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Purpose: Multiparametric magnetic resonance tomography (mpMRI) and prostate
specific membrane antigen positron emission tomography (PSMA-PET/CT) are used to
guide focal radiotherapy (RT) dose escalation concepts. Besides improvements of
treatment effectiveness, maintenance of a good quality of life is essential. Therefore, this
planning study investigates whether urethral sparing in moderately hypofractionated RT
with focal RT dose escalation influences tumour control probability (TCP) and normal
tissue complication probability (NTCP).

Patients and Methods: 10 patients with primary prostate cancer (PCa), who underwent
68Ga PSMA-PET/CT and mpMRI followed by radical prostatectomy were enrolled.
Intraprostatic tumour volumes (gross tumor volume, GTV) based on both imaging
techniques (GTV-MRI and -PET) were contoured manually using validated contouring
techniques and GTV-Union was created by summing both. For each patient three IMRT
plans were generated with 60 Gy to the whole prostate and a simultaneous integrated
boost up to 70 Gy to GTV-Union in 20 fractions by (Plan 1) not respecting and (Plan 2)
respecting dose constraints for urethra as well as (Plan 3) respecting dose constraints for
planning organ at risk volume for urethra (PRV = urethra + 2mm expansion). NTCP for
urethra was calculated applying a Lyman-Kutcher-Burman model. TCP-Histo was
calculated based on PCa distribution in co-registered histology (GTV-Histo).
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Complication free tumour control probability (P+) was calculated. Furthermore, the
intrafractional movement was considered.

Results: Median overlap of GTV-Union and PRV-Urethra was 1.6% (IQR 0-7%). Median
minimum distance of GTV-Histo to urethra was 3.6 mm (IQR 2 – 7 mm) and of GTV-Union
to urethra was 1.8 mm (IQR 0.0 – 5.0 mm). The respective prescription doses and dose
constraints were reached in all plans. Urethra-sparing in Plans 2 and 3 reached
significantly lower NTCP-Urethra (p = 0.002) without significantly affecting TCP-GTV-
Histo (p = p > 0.28), NTCP-Bladder (p > 0.85) or NTCP-Rectum (p = 0.85), resulting in
better P+ (p = 0.006). Simulation of intrafractional movement yielded even higher P+
values for Plans 2 and 3 compared to Plan 1.

Conclusion: Urethral sparing may increase the therapeutic ratio and should be
implemented in focal RT dose escalation concepts.
Keywords: hypofractionated radiotherapy, PSMA - prostate specific membrane antigen, focal dose escalation,
tumor control probability (TCP), NTCP (normal tissue complication probability) model, mpMRI, primary prostate
cancer, histopathology
INTRODUCTION

Radiotherapy (RT) of primary Prostate cancer (PCa) is currently
experiencing an individualization, utilizing modern imaging
techniques for staging and definition of intraprostatic gross
tumor volume (GTV). Since an increase in RT dose improves
tumor control rates (1), concepts of focal dose escalation have
developed to deliver higher doses to the tumor and thereby
improving rates of biochemical recurrence (2, 3) without risking
higher toxicities by respecting OAR restrictions. Recently the
long-term result of the phase III FLAME trial demonstrated that
mpMRI-defined focal dose escalation significantly improves
biochemical disease free survival (4). Earlier publications from
this trial demonstrated the feasibility and reported no significant
increase in acute and late toxicities (5). These results are
encouraging, that unfavorable intermediate- and high-risk PCa
patients, who’s proportion is on the rise (6), benefit from these
advanced treatments. Besides multiparametric magnetic
resonance tomography (mpMRI) being the gold standard for
diagnostics in PCa (7), prostate specific membrane antigen
positron emission tomography (PSMA-PET) has emerged as a
diagnostic tool of high quality (8–13). Recently, the superiority of
PSMA-PET for initial staging compared to conventional imaging
was prospectively proved, which led to therapy management
change in 28% of cases (14). Regarding depiction of the
intraprostatic GTV PSMA-PET/CT reveals GTVs more
concordant with biopsy reference (9), whereas mpMRI
underestimates the true tumor and misses significant tumour
lesions (15–17). Previously conducted planning studies from our
group and from Goodman et al. demonstrated that despite
putative limitations for focal therapy approaches due to larger
volumes, boosting of PSMA-PET/CT delineated GTVs is
technically feasible (18–20). Bettermann et al. and Eiber et al.
could clearly demonstrate that the combined use of mpMRI and
PSMA-PET (GTV-Union) significantly improved sensitivity
(9, 11). A planning study by Zamboglou et al. revealed
2

significantly increased tissue control probabilities (TCP) for
GTV-Union based focal dose escalation compared to GTV-
PET or GTV-MRI-based dose escalation (20). Prospective
trials will evaluate whether these advances in imaging and
diagnostic accuracy can be translated into improved clinical
outcomes. A modern approach includes moderately
hypofractionated RT (MHRT) to the whole prostate with
simultaneously integrated dose escalation to mpMRI- and
PSMA-PET/CT-defined GTVs. Although the impact of
accountable structures such as bladder, bladder trigone and
urethra stay vague, the urethra as a serial organ may be of
particular importance in this setting. This planning study aims to
investigate whether urethral sparing in MHRT with focal dose
escalation delivered to mpMRI and PSMA-PET/CT defined
GTVs, influences tumor control probability (TCP) and normal
tissue complication probability (NTCP). NTCP was calculated
based on the Lyman-Kutcher-Burman (LKB) model with
parameters defined by Panettiere et al. (21), TCP was
calculated based on 3D dose distribution in co-registered
histopathology as standard of reference. Furthermore, the
influence of intrafractional movement was assessed (22).
MATERIAL AND METHODS

Patient Cohort
The utilized study cohort consisted of ten (10) patients with
primary PCa, who underwent 68Ga-HBED-CC-PSMA (68Ga-
PSMA-PET) and mpMRI followed by radical prostatectomy.
Patient characteristics are listed in Table 1. A written informed
consent was obtained from each patient and the institutional
review board of the Albert-Ludwigs-University of Freiburg
approved the study (No.: 469/14).

PET/CT and MRI Imaging
Diagnostic images were acquired using a diagnostic setup.
May 2021 | Volume 11 | Article 652678
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PET/CT scans using the ligand 68Ga-HBED-CC-PSMA (23)
were performed in 9 patients with a 64-slice GEMINI TF PET/
CT and in 1 patient with a Vereos PET/CT (both Philips
Healthcare, USA). The imaging systems were cross-calibrated
to ensure the comparability of the quantitative measurements
and both scanners fulfilled the requirements indicated in the
European Association of Nuclear Medicine (EANM) imaging
guidelines and obtained EANM Research Ltd. (EARL)
accreditation during acquisition. The spatial resolution in the
transverse direction near the centre is 4.8 mm for GEMINI TF
(24) and 4.2mm for Vereos (25) Patients underwent the whole-
body PET scan starting 1 h after injection andwere asked to
urinate prior PET imaging. The uptake of 68Ga-PSMA-HBED-
CC was quantified by standardized uptake values (SUV). A
detailed description of the used 68Ga-HBED-CC-PSMA PET/
CT imaging protocol is described in (26).

MR images were acquired on a 3 Tesla system (5 patients on
TrioTim, 1 patient on Magnetom Vida, 1 patient on Skyra, all
Siemens, Germany) and on a 1.5 Tesla system (3 patients on
Aera, Siemens, Germany). The MR imaging systems were
equipped with a surface phased array (Body Matrix) in
combination with an integrated spine array coil. No endo-
rectal coil was used. Not additional cross-calibration was
performed. Essentially, T2-weighted fast spin echo (T2W-TSE)
images, diffusion weighted images (DWI) and dynamic contrast-
enhanced (DCE) perfusion images were acquired. Apparent
diffusion coefficient (ADC) maps were calculated from the
DWIs using information from all measured b-values. ADC
maps were generated with a monoexponential model as
implemented in syngo.via (syngo.via ADC & b-value tool,
Siemens Healthcare, Germany). Extrapolated high b-value
images (b = 1400 s/mm2) were calculated with syngo.via using
information from all measured b-values. These extrapolated
images were considered the high b-value DWIs for prostate
MRI reading according to PI-RADS v2.0 (27). MR protocols
were heterogeneous in terms of slice thickness, gap between slices
and b-values. A detailed description of the used T2w, DWI and
DCE MRI imaging protocol can be found in (28).

Contouring
Intraprostatic Tumour Mass
GTV-PET was contoured manually using a validated scaling of
SUVmin-max: 0-5 (29) within the prostate using Eclipse™

Treatment Planning System (Varian, USA). GTV-MRI was
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contoured manually based on MRI T2-w and ADC images,
applying imaging criteria PI-RADSv2.0 and considering lesions
with a PI-RADS score of ≥ 3 as relevant (27). Final GTVs were
the respective consensus contour between two readers with >4
years experience in PET and MRI interpretation. Subsequently
careful manual co-registration of in-vivo CT and in-vivo MRI
was performed to transfer GTV-MRI to the corresponding in-
vivo-CT image and to create GTV-Union composed of the sum
of GTV-PET and GTV-MRI. GTV-Union was used based on the
benefit in terms of higher sensitivity and complementary
information of both techniques (9, 13).

Organs at Risk (OAR), Clinical Target Volume (CTV)
and Planning Target Volume (PTV)
Bladder, rectum, femoral head as OAR were contoured based on
the planning-CT scan according to RTOG guidelines (30).
Urethra was contoured based on the co-registered MRI.
Planning organ at risk volume (PRV)-urethra was created from
applying 2 mm isotropic extension of urethra according to the
hypo-Flame trial (31).

The CTV was created by following the ESTRO-ACROP
guidelines (32). CTV1 was defined as the prostate including
extracapsular PCa + 3mm isotropic extension (excluding rectum
and bladder). CTV_SV was defined as the proximal 1.4 cm and
2.2 cm of the seminal vesicle (SV) in unfavorable intermediate
risk and high-risk patients accordingly. In case of tumor
infiltration of the SV the respective regions were included in
CTV-SV. CTV2 was defined as the prostate and the base of the
SV including parts of the SV with visible tumor burden. PTV 1
was created from isotropic 6 mm-extension of CTV1 and 8 mm
of CTV_SV, followed by merging both volumes. PTV2 was
created from isotropic 6 mm-expansion of CTV2. PTV3 was
created from isotropic 2mm-extension of GTV-Union and
consequent remove of existing overlaps with organ at risks
(OAR) contours. For analysis purposes three different PTV3
were generated: PTV3_1 was defined as the GTV-Union
isotropically expanded by 2mm. PTV3_2 was created from the
subtraction of urethra from PTV3_1 and finally PTV3_3 was
created from the subtraction of PRV-Urethra from PTV_1. See
Figure 1 for illustration of volumes.

Histopathological Co-Registration
PCa lesions in whole mount histopathology were used as
standard of reference as previously conducted by our group (9,
33). After fixation, the resected prostate was fixed in a
customized localizer with a 4 mm grid and an ex-vivo CT scan
(16-channel Brilliance Big Bore, Phillips, Germany) was
performed. Subsequently, whole-mount step sections were cut
every 4 mm using an in–house cutting device to guarantee equal
cutting angles between histological and corresponding ex-vivo
CT slices. Following paraffin embedding, specimens were cut
using a Leica microtome. Haematoxylin and eosin staining were
performed following routine protocols. A board-certified
experienced pathologist marked PCa lesions. Subsequently,
histopathological information was digitalized via intermediate
registration to ex-vivo CT using MITK software (MITK
Workbench 2015.5.2). Automatic interpolation was performed
TABLE 1 | Patient characteristics.

Patient Age (y) PSA (ng/ml) TNM Gleason score

1 67 6.07 pT3a pN1 cM0 3+4 (7a)
2 61 10.57 pT2c pN0 cM0 3+4 (7a)
3 73 25.52 pT2c pN0 cM0 3+4 (7a)
4 59 9.15 pT2c pN0 cM0 4+3 (7b)
5 74 8.82 pT2c pN0 cM0 3+4 (7a)
6 74 15 pT2c pN0 cM0 3+4 (7a)
7 76 20.7 pT2c pN0 cM0 4+3 (7b)
8 73 40 pT3a pN1 cM0 4+5 (9)
9 53 16.3 pT3a pN0 cM0 4+4 (8)
10 72 28.9 pT3b pN1 cM0 4+4 (8)
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to create GTV-Histo (GTV based on histopathology). Images
were transferred to Eclipse™ Treatment Planning System v.15.6
(Varian Medical Systems, USA). Ex-vivo CT and in vivo-CT
(from PSMA-PET/CT scans) were carefully manual co-
registered allowing non-rigid deformation and considering the
4mm grid and anatomical landmarks such as urethra and cyst
and prostate capsule in particular. Hence, this registration
workflow takes into account non-linear shrinkage and
distortion of the prostate gland after resection.

Distances to Urethra
Minimum distance of GTV-Histo to urethra was evaluated on
each hematoxylin and eosin stained (H&E) slice of the respective
patient. Accordingly, minimum distance of GTV-Union to
urethra was evaluated on the corresponding CT-slice on the
in vivo CT.

IMRT Planning
IMRT plans were created in Eclipse™ Treatment Planning
System v15.1 (Varian, USA) with a calculation grid size of
1.5 mm. Dose prescription protocols were the following: PTV1
45 Gy in 15 fractions and PTV2 15 Gy in 5 fractions, resulting in
60 Gy for PTV2. A simultaneous integrated boost (SIB) up to 70
Gy for PTV3 for all 20 fractions was prescribed. Adapted from
the DELINEATE trial (34) and based on findings from Martinez
et al. (1), our dose concept aimed for boost doses near 100 Gy
Frontiers in Oncology | www.frontiersin.org 4
(EQD2, a/b=1.6). For PTV2 D98% was ≥ 58.8 Gy and D2% ≤ 70
Gy, for PTV3 D98% was ≥ 68.6 Gy and D2% ≤ 71.4 Gy. Three
different plans were created using three different boost volumes
for the simultaneous integrated boost (SIB): The SIB volumes
were PTV3_1, PTV3_2 and PTV3_3 for plan 1, 2 and 3
respectively. Dose constraints for organs at risk were
considered according to CHHiP-, FLAME- and DELINEATE-
trial (5, 34–36). Dose constraints for Urethra and PRV-Urethra
were 62.4 Gy for D2%. Details of RT planning prescription doses
and OAR constraints can be found in Supplementary
Material 1.

To evaluate the impact of urethral sparing three different
IMRT plans were calculated: (i) Plan 1 without any dose
constraints for urethra, (ii) Plan 2 considered the D2% dose
constraint for urethra and (iii) Plan 3 considered the D2%
dose constraints for PRV-Urethra.

TCP and NTCP Modeling
Structure sets and calculated 3D-dose matrices of the radiotherapy
plans were exported as DICOM files. Furthermore, using a Varian
ESAPI script (https://varianapis.github.io/), dose matrix voxels for
each structure were exported (https://github.com/isachpaz/
ESAPICommander). TCP was calculated based on the linear
quadratic (LQ) Poisson model (37–41):

TCP =   e−r
cl ·V·e−a·EQD0 Eq: 1
FIGURE 1 | Shows GTV-MRI (blue), GTV-PET (green), urethra (orange) PRV-urethra (yellow), prostate (red), PTV3_3 (boost volume minus PRV-urethra, purple) and
PTV1 (pink).
May 2021 | Volume 11 | Article 652678

https://varianapis.github.io/
https://github.com/isachpaz/ESAPICommander
https://github.com/isachpaz/ESAPICommander
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Spohn et al. Urethra Sparing Dose-Escalated Hypofractionated Radiotherapy
Where rcl is the homogeneous clonogenic cell density (# cells/
cm3) in the tumor of volume V. EQD0 is the equi-effective dose
for 0Gy fractionation given by Eq. 2, and a is the coefficient of
LQ-model defining the linear-term of cell killing.

EQD0 = D · 1 +
d

a
b
�� �

 !
Eq: 2

d is the dose per fraction, and D is the total dose delivered in
N fractions, D=N*d, where a/b is the ratio of linear to quadratic
cell killing probability according to the LQ-model.

In the present study, the tumor cell density was set
rcl=2.8*108 cells/cm (42–44). a/b value of 1.6 Gy was
assumed, based on the recent meta-analysis results by
Vogelius et al., which included studies with mildly- and
ultrahypofractionated radiotherapy (45). To account for
diversity of published a/b values we performed a robustness
analysis for TCPGTV-Histo with three different parameter sets
encompassing the range for a/b described by Vogelius et al.
(45). a was each time fitted (Table 2), so that 70% TCPGTV-Histo

would be reached in our patient cohort with a conventional
dose of 60 Gy in 3 Gy fractions, as we have described in our
previous publication (19).

NTCP for bladder and rectum (NTCPBladder, NTCPRectum)
were calculated based on the relative seriality model as described
by Bostel et al. (46). For bladder a D50 of 80.0 Gy as EQD2 for
symptomatic contracture and volume loss, a relative seriality
parameter value s of 1.3 and g = 2.59 were used (47). For rectum a
D50 of 80.0 Gy as EQD2 for severe proctitis/necrosis/stenosis/
fistula (2, 47–50), s = 0.75 and g = 1.79 were considered (47). An
a/b value of 3.0 Gy for bladder and rectum was assumed (34).
For NTCPUrethra the Lyman-Kutcher-Burman (LKB) model was
applied for the endpoint urethral stricture as published
by Panitierri et al. (21): D50 = 116.7 Gy, m = 0.23, n = 0.3, and
a/b = 5.0 Gy. We additionally performed NTCPUrethra

calculations for the 68% confident intervals (CI) with a step of
1.0 Gy for D50 and a step of 0.01 form. In total 364 combinations
of D50 and m were evaluated.

Complication Free Tumour Control
Probability P+
In order to account for the injuries or risk for complications to
each of the healthy organs (OARs) involved in a given clinical
case, the following expression is usually applied for the total
probability of injury PI:

PI = 1 −
YNOARs

j=1

wj · 1 − NTCPj
� �

Eq: 3
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where NTCPj is the probability of injuring the normal tissue
(OAR), wj is a weighting factor expressing the relative clinical
importance of each endpoint, and NOARs is the total number of
healthy organs involved in the clinical case. The effectiveness of a
given dose distribution can be evaluated by the comparison of its
advantages in terms of tumour control (benefit B) against its
disadvantages considering normal tissues complications
(injury I). The probability of complication free tumour control
P+, is defined as

P+ = P(B) − P(B ∩ I) = PB − PB∩I Eq: 4

where PB is the probability of getting benefit from the treatment
(tumour control, Eq. 1) and PI is the probability of causing injury
to normal tissues (Eq. 3). For the case of complete independency
of response of tumor and OARs, P+ becomes:

P+ = PB · (1 − PI) Eq: 5

P+ is an overall parameter for evaluation of complex dose
distributions and treatment localisations and is suggested to
support decision on treatment plan selection and treatment
adaptation (46, 51–56).

Organ Movement
As previously performed by our group, TCP and NTCP
calculations were calculated with and without movement (22).
This was achieved by changing the relative positioning between
structure matrix and dose matrix implementing Gaussian
filtering of the dose matrix. Based on results of Langen et al.
(57) the standard deviation of a three-dimensional Gaussian
kernel, was set to 0.92 mm, 1.59 mm and 1.54 mm for left-right,
anterior-posterior and cranio-caudal, respectively.

Statistical Analysis
The Sörensen-dice coefficient was calculated for spatial overlap
of GTV-Histo with GTV-Union, GTV-PET and GTV-MRI and
for spatial overlap of PTV3_1, PTV3_2, PTV3_3 and
GTV-Histo.

Statistical analysis of volumes was performed with GraphPad
Prism v8.4.2 (GraphPad Sofware, USA). Data normality was
tested using the Shapiro-Wilk test. For not normally distributed
variables, Friedman test and uncorrected Dunn’s test was used
for comparison of more than two variables and two-sided
Wilcoxon matched-pairs signed rank test was used for
comparison of two variables (both at a significance level of
0.05). For normally distributed variables, repeated measures
one-way ANOVA with the Geisser-Greenhouse correction and
Fisher’s LSD was used for comparison of more than two variables
and two-sided paired t test was used for comparison of two
variables (both at a significance level of 0.05). For statistical
analysis of unpaired and not normally distributed data
(minimum distance to urethra on H&E slices and CT images)
Mann-Whitney test at a significance level of 0.05 was used.

Exploratory statistical analysis of TCPs, NTCPs and
dosimetric analysis was performed with R (version 3.6.2) (58).
Wilcoxon matched pairs signed-rank test was used with a
significance level of 0.05.
TABLE 2 | TCP model parameter sets for the robustness analysis.

Parameter set 1 2 3

r [x 108 cells/cm³] 2.8 2.8 2.8
a/b (5) 1.2 1.6 2.7
a (5) 0.10099 0.12050 0.15740
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RESULTS

Volumes and Distance of GTVs to Urethra
Median volume for GTV-Histo was 4.5 ml (IQR 1.8 – 6.9ml) and
for GTV-Union 5.7 ml (IQR 2.9 – 13.3 ml). Median intersection
volume of PRV-Urethra with GTV-Histo was 0.05 ml (IQR 0.00 -
0.25 ml) and with GTV-Union 0.1 ml (IQR 0.00 – 0.88 ml)
respectively. Expressed in percentage of the PRV-urethra volume,
intersection of GTV-Union with PRV-Urethra was median 1.6%
(IQR 0.0 – 6.5%) and maximum 8.5% in patient 10. Please see
Supplementary Table 1 for details.

Median volumes for PTV3_1 was 13.5 ml (IQR 7.0 - 22.6 ml),
for PTV3_2 13.2 ml (IQR 6.9 – 22.0 ml) and for PTV3_3 12.8 ml
(IQR 6.6 – 20.6 ml), respectively. PTV3_3 was not statistically
significantly smaller than PTV3_2 (p = 0.053) but significantly
smaller than PTV3_1 (p = 0.031) (Supplementary Table 2).

The median intersection volume of GTV-Histo with PTV3_1,
PTV3_2 and PTV3_3 was 2.7 ml (IQR 1.5 – 6.3), 2.7 ml (IQR 1.5 –
6.2) and 2.7 ml (1.4 – 5.9), respectively. There was no statistically
significant difference between the DSCs for GTV-Histo and the
three PTVs (p > 0.96) (Supplementary Tables 2 and 3).

Median coverage of GTV-Histo by GTV-Union, GTV-PET
and GTV-MRI was 79% (IQR 55 – 97%), 76% (IQR 37 – 83%)
and 53% (IQR 13 – 74%). Coverage by GTV-Union was
significantly higher than by GTV-PET (p = 0.014) and GTV-
MRI (p = 0.004), whereas there was no significant difference
between GTV-PET and GTV-MRI (p = 0.058). Median coverage
of GTV Histo by PTV3_1, PTV3_2 and PTV3_3 was 90% (IQR
70 – 92%), 89% (IQR 70 – 91%) and 85% (IQR 65 – 88%).
Coverage by PTV3_3 was significantly lower than by PTV3_1
(p=0.016) (Supplementary Tables 3 and 4).

In 3 patients contact between GTV-Histo and urethra could be
observed on H&E slices. In 6 patients contact between GTV-
Union and urethra could be observed on in-vivo CT slices.
Discrepancies between patients with detected contact on slices
but without intersection volumes were manually verified. In all
cases intersection volumes were present but too small to be
quantified in Eclipse™ Treatment Planning System. The median
minimum distance of GTV-Histo to urethra on each slice was
3.6 mm (IQR 2.2 – 7.3 mm) and median minimum distance of
GTV-Union to urethra was 1.8 mm (IQR 0.0 – 5.0 mm). Distance
of GTV-Union to urethra was statistically significantly smaller
(p = 0.02). Median minimum distance of GTV-Histo to urethra
per patient was 1.9 mm (IQR 0.0 – 3.6 mm) andmedianminimum
distance of GTV-Union to urethra per patient was 0.0 mm (IQR
0.0 – 1.5mm). Again, distance of GTV-Union to urethra was
statistically significantly smaller (p = 0.02).

Doses Distribution in Target Volumes
Median D98%, D50% and D2% doses for, PTV3_1-3 (boost
volume), GTV-Histo, urethra and PRV-Urethra for plan 1-3 are
shown in Table 3 with and without consideration of the
intrafractionary movement, respectively. Without consideration of
intrafractionary movement following doses were statistically
significant different: For PTV3 D98% of plans 2 and 3
were significantly smaller than for plan 1, whereas D50% showed
no significant difference between the three plans. D2% was
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significantly higher in plans 2 and 3 than in plan 1. For GTV-
Histo, only D98%was significantly lower for plan 2 and 3 compared
to plan 1. With consideration of intrafractionary movement
following doses were statistically significantly different:

For PTV3, D98% and D50% of plan 3 were slightly but
significantly smaller compared to plan 1, whereas dose
parameters of plan 2 showed no statistical significance to dose
parameters of plan 3. D2% was significantly higher in plans 2 and
3 than in plan 1. For GTV-Histo D98% was significantly smaller
and D2% significantly higher in plans 2 and 3 compared to
plan 1.

Doses for urethra and PRV-urethra were significantly lower
in both plan 2 and plan 3 compared to plan 1 in all cases.
Furthermore, all doses were significantly lower in plan 3
compared to plan 2 except for D98% with movement.
For details about p-values see Supplementary Table 6. Figure
2 shows cumulative dose-volume-histograms for boost volumes,
urethra, bladder and rectum without and with movement.

Constraints
All plans complied with the constraints for bladder and rectum.

Without consideration of intrafractional movement, in plan 1
(no dose constraints for urethra considered in optimization)
constraints for D2% for urethra were not reached in the majority
of the planed cases, 8 out of 10. In plan 2 (respecting dose
constraints for urethra), constraints for D2% for PRV-urethra
were not reached in 7 patients.

When intrafractional movement is considered, in plan 1
constraints for D2% for urethra were not reached again in in 8
patients. In plan 2, constraints for D2% for urethra were not
reached in 4 patients and D2% for PRV-urethra in 7 patients.

In plan 3 urethra- and PRV-Urethra constraints were reached
in all patients without and with movement consideration.

TCP/NTCP/P+ Without Intrafractional
Movement
Please see Table 4 for median P+, TCPGTV-Histo, NTCPUrethra,
NTCPBladder and NTCPRectum as well as p-values. Urethra-sparing
resulted in significantly lower NTCPUrethra without significantly
affecting TCPGTV-Histo or NTCPBladder and NTCPRectum.
Consequently, P+ was statically significantly better for
plans respecting urethral sparing. Radiobiological modeling
was also performed by assuming a/b values of 1.2 Gy and 2.7
Gy for tumor tissue (see Supplementary Tables 7 and 8).
Summarized P+ shows the same behavior for a/b = 1.2 Gy,
whereas for a/b = 2.7 Gy no significant differences between all
three plans could be observed. For the calculation of total
probability of injury PI, required for the complication free
tumour control P+ (Eq. 5), all three weighting factors wj in Eq.
3 for the OARs are set to 1.0 (equal clinical importance). Analysis
on patient level revealed, that P+ was higher in plan 2 and plan 3
compared to plan 1 in all patients.

TCP/NTCP/P+ With Intrafractional
Movement
Implementation of intrafractional movement into the model yielded
in even slightly higher P+ for both urethral sparring plans (Table 5).
May 2021 | Volume 11 | Article 652678
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For median P+, TCPGTV-Histo, NTCPUrethra, NTCPBladder and
NTCPRectum as well as p-values considering intrafractional
movement see Table 5. Radiobiological modeling was performed
by assuming a/b values of 1.2 Gy and 2.7 Gy for tumor tissue (see
Supplementary Tables 9 and 10), and summarized P+ shows again
the same behavior for a/b = 1.2 Gy, whereas for a/b = 2.7 Gy no
significant differences between all three plans could be observed.
Analysis on patient level revealed, that P+ was higher in plan 2 and
plan 3 compared to plan 1 in all patients.

Re-run of NTCPUrethra, calculation in order to consider
uncertainties, showed no deviation from initial outcomes.
DISCUSSION

In the context of focal escalation, the results of our planning
study demonstrate that boosting of PSMA-PET/CT and mpMRI
defined GTVs using MHRT is technically feasible and
prescription doses as well as dose constraints are achieved even
when considering organ movement. Furthermore, urethral
sparing achieves significantly lower NTCPs for urethral
toxicities without affecting TCPs and NTCPs for bladder and
rectum, consequently results in a better therapeutic ratio in terms
of P+ and should be implemented in focal RT dose escalation
concepts. We discuss the different aspects in the following
sections in detail.

Urethra sparing is performed in SBRT and brachytherapy,
since higher urethral doses are associated with higher GU
Frontiers in Oncology | www.frontiersin.org 7
toxicities (59, 60). The recently published toxicity reports
of the hypoFlame trial suggest that prioritization of
OAR constraints yields acceptable toxicities for focal dose
escalation using SBRT. At the time of publication, the only
published toxicity reports of trials investigating moderately-
hyofractionated dose escalation and urethral sparing was the
DELINEATE trial, which used MRI-defined boost volumes with
dose escalation up to 67 Gy and showed slightly higher, but
comparable acute and late GI and GU toxicity rates to dose
escalation with conventional fractionation (34). In the cohort
receiving focal dose escalated MHRT cumulative grade 2 or
worse GU and GI toxicities after 3 years were 22.1% and 14.0%,
respectively. The dose regimen chosen in our study utilized a
higher prescription dose of 70 Gy for the boost volume defined
by validated contouring approaches for GTV definition of PET
and mpMRI imaging modalities (29, 61). Not surprisingly,
volumes for GTV-Union (median 5.7 ml, IQR 2.9 – 13.3 ml)
were significantly larger than GTV-Histo (median 4.5 ml, IQR
1.8 – 6.9 ml, p = 0.01). Consequently, prioritization of
maintaining standard toxicity rates is pivotal when boosting
larger volumes and therefore we conducted this planning study
to evaluate the effect of urethral sparing on NTCPs and TCP to
evaluate its potential in MHRT with focal dose escalation with
this novel boost volume definition.

Constraints and prescription doses were achieved for all
patients as intended in the respective plans. This also applies
when implementing organ movement into the plan evaluation.
These results suggest that putative negative consequences in
TABLE 3 | Dose volume parameter values for different volumes without and with consideration of prostate intrafractional movement.

Without movement With movement

D98% D50% D2% D98% D50% D2%

PTV3_1-3* Plan 1 67.64
(67.27- 67.93)

70.1
(70.08 - 70.1)

71.86
(71.7 - 72.17)

65.76
(65.1 - 66.03)

69.1
(68.72- 69.33)

71.03
(70.69 - 71.14)

Plan 2 67.0
(66.88 - 67.22)

70.1
(70.07 - 70.15)

72.23
(72.1 - 72.57)

65.77
(65.05 - 65.87)

69.02
(68.69 - 69.23)

71.13
(70.87 - 71.4)

Plan 3 67.02
(66.9 - 67.25)

70.14
(70.12 - 70.22)

72.25
(72.13 - 72.59)

65.48
(64.96 - 65.74)

68.94
(68.69 - 69.15)

71.31
(70.89 - 71.55)

GTV-Histo Plan 1 68.55
(66.6, 69.02)

70.69
(70.53, 70.84)

72.1
(71.79, 72.76)

67.34
(65.57, 68.01)

70.26
(69.48, 70.34)

71.16
(70.82, 71.35)

Plan 2 66.35
(65.37, 67.82)

70.73
(70.32, 70.94)

72.51
(72.28, 72.87)

67.05
(65.26, 67.22)

69.92
(69.36, 70.45)

71.42
(70.93, 71.71)

Plan 3 64.51
(64.01, 66.97)

70.6
(70.31, 70.75)

72.63
(72.4, 72.95)

65.71
(64.26, 66.75)

69.92
(69.08, 70.21)

71.64
(70.91, 71.84)

Urethra Plan 1 59.34
(58.96 - 59.71)

65.95
(62.66 - 66.73)

70.15
(69.66 - 70.69)

57.92
(55.83 - 60.38)

65.45
(62.48 - 66.55)

69.33
(68.74 - 70.27)

Plan 2 58.27
(57.85 - 58.59)

61.63
(61.34 - 62.4)

66.35
(65.29 - 66.46)

57.79
(56.32 - 59.35)

62.4
(61.57 - 63.65)

66.97
(66.06 - 67.53)

Plan 3 58.15
(57.49 -58.23)

60.99
(60.54 - 61.58)

64.01
(63.69 - 64.5)

57.64
(56.06 - 59.16)

61.79
(61.22 - 62.51)

65.16
(64.88 - 65.33)

PRV-Urethra Plan 1 58.69
(58.48- 59.41)

65.47
(62.4 - 66.29)

70.55
(70.06 - 71.24)

55.95
(52.34 - 58.79)

64.95
(62.18 - 66.04)

69.72
(69.16 - 70.46)

Plan 2 58.24
(57.7 - 58.37)

61.81
(61.2 - 62.73)

68.49
(67.54 - 69.17)

55.94
(53.09 - 58.03)

62.37
(61.2 - 63.63)

68.19
(67.16 - 68.54)

Plan 3 57.92
(57.37 - 58.32)

60.87
(60.69 - 61.85)

66.62
(66.13 - 66.81)

55.9
(52.85 - 57.75)

61.74
(60.87 - 62.61)

66.53
(66.26 - 66.81)
Ma
y 2021 | Volume 11 |
Values in parenthesis represent the observed min-max value range. Dosimetry for PTV3_1-3 (boost volume), GTV-Histo, Urethra, and PRV-Urethra is shown. *Plan 1 is based on PTV3_1,
plan 2 on PTV3_2 and plan 3 on PTV3_3.
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terms of under- or overdosing were not relevant and
consequently organ movement did not affect the highly
conformal IMRT plans. Furthermore, we confirmed the
feasibility of the applied dose and constraint prescription.

To evaluate the impact of urethra-sparing we chose as
endpoint for NTCPUrethra stricture requiring urethrectomy
within 4 years based on the LKB model by Panettiere et al.
(21). Based on recently published a/b values from Vogelius et al.
we used an a/b of 1.6 Gy to calculate the TCP. Considering the
published range for a/b values, we performed the same analysis
Frontiers in Oncology | www.frontiersin.org 8
with an a/b 1.2 Gy and 2.7 Gy. Application of 1.2 Gy yielded
similar results with a significant better P+ for plan 3 (0.924 and
0.9285 without and with movement, respectively, p = <0.01),
whereas application of 2.7 Gy resulted in no significant
improvement of P+ (see Supplementary Tables 7–10).
However, the mentioned meta-analysis suggests that a/b of 2.7
Gy is likely to be too high, particularly in a setting of
hypofractionation. Therefore, we refer on the results derived
from a/b of 1.6 in the following. Urethral sparing in IMRT
planning significantly reduced the median NTCPUrethra from
May 2021 | Volume 11 | Article 652678
A

B

FIGURE 2 | Shows cumulative dose-volume-histograms for boost volumes (PTV3_1-3), urethra, bladder and rectum without movement (A) and with movement
(B), respectively.
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7.2% up to 4.2% (p=0.002) with only minimal and statically not
significant reduction of median TCP from 99.7% up to 99.2%
(p = 0.105). Noteworthy, NTCPBladder and NTCPRectum were not
affected by urethral sparing, precluding the possibility
of improving NTCPUrethra at the costs of other toxicities.
Consequently, urethral sparing resulted in significantly better P+
value (88.8% vs up to 91.9%, p = 0.006). Considering that the
urethra is a serial organ the minimum distance of urethra to PCa
is of particular clinical relevance. Evaluation of minimum
distances of GTV-Union to urethra was significantly smaller
than GTV-Histo and in 60% of patients, contact of GTV-Union
with urethra could be determined, supporting the rationale of
urethra sparing. The minimal impact on TCP can be attributed to
the small intersection of PCa tissue and urethra. Even applying a
margin to the urethra resulted in intersection of GTV-Histo and
PRV-Urethra of median 0.8% and maximum 6.4%, intersection
of GTV-Union with PRV-Urethra was median 1.6% and
maximum 8.5%. Considering volume analysis subtraction of
PRV-Urethra from PTV3 resulted in slightly, but significantly
smaller PTV-volumes, as well as slightly but significantly lower
coverage of GTV-Histo. Nevertheless, coverage was still very
high (85%) and even though doses partly showed significant
differences between IMRT plans, the mentioned differences had
no significant consequences on TCPGTV-Histo. Additionally,
Frontiers in Oncology | www.frontiersin.org 9
coverage of GTV-Histo by GTV-Union was statistically
significantly higher than by GTV-PET or GTV-MRI,
supporting the rationale to implement both imaging modalities
in boost volume definition. Overall results of volumetric analysis
and TCP/NTCP calculation suggest that boosting of GTV-Union
is compatible with sufficient urethra sparing in most cases. A
study by Leibovich et al., which found that the mean distance
from the urethra to the nearest cancer was 3mm (62). In our
study median distance of GTV-Histo to urethra was comparable
with 3.6 mm. Even though contact with urethra was detectable in
the majority of cases, intersection volumes were very small,
supporting the estimation of little consequences of intersection
of urethra and GTV.

Comparison of our results with different planning studies is
hampered due to lack of data. One other study evaluated
NTCPUrethra and showed extremely high NTCP-values >60%
by using TD50 of 70.7 Gy (63). The results of our study are
still higher than clinical reported urethral stricture rates after
external beam RT (EBRT) ranging between 2-3%, nevertheless
applied doses were lower and these studies did not use focal dose
escalation (64–66). Considering this aspect our results represent
realistic estimations and should be compared with eagerly
awaited long term results of clinical trials investigating focal
dose escalated EBRT.

Additionally, we simulated intrafractional organ movement
in order to evaluate its consequences on IMRT plans and TCP/
NTCP calculation. This implementation had slightly positive
effects on P+. Furthermore, urethral sparing did still significantly
reduce NTCPUrethra (from 7.2% to 4.3%) without significantly
affecting TCPHisto, NTCPBladder or NTCPRectum. Remarkable
NTCPBladder and NTCPRectum were even slightly better. These
results suggest that intrafractional movement potentially
influences positively P+ and the used margins were adequate to
compensate intrafractional movements. This complies with
previously reported results by Thomann et al., which
demonstrated this effect in cases where boost volumes do not
fully comply with GTV-Histo (22). These results are encouraging
that urethral sparing might significantly reduce GU toxicities
without significantly affecting tumour control, in particular since
all patients in our study benefited from urethral sparing in terms
of improved P+-values in plan 2 or 3 compared to plan 1. In
order to evaluate the clinical benefit of this approach it should be
evaluated in clinical trials. This enables to evaluate, whether
specific patient subgroups don’t benefit from this approach.
Likely, in patients with high tumour burden or niches with
radio-resistant PCa cells (67) surrounding the urethra, sparing
might not be an advantage. Whether a threshold in terms of
absolute or relative volume of intersection between PRV-urethra
and boost-PTV exist, from which on positive effects are reversed,
should be evaluated in further studies and larger cohorts. In this
context, individual radiosensitivity might be another important
aspect, possibly causing a reduced tumour control with urethral
sparing in patients with low radiosensitivity and a negligible
impact of urethra sparing in patients with high radiosensitivity
due to sufficient dose delivery. We estimated an equal
radiosensitivity for all patients in our planning study. To the
TABLE 4 | Median P+, TCP- and NTCP-values for plans 1-3, as well as p-values
for comparison of plan 1 vs 2 and 3, respectively, not considering intrafractional
movement with a/b 1.6 Gy for tumor tissue and 3 Gy for bladder and rectum.

P+ TCPGTV-Histo NTCPUrethra NTCPBladder NTCPRecutm

Plan 1 0.888 0.997 0.072 0.023 0.009
Plan 2 0.919 0.995 0.047 0.022 0.009
Plan 3 0.919 0.992 0.042 0.023 0.009

p-value
Plan 1 vs
Plan 2

0.006 0.492 0.002 1.0 0.846

Plan 1 vs
Plan 3

0.006 0.275 0.002 0.846 0.846

Plan 2 vs
Plan 3

0.922 0.625 0.037 1.0 1.0
The Lyman-Kutcher-Burman model with an a/b of 5 Gy was applied for urethra.
TABLE 5 | Median P+, TCP- and NTCP-values for plans 1-3, as well as p-values
for comparison of plan 1 vs 2 and 3, respectively, considering intrafractional
movement with a/b 1.6 Gy for tumor tissue and 3 Gy for bladder and rectum.

P+ TCPGTV-Histo NTCPUrethra NTCPBladder NTCPRecutm

Plan 1 0.900 0.995 0.069 0.013 0.006
Plan 2 0.919 0.994 0.051 0.012 0.006
Plan 3 0.923 0.992 0.047 0.012 0.006

p-value
Plan 1 vs
Plan 2

0.027 0.625 0.006 0.922 1.0

Plan 1 vs
Plan 3

0.020 0.322 0.002 0.846 0.846

Plan 2 vs
Plan 3

1.0 0.625 0.131 1.0 0.846
A Lyman-Kutcher-Burman model with an a/b of 5 Gy was applied for urethra.
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best of our knowledge validated surrogate parameters to
determine radiosensitivity are missing and our data don’t allow
do draw conclusions in this regard. Future research might enable
to consider this aspect. However, urethra sparing offers another
tool for individualizing radiotherapy and acknowledging
patients’ preferences, for instance a high demand for safety vs.
tumour control.

Furthermore, adherence to high quality of image acquisition
(68), image co-registration (69) as well as accuracy of delineation
(29, 70) and radiation delivery (71) is a prerequisite for
implementation of this individualized radiotherapy approach.
In the context of delineation, progress in diagnostics has to be
considered. Regarding PSMA-PET/CT, Fluorine-18-labeled
tracers like 18F-PSMA-1007 have been implemented in nuclear
medicine practise. Current research shows, that 18F-PSMA-1007
shows very high sensitivities and high specificities (70, 72). Since
accurate delineation of boost volumes for focal therapy
approaches depends on the applied windowing (73), usage of
validated contouring approaches is necessary (13). Whether
usage of 18F-PSMA-1007 affects TCP calculation compared to
68Ga-PSMA should be evaluated in future studies.

We acknowledge the limitations of our study. Firstly, it
should be mentioned that the NTCP for the urethra was
modeled based on a previous publication of Panettieri et al.
(21). The analysis was based on 258 which received EBRT and
brachytherapy. Thus, without loss of the generality our analysis
was based on a parameter-set, which has been modeled with
combined treatment. Secondly, we enrolled a relatively small
number of patients, which is a result of the elaborate co-
registration pathway of the histopathologic specimens. Thirdly,
the co-registration between histopathologic 3D-volumes and
cross-sectional images bears risks of uncertainty due to non-
linear shrinkage of the prostate after prostatectomy and co-
registration mismatch susceptibilities. Consequently, coverage of
GTV-Histo boost volumes might lack precision. Fourthly, used
models for TCP and NTCP calculation could not be validated
with the institutions own experiences, since the follow-up
database of patients treated with mildly hypofractionated
EBRT was not sufficient. Fifthly, co-registered images were
acquired in a diagnostic setup, potentially affecting image
registration and dose calculation. Therefore, the included
patients, which are part of a larger cohort, were selected in
terms of bowel and bladder preparation and positioning enable
BRT planning. However, our experiences for image co-
registration are in line with a recently published study,
demonstrating no significant differences in MRI acquisition in
diagnostic and radiotherapy setups (74). Furthermore, different
PET/CT and MRI scanners were used. This limitation was
considered by cross-calibration of the PET scanners and a
Frontiers in Oncology | www.frontiersin.org 10
reasonable and recommended slice thickness of 3 mm was
acquired in all patients.
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