesive clusters shown
in Table 1 and 2. The clusters resulting from MCL are
usually bigger and often contain the genes in the clusters
identified by Triple-Link (Table 3). For the two clusters
with a size of 6 and 9 identified by Triple-Link as control-
ling Arabidopsis root growth, MCI identified two clusters
with a size of 28 and 14 respectively that are supersets of
the TFs identified by Triple-Link (Table 3). For the cluster
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Table 2 Cluster 1, 2, 5, 7 and 19 identified from salt stress data of Arabidopsis roots containing root growth and
development

Gene Symbol Description Evidence

Cluster 1: TFs control the root hair growth

AT5G58010 LRL3 Roothairless1 [58]

AT5G19790 RAP2.11 Ethylene response factor controlling root
growth

[62]

AT1G27740 RSL4 Postmitotic cell growth in root-hair cells [59]

AT1G66470 RHD6 Early root hair formation [60,61]

AT5G25810 TINY ERF/AP2 TF control cell expansion in root [63]

AT2G28160 FRU Regulates iron uptake responses in outer cells
of root

[64,65]

Cluster 2: TFs control root cap development (stem cells of roots)

AT1G33280 BRN1 BRN1, SMB control root cap maturation [66]

AT4G10350 BRN2 BRN2, SMB control root cap maturation [66]

AT1G79580 SMB FEZ and SMB control root stem cells [67]

AT5G39820 ANAC094 Apical meristem protein, function unknown [59]

AT1G26870 FEZ FEZ and SMB control root stem cells in cap [67]

AT1G74500 TOM7 Embryonic root initiation [68]

AT3G27010 TCP20 Postembryonic cell division in root [70]

AT2G30340 LBD13 Expressed in cells at the adaxial base of lateral
roots

[104]

AT2G40470 LBD15 Expressed in cells at the adaxial base of lateral
roots

[104]

AT1G51190 PLT2 Control root stem cell activity near cap [69]

AT1G66350 RGL1 Root epidermal differentiation [105]

AT2G37260 TTG2 Differentiation of trichomes and root hairless
cells

[106]

AT5G57420 IAA33 IAA is involved in root development [107,108]

AT2G29060 scarecrow transcription factor family protein

AT5G07580 DNA binding/transcription factor

AT1G21340 Dof-type zinc finger DNA-binding protein

AT1G75710 C2H2-like zinc finger protein

AT1G77200 DREB subfamily A-4 of ERF/AP2 transcription
factor

Cluster 5: TFs control root vascular development, second wall
growth development

AT1G71930 VND7 Regulates xylem vessel formation [72]

AT5G12870 MYB46 Target of SND1, control second wall
biosynthesis

[76]

AT1G01780 LIM LIM domain-containing protein

AT1G12260 VND4 Switches for protoxylem and metaxylem vessel
formation

[72]

AT1G17950 MYB52 Second wall growth [109]

AT1G63910 MYB103 Second wall growth [109]

AT1G66230 MYB20 Second wall growth [109]

AT1G68810 bHLH Root vascular initial [110]

AT1G73410 MYB54 Second wall growth [109]

AT2G39830 DAR2 DA-1 related, control organ size [111]

AT2G45420 LBD18 Lateral root and tracheary element formation [75]

AT3G21270 ADOF2 Early stages of vascular development [74]
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controlling human stem cell pluripotency (Table 1), MCL
produced a cluster of 219 TFs (not shown) that again is a
superset of all those TFs shown in Table 1. A predicted
cluster of this size is usually not valuable for biologists as
there are too many entries for experimental validation,
and various reprogramming studies [2,89,90] have shown
that only a moderate number of TFs are needed to repro-
gram somatic cells to a pluripotent state. Conversely, AP
tends to produce smaller clusters than Triple-Link. For
the TF cluster controlling pluripotency, AP produced a

cluster of 12 members while Triple-Link produced a clus-
ter of 24 members (Table 1). These 12 TFs include
NM_001452-FOXF2, NM_002701-POU5F1, NM_
004426-PHC1, NM_004427-PHC2 NM_004497-FOXA3,
NM_004502-HOXB7, NM_006079-CITED2, NM_0248
65-NANOG NM_033204-ZNF101, NM_145238-ZNF31,
NM_152629-GLIS3, and XM_929986-LOC653441, with
the master pluripotency master regulator SOX2 being
separated to a different cluster. Six of these 12 have prior
literature support for being involved in ES cell

Table 2 Cluster 1, 2, 5, 7 and 19 identified from salt stress data of Arabidopsis roots containing root growth and
development (Continued)

AT4G00220 JLO A central regulator of auxin distribution and
signaling in root

[112]

AT4G28500 SND2 Vascular cell differentiation [73]

AT5G66610 DAR7 DA-1 related, control organ size [111]

Cluster 7: TFs control root cell cycle & growth

AT5G24330 AtXR6 Cell cycle regulation of late G1 to S phase [77]

AT3G01330 DEL3 Cyclin D/retinoblastoma/E2F pathway [78]

AT2G22840 AtGRF1 Growth factor expressed in root [80,81]

AT2G36400 AtGRF3 Growth factor expressed in root [80,81]

AT4G37740 AtGRF2 Growth factor expressed in root [80,81]

AT3G50870 MNP GATA transcription factor [113]

AT1G34355 PS1 Parallel spindle 1 involved in meiosis [83]

AT4G23800 HMG1/
HMG2

High mobile group 1, 2 [79]

AT5G25475 Transcription factor B3 family

TFs control drought stress in response to ABA

AT2G46270 GBF3 induced by ABA under water deprivation [84]

AT3G19290 ABF4 Regulate ABRE-dependent ABA signaling
involved in drought stress

[114]

AT1G21000 Zinc zinc-binding family protein

AT1G51140 bHLH Drought stress [115]

AT1G52890 ANAC019 Bind to drought-responsive cis-element in
response to ABA

[85,87]

AT1G73730 EIL3 Ethylene signaling [116]

AT2G18550 HB-2 DNA binding/transcription factor

AT2G46680 ATHB7 Growth regulator in response to ABA [86]

AT3G12980 HAC5 H3/H4 histone acetyltransferase/histone
acetyltransferase

AT3G61890 ATHB12 Growth regulator in response to ABA [86]

AT4G21440 MYB102 ABA-induced protein [88]

AT4G25480 DREB1A Drought stress genes responsive to ABA

AT4G27410 RD26 Transcriptional activator in ABA-mediated
dehydration response

[87]

AT4G34000 ABF3 Regulate ABRE-dependent ABA-mediated
dehydration response

[114]

AT4G37180 MYB myb family transcription factor

AT5G04760 MYB myb family transcription factor

AT5G47640 NF-YB2 NF-YB2 (NUCLEAR FACTOR Y, SUBUNIT B2);
transcription factor
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maintenance. However, the lack of inclusion of SOX2
indicates that this cluster may be too restrictive as SOX2
is a well-known regulator of ES pluripotency. For the TF
cluster controlling neural development, AP produced a
cluster of eight TFs, two less than the one identified by
Triple-Link (Table 2). These eight TFs are BC008687-
NEUROG1, NM_001965-EGR4, NM_002478-MYOD1,
NM_002700-POU4F3, NM_006161-NEUROG1, NM_
006732-FOSB, NM_152568-FLJ25169, NM_173849-GSC.
AP also divided the Arabidopsis root growth clusters
(shown in Table 2) into multiple clusters (Table 3). We
examined eight genes in cluster 118, and found that four
of them do not have firm literature support for a role
in root growth. These four genes are AT1G10610, AZF1-
AT5G67450, WRKY35-AT2G34830, WRKY36-AT1G
69810, and WRKY19-AT1G68150. There are six genes in
cluster 191, and three genes out of these six, APTX
-AT5G01310, SUVH5-AT2G35160 and Wrinkled1-
AT3G54320, show evidence of being growth genes. Clus-
ter 143 contains 8 genes and three of them, TUBBY 8
(AT1G16070), AT5G25475, and EBS(AT4G22140) are
lacking literature support for being growth genes. These
results suggest that AP tends to produce smaller sub-
graphs that do not have cohesive functions. All this evi-
dence suggest that Triple-Link outperformed both MCL
and AP in that it can produce more functionally interpre-
table TF clusters with a size ideal for either functional ana-
lysis or experimental validation.
In addition to proving the efficiency of TF-Cluster by

comparing with other methods, we also examined the
number of connectivities within the derived clusters and

between each cluster and other genomic genes. Two
examples were shown in Figure 1A and 1B. It is obvious
that the connectivities between TFs within the cluster
are much more than those between TFs within a cluster
and other genomic genes, suggesting that TF-Cluster
can generate clusters by breaking down connected TFs
from the weakest links.
Although we have demonstrated that Triple-Link per-

formed better than AP and MCL in generating optimal
cluster size, we have tested it to only two data sets. For
this reason, we suggest users to try Triple-Link together
with AP and MCL with multiple parameter choices so
that it can be tested with a variety of data sets from var-
ious experimental conditions and species. What is inter-
esting is that after we developed and tested Triple-Link,
we found it can produce a cluster size that is between
those that can be generated by AP and MCL. In this
sense, AP, Triple-Link, and MCL form an array of
methods for decomposing SCCM matrix. Although we
believe Triple-Link performs better in decomposing
SCCM because it was specifically designed and tuned up
for this purpose, firm conclusion can be drawn only
upon extensive tests being completed.

Spearman rank correlation is a better method than
Pearson correlation for associating TFs that have loose
coordination
The success in identifying many TF clusters with func-
tional coordination can be at least partially ascribed to
the efficiency of the Triple-Link decomposition algo-
rithm. To explore how the method used for measuring

Table 3 Comparison of Triple-Link with MCL and Affinity Propagation

AGI Cluster ID (TL) Cluster ID (MCL) Cluster ID (AP)

AT5G58010 1 14 28

AT5G19790 1 14 28

AT1G27740 1 14 28

AT5G25810 1 14 28

AT1G66470 1 14 118

AT2G28160 1 14 118

Cluster size 6 28 (Others not shown) Size: Cluster 28: 5 TFs Cluster 118: 10 TFs

AT2G36400 7 15 140

AT3G01330 7 15 140

AT3G50870 7 15 140

AT4G37740 7 15 140

AT1G34355 7 15 143

AT4G23800 7 15 143

AT5G25475 7 15 143

AT2G22840 7 15 191

AT5G24330 7 15 191

Cluster size 9 14 (Others not shown) Size: Cluster 140: 5 TFs Cluster 143: 8 TFs Cluster 191: 6 TFs
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gene association can affect results, we compared Spear-
man rank correlation with Pearson product-moment,
which is widely utilized in almost all coexpression ana-
lyses. Due to the noise arising from complicated interac-
tions during transcription, we hypothesize that the
Spearman rank correlation that emphasizes looser trend
correlations may perform better in identifying function-
ally coordinated gene clusters, as shown in an early
study[91]. To prove Spearman rank correlation is a bet-
ter choice for the purpose of this study, we evaluated
the coexpression analysis outcomes resulting from sim-
ple linear regression and Spearman and found that the
Spearman’s rank correlation indeed performs better
than linear regression in finding clusters of biologically
associated genes.
Spearman’s rank correlation coefficient (called “rho”)

is a non-parametric (distribution-free) rank statistic [92],
which is a measure of the strength of the association
between two variables when the data are ordinal or do
not follow a Gaussian distribution. It is a measure of a
monotone association used when the distribution of the
data makes Pearson’s correlation coefficient undesirable
or misleading. To test this, we performed the Shapiro-
Wilk normality test and found that among 16,219
expressed genes, only 996 genes have a p value > 0.05,
suggesting that the expression of most individual genes
do not strictly follow a Gaussian distribution, further

suggesting that the use of non-parametric methods may
be more appropriate.
To explain how the distribution of a gene influences

its rank in the coexpressed gene lists when different
association methods are employed, we used
NM_004426-PHC1 as an example. We set PHC1 as a
dependent variable and then examined the ranks of
some other genes that have either a normal distribution
or ones that depart from the normal distribution. This
can be accomplished by a graphic method called Q-Q
plot in which the quantiles of two variables are plotted
again each other. These plots are displayed in Figure 2.
In Figure 2, we showed that SOX3 has an approximate

normal distribution because the points in the normal Q-Q
plot (top left) lie approximately in a straight line. In this
case, SOX3 is the 47th most coexpressed gene with PHC1
regardless of whether Spearman, Pearson, or regression is
used. Q-Q plots shown in Figure 2 suggested that RGC32
and HAND2 deviate from the normal distribution. For
these genes, we found that Spearman and regression/Pear-
son do make a difference. For the genes that deviate in a
manner similar to RGC32 (where the observed highest
quantiles are less than the highest theoretical quantiles),
linear regression (LR, hereafter) gave a higher rank (41st)
while Spearman gives a lower rank (86th) in the list of
genes coexpressed with NM_004426 (PHC1). Several
other genes including NM_002448–MSX1 (LR 42th,

Figure 1 The clusters identified by Triple-Link are well connected between any nodes within each cluster. 1A: Cluster 1 (yellow nodes)
contains the TFs predicted to be involved in pluripotency in human embryonic stem cells. The three genes in the center are master TFs,
NANOG, POU5F1, and SOX2, which are crucial for pluripotency. A few nodes located immediately outside the inner ring are those that may not
be always captured, depending on the parameters used. 1B: Cluster 7 (yellow nodes) contains the TFs controlling root growth in Arabidopsis
under salt stress.
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Spearman 65th), NM_005270–GLI2(LR 39th, Spearman
61th), NM_007129–ZIC2 (LR 27th, Spearman 48th), NM_
012204–GTF3C4(LR 41th, Spearman 86th), NM_033132–
ZIC5(LR 33th Spearman 60th) showed this type of
deviation in that all have a higher rank when regression/
Pearson is used rather than Spearman. For the genes that
deviate in a manner similar to HAND2 (where the
observed highest quantiles are greater than the highest
theoretical quantiles), Spearman gave a higher rank while
linear regression/Pearson gave a lower rank (75th) in the
coexpressed gene list with PHC1. Several other genes hav-
ing this type of deviation include NM_005253–FOSL2 (LR
81th, Spearman 50th), NM_005257–GATA6 (LR 82th,
Spearman 56th), NM_005342–HMGB3(LR 91th, Spearman
69th), NM_023033–METTL1(LR 95th, Spearman 58),
NM_002653–PITX1(LR 72th, Spearman 31th). We chose
PHC1 as the dependent variable in regression because it

does not have a normal distribution itself (Figure 2, top,
right panel) and thus can represent most other genes that
do not obey a normal distribution.
Having demonstrated that Spearman and Pearson

indeed have some differences in identifying coordinated
TFs, we now show that Spearman is capable of captur-
ing more biologically meaningful relationships with gene
expression data. We examined the overlap of the top 50
most tightly coexpressed genes between three master
TFs regulators, NANOG, POU5F1, and SOX2. When
Spearman correlation was employed, we obtained 35
coexpressed genes that were common in three gene
lists, each containing the top 50 genes most coexpressed
to NANOG, POU5F1 and SOX2 (Table 4). When
regression/Pearson correlation was used, we obtained
only 24 common genes. Of the 35 identified by Spear-
man correlation analysis, 22 are common to the 24

Figure 2 Normal Q-Q plot and Q-Q plot of a few genes for which Spearman and Regression make no difference (SOX3), and for which
there is a difference (RGC32 and HAND2).
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genes identified by regression, and 13 are unique to
Spearman. Eight out of these 13 genes have literature
support for being involved in hES cells. This suggests
that Spearman correlation is capable of capturing a lar-
ger list of functionally associated TFs, possibly because
of its ability to capture those with a looser coordination
in expression.

Discussion
The SCCM is a more informative measure for TF
coordination than simple coexpression
Existing coexpression analysis is typically either correla-
tion- or regression-based. Due to the variation in the
strength of coordination between TFs or TFs and other
genes, mandatory implementation of any cut-off thresh-
old in correlation or regression-based coexpression ana-
lyses often leads to the elimination of those TFs having
relatively weak coordination strength with other genes.
An example would be where TF A is involved in stress
response and another TF B is a regulator controlling
organ development. Due to the need for rapid response
under stress conditions, TF A may have 100 coexpressed
genes with a correlation coefficient varying between
0.85~0.95 while B has 100 coexpressed genes with a
correlation coefficient varying from 0.55 ~0.70. Gen-
ome-wide coexpression analysis often disregards TF B

due to its low coexpression strength with other genes.
We argue that TFs with relatively lower coexpression
strength may be intrinsic to the characteristics of some
cellular activities or events and that this lower coexpres-
sion strength should not be used a priori to eliminate
TFs. The SCCM was developed to deal with this issue
so that TFs with lower association strength are not
eliminated at an early stage. However, at the decomposi-
tion stage, any TF that does not share coexpressed genes
with other TFs was automatically eliminated.
When the coordination between two TFs is measured

by the number of coexpressed genes, the context of all
genes genome-wide are taken into account (Figure 3).
Therefore, every entry in SCCM reflects a more biologi-
cally meaningful measure as compared to the absolute
distance represented by the correlation coefficient or
regression p value.

TF-Cluster identifies different TFs as compared to TF-
finder
Interestingly, most TFs controlling root growth as iden-
tified by TF-Cluster are different from those identified
by TF-finder [5]. For instance, TF-finder identified a B3
family TF (AT2G16210) and GRF7 while TF-Cluster
identified GRF1, 2 and 3, and a different B3 family
member (AT5G25475). This is not surprising because
the two methods use different principles. TF-finder uses
bait and guide genes aided by multiple correlation analy-
sis to identify TFs while TF-Cluster uses relatively loose
coordination analysis following by network decomposi-
tion. The TFs within each cluster identified by TF-Clus-
ter are typically cohesive in function as shown in Table
1 and 2. Such a phenomenon was not observed in the
outputs resulting from TF-finder [5]. Disparate functions

Table 4 The intersection of coexpressed genes to
NANOG, SOX2, and POU5F1 when Spearman and
regression are used

Common Genes Unique Genes

BC069807–NANOGP8 Regression/Pearson

BC090958–SALL2

BC099704–NANOGP8 BC093979–HESX1[117]

NM_001421–ELF4 NM_032805–ZNF206 (ZSCAN10) [23,24]

NM_003106–SOX2

NM_003325–HIRA Spearman

NM_004078–CSRP1 AF454056–PRKCBP1 [60]

NM_004426–PHC1 BC010105–NASP

NM_004427–PHC2 BC098403–ETV1 [28,29]

NM_004497–FOXA3 CR627389–ETV1 [28,29]

NM_005375–MYB NM_002653–PITX1

NM_005634–SOX3 NM_002701–POU5F1 [25]

NM_006892–DNMT3B NM_005224–ARID3A

NM_016089–ZNF589 NM_005239–ETS2 [118]

NM_018645–HES6 NM_005407–SALL2 [25]

NM_021728–OTX2 NM_006074–TRIM22 [32]

NM_022051–EGLN1 NM_021958–HLX1

NM_024504–PRDM14 NM_021973–HAND2

NM_024865–NANOG NM_024015–HOXB4 [33]

NM_033204–ZNF101

NM_173547–TRIM65

XM_929986–LOC653441

Figure 3 Shared coexpression connectivity represents the
coordination of two TFs in the context of other genes while
correlation coefficient/regression p value between two TFs
only reflects the distance between these two TFs with regard
to coexpression.
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of the genes shown in Table 1 and supplemental Tables
in the TF-finder article [5] are obvious and such a fea-
ture is probably rooted in the use of bait and guide
genes, which have distinct functions..

Interpretation and validation of TF cluster function
To identify the function of each derived cluster, the user
may need to search the existing recent literature. This is
because, in the existing database, most genes encoding
TFs have very simple annotation. For example, an anno-
tation may read as follows: molecular function: tran-
scription activity; cellulose component: nucleus;
biological process: regulation of transcription. This kind
of annotation does not help in figuring out the function
of a TF-Cluster. When applied to higher plants and
mammals that have a variety of cell types and develop-
mental stages, caution needs to be exercised in inter-
preting the functions of each TF in a cluster. It is also
important to find the articles whose research was done
using the same tissue types. A cluster of TFs recognized
from TF-Cluster contains those that are loosely coordi-
nated in expression. There is thus no guarantee that
these TFs function in the same cells, or bind to the
same set of target genes though it is highly likely that a
subset of them may share a subset of target genes. For
example, the roots are comprised of many cell types,
and several TF clusters we identified apparently function
in different locations. For instance, Cluster 2 contains
TFs that function at the tip of roots (Table 2), and Clus-
ter 5 contains TFs that function in vascular tissues
(Table 2). Although TFs in the same cluster can be
involved in remote events in different cell types in the
same organ or even whole plants, depending on how
the samples are harvested, the confirmation of subset
TFs binding to a set of target genes is still helpful in
consolidating the cluster. In this regard, the availability
of CHIP-seq or CHIP-on-chip data from the specific cell
types will aid cluster validation. Although this kind of
data is still scarce at the time being, the DREAM project
has started to collect data to facilitate this kind of vali-
dation (http://wiki.c2b2.columbia.edu/dream/index.php/
The_DREAM_Project). In addition, with the availability
of third generation sequencing technology, this kind of
data will soon become widely available. Currently, exam-
ination of co-existing cis-elements bound by the differ-
ent TFs of the same cluster is helpful if the method is
applied to data from bacteria and yeast. However, it is
of little value if the method is applied to higher plants
and mammals simply because we currently do not know
to which motifs these TFs bind. Caution must be taken
in using motif information to interpret the clusters
because the mere presence of a motif does not indicate
it is an active one. In this sense, CHIP-on-chip or
CHIP-seq data are more valuable.

Although not absolutely required, a general under-
standing of the biological process of interest and also
the data collected can help interpret the derived TF
clusters. It is important to recognize the limitation of
any particular data set and to avoid over-interpretation
of the derived TF clusters. Generally speaking, the biolo-
gical process of interest should be activated and domi-
nant in the data collected. If one cannot identify a TF-
cluster for a specific biological process, try to get adja-
cent spatial or temporal data sets. This will become pos-
sible when we have ample gene expression data in a
public domain.

How many coexpressed genes should be used to
measure coexpression between two TFs when SCCM is
constructed?
It is conceivable that the use of the top 50, 100, and 150
could not significantly affect true positive rate for each
cluster. This is because these genes are used as a mea-
surement, not as participants. To get an idea of which
choice is optimal, we examined two median size clus-
ters: human Cluster 1 and Arabidopsis Cluster 2 for
cluster size and true positive discovery rate with respect
to the different schemes of top genes, and obtained the
following results:
For human Cluster 1, three schemes of top 50, 100

and 150 yielded three clusters of 22, 24 and 31 TFs,
respectively, with positive rates of 77.2%, 66%, and 55%.
For Arabidopsis Cluster 2, three schemes of top 50, 100
and 150 yielded three clusters of 14, 18 and 22 TFs,
respectively, with positive rates of 71.4%, 72.2%, and
63.6%. These results indicate that the use of 50 is good
but may have less prediction power for novel genes; that
the top 150 could not only potentially increase the size
of the cluster but also introduce false positives; and that
the top 100 can achieve higher positive discovery rate
than the top 150 while maintaining decent prediction
power of novel TFs. Nevertheless, we suggest users
compare the three schemes in real application because
other factors like data size and genes involved in the
biological process of interest can also affect the cluster
size and accuracy.

Conclusions
TF-Cluster can be used to cluster all TFs into multiple
clusters of various sizes using gene expression data from
a biological process. Each cluster contains the TFs
assumed to function coordinately in time to regulate the
multiple facets of a biological process. The TF-Cluster
algorithm outputs the TF clusters according to the
order of association. Clusters of closely associated TFs
in the coexpression networks will be displayed earlier.
Compared to TF-finder, TF-Cluster can identify many
groups of TFs, each with a cohesive function. TF-
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Cluster does not require an existing knowledgebase, and
thus can be used more widely if only the microarray
data representing many “snapshots” of a biological pro-
cess are available. With the increased availability of gene
expression data in public resources, TF-Cluster will no
doubt have a wide variety of applications in the future.
Nevertheless, TF-Cluster may not be useful when a
compendium data set contains no more than 30 sam-
ples/chips. This assumption is based on the fact that we
have tried TF-finder to a data set containing 36 chips
from Poplar, and we could identify TF clusters that can
be explained biologically. In addition, TF-Cluster may
not be applicable to some biological processes in which
few TFs are involved and function with little overlapping
in time. Finally, since the whole method is coexpression-
based, the TF-Cluster pipeline can be potentially used
for pathway analysis. It certainly can be used to identify
coordinated or cross-talking pathways or predict new
pathway genes. The pipeline was applied in Practical
Extraction and Report Language (PERL), and parallel
techniques were applied to accelerate the analysis (see
Methods). For analyzing a data set comprised of human
chips, and a coexpression network of 2,180 human TFs,
it takes 2-4 hours in our Linux server. Interested users
can send a request to Hairong Wei (hairong@mtu.edu).

Methods
Microarray Data and Data Preprocessing
Human microarray data set
One data set contains 104 high-density human gene
expression arrays, each with 388,634 probes from 36,494
human locus identifiers from the HG17 assembly. These
104 chips were from 15 experiments in which stem cells
were treated with different reagents that disrupted pluri-
potency while triggering differentiation; the reagents and
the conditions included: TPA (a phorbyl ester) treatment
in conditioned medium, TPA treatment in TeSR med-
ium, BMP4 treatment with FGF, BMP4 treatment with-
out FGF, and co-culture with mouse OP9 cells. The
other dataset contains 85 high-density human gene
expression arrays, each with 381,002 probes from 47,633
human locus identifiers from the HG18 assembly. This
dataset was collected from a set of experiments where a
variety of different growth factors were applied to human
ES cells at varying conditions for 3 days. Both platforms
were manufactured by NimbleGen Systems (http://www.
nimblegen.com). All probes are 60 mers and all chips
were hybridized to Cy5 labeled mRNAs extracted from
human embryonic stem cells (hESCs) from undifferen-
tiated to differentiated stages. Raw data were extracted
using NimbleScan software v2.1. The two data sets were
joined by gene mapping via selection of shared common
probes between the same gene on the two platforms.
More than 99.5% of mapped genes share more than 6

probes, and the signal intensities from these common
probes were normalized with the Robust Multiple-chip
Analysis (RMA) algorithm [93]. The whole dataset
obtained contains 36,398 genes, which was used to con-
struct coexpression matrix SCCM. Here we state that the
stem cell research reported in this paper was approved
under protocol SC02008-0002 of the Stem Cell Research
Oversight (SCRO) Committee.
Arabidopsis microarray data set
Microarray data sets were downloaded from multiple
resources. The salt stress experimental data set con-
tains108 chips from 6 experiments (GSE7636, 7639,
7641, 7642, 8787, 5623) and was downloaded from the
NCBI GEO website: http://www.ncbi.nlm.nih.gov/geo/.
All data mentioned above are derived from hybridization
of Affymetrix 25 k ATH1 microarrays [94]. The original
CEL files were processed by the robust multiarray analy-
sis (RMA)[93] algorithm using the Bioconductor package.
For quality control we used methods that were previously
described [95]. This data set was recently used for identi-
fying TFs involved in salt stress response and growth [5].

Building shared coexpression connectivity matrix (SCCM)
Let T = {y1, y2,...,yp} denote the set of TFs known in a
genome, and yi (i = 1,...,p,m ≥ ψ) = {ei1, ei2, ei3, ..., eim} is
the gene expression profile of the ithTF in mth microar-
ray chip. Also let G = {x1, x2,...,xq} represent all genes in
the genome, and xq (i = 1,...,n,m ≥ ψ) = {eq1, eq2, eq3, ...,
eqm} is the gene expression profile of the qth gene in mth

microarray chip. For this analysis, ψ is the minimally
required number of chips that should be used for this
kind of analyses (our empirical ψ ≥ 50). For each pair of
yiand xq (i = 1,...p; q = 1,...,n), a Spearman rank correla-

tion rho ρiq = 1 − 6
m∑

c=1

(reqc−reic)
2/m(m2 − 1) or a

regression p value is calculated (Persson et al., 2005;
Wei et al., 2006). Where reqc and reic are the ranks of TF
i and TF q. Then for each yi, we rank all the genes in G
by riq and retain the top Ω ( Ω can be 50, 100, or 150)
genes that are co-expressed most closely with yi, then
denote this set of genes as Gi.
After the above co-expression analysis, we are now

able to build a p × p symmetric matrix A, whose both
row and column variables are the TFs in T (Figure 4),
and each entry aij (i, j = 1,...,p) represents the number of
shared most co-expressed genes between TFs yi and yj,
that is the number of common genes between Gi and
Gj, namely aij = Gi ∩ Gj, Hereafter, we defined aij as the
number of connectivity (nc) for the pair of TFs.

Decomposition of SCCM transcription factor network
Given matrix A and a set of TFs, T = {y1, y2, y3,...,yp}, we
can now decompose SCCM for the clusters of TFs. The
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TFs in each cluster are assumed to work together to
achieve some kind of functionality in a biological process.
To achieve this, we developed a heuristic algorithm, Tri-
ple-Link, which always uses the two TFs with the maximal
nc as a primer, and gradually adds other TFs that have sig-
nificant connectivity with TFs that are already in the pri-
mer or primer-derived cluster. A significant connectivity is
defined as the one with a value larger than a threshold of
nc >μ + θδ, where μ and δ are the mean and the standard
deviation of non-zero connectivities contained in SCCM
respectively. We have three θ1, θ2, θ3 that are correspond-
ing to three thresholds that were used to determine if
another candidates should be joined, with θ1, to be the
most and θ3 to be the least stringent one. Our empirical
values of three theta are located within the following
ranges: θ = ({θ1,θ2,θ3} ⊂ ({2.5 ~ 1.5,2.0 ~ 1.0,1.5 ~ 0.5}),
where θ1 >θ2 >θ3 is required for implementation of differ-
ent stringency. Since each cluster started with two TFs,
the third TF was added in on the condition that it had
only two significant connectivities with the existing two
TFs. After this, we required a candidate TF to have only
three significant connectivities with any TFs that were
already in the cluster grown from the primer regardless of
the size of existing cluster. Once a candidate TF was
included in the cluster, it was then removed from T. This
process was then repeatedly executed until there were no
more candidate TFs that shared at least three significant
connectivities with the TFs within the cluster. All TFs in
the cluster were removed from. T = {y1, y2, y3,...,yp}. This
process was then repeatedly executed until all TFs in T =
{y1, y2, y3,...,yp} with significant connectivity were removed.
The detail procedure of this algorithm is described below:

A workflow for TF pipeline is shown in Figure 4.

Acceleration of TF-Cluster pipeline by enhancing CPU
usage and eliminating non-essential steps
Genome-wide coexpression analysis of all TFs, building
SCCM, and decomposition of SCCM are all computa-
tionally intensive. To reduce computing time, we imple-
mented multiple techniques to shorten the running
time. The measures we took included: (1) Using Perl
rather than R. Correlation matrix building is one of the
most time consuming steps of this pipeline. For exam-
ple, we needed to perform 2180(TFs) x 16219 (genes) =
35,357,420 correlation analyses with the human data of
189-dimentional samples, which took 10 days to run in
R. When we switched to Perl, we could complete above-
mentioned correlation analyses in 1-2 hours; (2) Intro-
ducing parallel computing. Almost all computational
servers now have multi-core processors that allow for
parallel computing. To take advantage of this, we paral-
lelized all non-sequential parts of the code, which
increased the speed by a factor of at least 3 on our ser-
ver. (3). Using a better algorithm. The loop is the most
expensive operation in any computing language. We
removed several loops by index point checking. (4)
Reducing unnecessary Input/Output (IO). IO can signifi-
cantly impact computational speed. Just the correlation
matrix file alone produced in this study exceeds 3 GB.
To avoid unnecessary IO, we processed a single TF

Figure 4 The workflow of TF cluster. Automated package that
can recognize transcription regulators controlling a biological
process with gene expression data (microarray or RNA-seq). The TF-
recognition can be classified into two phases: construction of TF
coexpression network and decomposition of the network into
coordinated TF clusters. The package was developed with Perl, and
thus can be used in various platforms.
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against all other genes’ correlation on the fly, and only
the top correlated gene list was output. This step
reduced the memory usage by factor of 1000. (5) Avoid
functions and modules if possible. Every function and
module consumes over 1kb for its mere existence. Func-
tion and module loading as well as argument passing
take a lot of computational resources. We optimized
code into only two concise scripts by replacing a lot of
modules with only few lines of code, which made the
program not only more efficient but also portable. For
analyzing a data set comprising of human chips, and a
coexpression network of 2180 human TFs, it took 2-4
hours in our Linux server (Dell PowerEdge Server 2990
III with Intel Xeon X5640 quadcore processor (3.16ghz),
and 48 GB RAM).

Availability and requirements
The TF-Cluster pipeline was written in Perl. We will
release the executable files free to academic, but may
charge license fee for any commercial uses. Original
source codes of the software can be made available
under a suitable open-source agreement. For details,
please contact: hairong@mtu.edu.
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