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Micro RNAs from DNA Viruses are 
Found Widely in Plasma in a Large 
Observational Human Population
Milka Koupenova1, Eric Mick2, Heather A. Corkrey1, Tianxiao Huan6,7, Lauren Clancy1, Ravi 
Shah3, Emelia J. Benjamin   4,5,6, Daniel Levy6,7, Evelyn A. Kurt-Jones8, Kahraman Tanriverdi1 
& Jane E. Freedman1

Viral infections associate with disease risk and select families of viruses encode miRNAs that control 
an efficient viral cycle. The association of viral miRNA expression with disease in a large human 
population has not been previously explored. We sequenced plasma RNA from 40 participants of 
the Framingham Heart Study (FHS, Offspring Cohort, Visit 8) and identified 3 viral miRNAs from 3 
different human Herpesviridae. These miRNAs were mostly related to viral latency and have not been 
previously detected in human plasma. Viral miRNA expression was then screened in the plasma of 2763 
participants of the remaining cohort utilizing high-throughput RT-qPCR. All 3 viral miRNAs associated 
with combinations of inflammatory or prothrombotic circulating biomarkers (sTNFRII, IL-6, sICAM1, 
OPG, P-selectin) but did not associate with hypertension, coronary heart disease or cancer. Using a 
large observational population, we demonstrate that the presence of select viral miRNAs in the human 
circulation associate with inflammatory biomarkers and possibly immune response, but fail to associate 
with overt disease. This study greatly extends smaller singular observations of viral miRNAs in the 
human circulation and suggests that select viral miRNAs, such as those for latency, may not impact 
disease manifestation.

MicroRNAs (miRNAs) are 19 to 24 nucleotide single-stranded noncoding RNA sequences that are present in 
all multicellular organisms and regulate a vast number of biological processes1,2. MicroRNAs can regulate gene 
expression by binding to messenger RNA (mRNA) of transcribed genes thereby reducing gene expression. With 
the exception of the seeded sequence of ~6 nucleotides on the 5′ end, miRNAs do not require perfect align-
ment with the targeted mRNA sequence to achieve their function2. As a result, 1 miRNA has the potential to 
post-transcriptionally regulate up to 300 different mRNA transcripts that may be related to a broad variety of 
processes3,4. Changes in miRNA signatures have been described in a variety of diseases and can associate with 
increased risk of cardiovascular disease, diabetes or cancer, among many others.

In addition to multicellular organisms, select viruses encode miRNAs that become expressed in target cells4,5. 
These select viruses include most DNA viruses from the Herpesviridae6, Polyomaviridae and Adenoviridae7 fami-
lies. Herpes viruses incorporate their DNA into that of the host and are able to establish a lifelong, dormant state 
that can periodically cause recurrent infection6. Studies have shown that, in target cells, changes in expression 
of different viral miRNAs regulate the lytic or latent cycles of viral replication. Interestingly, plasma analysis of 
4 small cohorts (totaling 214 patients) suggests that seropositivity and plasma viral miRNA expression do not 
completely overlap8. This observation indicates that viral miRNA plasma expression does not necessarily predict 
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active infection8. The potential viral miRNA signatures of chronic infection and overall effect of these viral miR-
NAs in humans have yet to be established.

Viruses can increase the inflammatory state of the host beyond the target tissue or cell of replication and var-
ious viral infections have long been connected to cancer or cardiovascular disease. Infections with DNA viruses 
such as human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) have also been associated with severe 
myocarditis and adverse cardiovascular complications9–11. How viruses suppress immunity, affect global inflam-
mation to establish latency and mediate clinical risk is still unclear. As part of the NIH Common Fund-sponsored 
Extracellular RNA Communication Consortium, we previously reported that, in a large observational cohort, 
plasma contains a broad number of human extracellular RNA including miRNAs12. Further analysis of the plasma 
RNA sequencing led to the identification of 3 viral miRNAs from 3 different human viruses that were validated by 
further screening in the remaining 2763 participants of the Offspring cohort. Interestingly, these 3 viral miRNAs, 
mostly known to control viral latency, associate primarily with inflammatory biomarkers and failed to associate 
with overt disease risk. Additionally, viral miRNAs in human plasma modestly associated with advancing age and 
hypertensive treatment.

Results
Identification of viral miRNAs in human plasma.  Small RNA sequencing of plasma from 40 FHS par-
ticipants was performed as previously described13. After a series of alignments to human miRNA, tRNA, piRNA, 
and snoRNA, reads that were not mapped to these sequence types were aligned to the available non-human 
genomes in the exceRpt small RNA-seq Pipeline (www.genboree.org, as of 2015). This led to the identification of 3 
viral miRNAs from 3 different viruses having no homology with any human miRNA or other viral miRNA. Viral 
miRNA homology was assessed using the BLASTN function in miRBase (www.mirbase.org). All viral miRNAs 
identified in this group were products of DNA viruses from the Herpesviridae family (Supplementary Table S1). 
The presence of these miRNAs was measured in the plasma of the remaining FHS participants (Offspring Cohort, 
Visit 8, Table 1) using RT-qPCR13. The 3 viral miRNAs identified here originated from EBV, Kaposi’s sarcoma 
herpes virus (KSHV), and HCMV human viruses and their expression is primarily connected to viral latency 
(Table 2). The 3 viral miRNAs detected had a frequency of 0.7% (hcmv-miR-US25-2-3p) to 27.7% (kshv-miR-
K12-6-5p) in the full cohort of 2763 participants (Table 3, Supplementary Table S2). Of note, the RT-qPCR 
primers detect only mature miRNAs, thus, this does not represent viral particle presence in the circulation14. 
Additionally, as we screened plasma and not serum, plasma viral miRNAs represent circulating miRNA and are 
not representative of blood cell content.

Identification of plasma viral miRNA-blood mRNA co-expression pairs.  In cells, viral miRNAs 
target specific mRNAs depending on their seeded sequence. Whole blood mRNA transcripts from the same 
FHS participants have been previously characterized15 and we sought to establish possible co-expression pairs 
between circulating viral miRNAs and blood cell mRNAs. Utilizing 17,318 whole blood mRNA transcripts meas-
ured from these FHS participants during the same visit and blood draw, we associated human mRNAs to viral 
miRNA expression. Using continuous analysis for viral miRNA-mRNA pairs and Bonferroni corrected p < 0.05, 
we identified 2 viral miRNA-mRNA co-expression pairs. Two of the viral miRNAs, kshv-miR-K12-10a-5p and 

Age (years) 67 ± 9

Women, n (%) 1499 (54%)

Body Mass Index (BMI) 28 ± 5

Systolic BP (SBP) 129 ± 17

Diastolic BP (DBP) 74 ± 10

Hypertension (HT) 661 (24%)

Coronary Heart Disease (CHD) 286 (10%)

Cancer (any) 441 (16%)

Biomarkers

P-Selectin, ng/ml 41 ± 14

C-Reactive Protein, mg/L 3 ± 7

Tumor Necrosis Factor Receptor II, pg/ml 2687 ± 1123

Intercellular Adhesion Molecule 1, ng/ml 298 ± 102

Interleukin-6, pg/ml 3 ± 3

Monocyte Chemotactic Protein 1, pg/ml 388 ± 141

Osteoprotegerin, pmol/l 5 ± 2

Concomitant Treatment

Regular Aspirin Use 1256 (45%)

Anti-Hypertensive Medication 1466 (53%)

Lipid Lowering Medication 1336 (48%)

Table 1.  Characteristics of the FHS Offspring Cohort (Visit 8, N = 2763). Values are presented as 
mean ± standard deviation (SD) unless N (%) is indicated.

http://www.genboree.org
http://www.mirbase.org
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ebv-miR-BART11-5p, co-expressed with genes related to immune response (MIC1) and cell tissue tension and 
shape (ARHGAP18), respectively (Table 4).

Viral miRNA presence in human plasma associates with circulating inflammatory and pro-
thrombotic biomarkers.  Many viral infections induce inflammation and/or thrombosis, both of which 
are important factors leading to elevated CVD and cancer risk. Thus, we evaluated if the identified plasma viral 
miRNAs associate with circulating inflammatory or pro-thrombotic biomarkers as measured in the same blood 
draw. All 3 viral miRNAs associated with at least 1 inflammatory biomarker (Table 5, Supplementary Table S3). 
Viral miRNAs originating from KSHV (kshv-miR-K12-10a-5p) and HCMV (hcmv-miR-US25-2-3p) were asso-
ciated positively with the presence of soluble TNF-receptor II (sTNFRII) protein, while interleukin-6 (IL-6) was 
associated only with hcmv-miR-US25-2-3p. The presence of ebv-miR-BART11-5p was associated with soluble 
intracellular adhesion molecule 1 (ICAM-1) and hcmv-miR-US25-2-3 was associated with osteoprotegerin. 
Finally, hcmv-miR-US25-2-3 was associated with changes in pro-thrombotic P-selectin (Table 5; Supplementary 
Table S3).

Viral miRNAs in human plasma modestly associate with age but do not associate with Coronary 
Heart Disease, hypertension or cancer.  Adverse cardiovascular outcomes such as myocarditis or plate-
let activation have been described in people infected with DNA viruses and the risk of cardiovascular disease 
increases with age. Here, we sought to determine if the presence of viral miRNA associates with age or disease 
outcomes. The presence of miRNA, hcmv-miR-US25-2-3p, associated with age (Table 6). Interestingly, in this 
non-symptomatic cohort, none of the viral miRNAs associated with sex, coronary heart disease, hypertension, 
or cancer or concomitant medication (Table 6). One exception was viral miRNA hcmv-miR-US25-2-3p which 
modestly associated with hypertensive treatment (Table 6).

Viral miRNA Cell Function Plasma presence Ref.

ebv-miR-BART11-5p B-cell
Targets EBF-1, critical for B-cell germinal center 
formation, possibly regulating the expression of 
EBV latency genes

Not known 23

kshv-miR-K12-10a-5p/aka kshv-miR-K12-10a* Not known Not known 51

hcmv-miR-US25-2-3p fibroblast
Reduces viral replication, and viral titers by 
downregulation of host’s eIF4A1 and consequent 
protein translation

Not known 21,22

Table 2.  Functional characteristics in cells of the viral miRNA identified by sequencing in human plasma. 
*Functional targets for kshv-miR-K12-10a-5p in cells have not been described, contrary to kshv-miR-K12-
10a-3p (previously known as kshv-miR-K12-10a) that mediates cytokine secretion, cell survival, and KSHV 
gene expression52,53.

Viral miRNA N % Ct Values (mean ± SD)

ebv-miR-BART11-5p 60 2.2% 21.3 ± 1

kshv-miR-K12-10a-5p 325 11.8% 21.2 ± 1

hcmv-miR-US25-2-3p 19 0.7% 21.1 ± 1

hsa-miR-486-5p 2699 97.7% 15.89 ± 2

Table 3.  Viral miRNA expression in the FHS Offspring Cohort (Visit 8, N = 2763) confirmed by qPCR. 
*miRNA levels were determined in the plasma of the participants by RT-qPCR. Human miRNA hsa-mir-486-5p 
Ct values here are used as a reference to compare host vs. viral miRNA Ct values. Of note, miRNAs in this table 
are detected by High Throughput Fluidic Dynamic Array using BioMark System instrument (Fluidigm) and 
CT values are not comparable to CT values generated by traditional RT-qPCR methods. Maximum Ct values 
generated by the BioMark System are CT = 23. Anything above 23 is considered not detectable.

Viral miRNA Human mRNA
Transcript 
ID Beta

Correlation 
p-value

Disease associated 
with gene target Function of gene target

kshv-miR-K12-10a-5p
MIC1/C18orf8 
(Macrophage Inhibitory 
Cytokine 1)

3781734 0.07 1.61E-06 Colon cancer associated protein

ebv-miR-BART11-5p ARHGAP18 (Rho GTPase 
Activating Protein 18) 2973694 0.23 2.74E-06 Penicilliosis

Rho GTPase activating protein that 
suppresses F-actin polymerization by 
inhibiting Rho; regulates cell shape, 
spreading, and migration

Table 4.  Co-expression of plasma viral miRNA with whole blood mRNA transcripts assessed using continuous 
model analysis and a cut off of Bonferroni p < 0.05 corrected for all 17,318 transcripts in 2395 people (FHS, 
Offspring Cohort, Visit 8).
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Discussion
This is the first study to describe the presence of viral miRNAs from 3 different viruses in human plasma in a large 
observational cohort and determine their association with inflammatory biomarkers, risk factors and disease. 
The specific viral miRNAs found are not related to an active infectious state but are predominantly responsible for 
latency. Using an unbiased sequencing approach and a cohort of 2763 participants from the FHS, we identified 
variable levels of these circulating viral miRNAs. The presence of these mostly latency-related viral miRNAs in 
plasma was associated with inflammatory and prothrombotic biomarkers, and 2 of the miRNAs co-expressed 
with genes related to immunity, tissue tension and cell shape.

In this study, all viral miRNAs originated from DNA viruses from the Herpesviridae family and most of them 
are known to control the latent (dormant) stage of the viral cycle in cells. DNA viruses such as HCMV, EBV and 
KSHV have the ability to establish a lifelong persistent infection alternating between latent and lytic cycles of 
viral repication. During latency, there is an absence of disease, lack of viral production in infected cells, and an 
absence of viral transmission. HCMV viruses establish latency in hematopoietic progenitor cells and cause mild 
symptoms in immunocompetent organisms4,16. EBV and KSHV establish latency predominantly in B-cells17,18. 
EBV is associated with Hodgkin’s and Burkitt’s lymphoma and nasopharyngeal carcinoma, while KSHV causes 
lymphoma and Kaposi’s sarcoma19,20. All of these human DNA viruses can generate miRNAs in their host target 
cells that mediate viral replication or dormancy. Additionally, these viruses can coexist with the host without 
causing overt disease. In fibroblasts, the HCMV miRNA, hcmv-miR-US25-2-3p, is able to reduce viral replication 
and viral titers21,22. In B-cells, EBV miRNA, ebv-miR-BART11-5p, affects B-cell germinal center formation, pos-
sibly regulating the expression of EBV latency genes23. These previous observations support our findings as the 
FHS cohort is an observational and non-acute population (free of acute infection).

Regardless of the cell from which the viral miRNAs may originate, all 3 miRNAs identified in plasma were 
associated with the concomitant presence of at least 1 inflammatory biomarker. Two of the viral miRNAs, origi-
nating from KSHV and HCMV, associated with elevated levels of sTNFRII in plasma. Soluble TNFRII modulates 
biological functions of TNF-alpha by competing with cell surface receptors. TNF-alpha is a primary cytokine 
and levels of sTNFRII shows high accuracy in measuring inflammation and prognosis of disease. It has been 
postulated that sTNFRII levels are also a useful quantification of the TH1 immune response24. One viral miRNA 
also associated with changes in the levels of sICAM-1. Soluble ICAM-1 is an intracellular adhesion molecule and 
is released in plasma with increased inflammation and tissue damage. Circulating levels of sICAM1 have not 
only been associated with coronary heart and vascular disease but with the severity of infectious diseases such 
as malaria, sepsis, and dengue hemorrhagic fever25. Elevated serum levels of sICAM1 have also been associated 

Viral miRNA
sICAM1 fold 
change (95%CI)

sTNFRII fold 
change (95%CI)

OPG fold change 
(95%CI)

IL-6 fold change 
(95%CI)

P-Selectin fold 
change (95%CI)

ebv-miR-BART11-5p 0.95 (0.93, 0.98), 
p = 01.0e-04*

kshv-miR-K12-10a-5p 1.06 (1.02, 1.11), 
p = 0.002*

hcmv-miR-US25-2-3p 1.02 (1.01, 1.04), 
p = 04.0e-04*

1.02 (1.00, 1.03), 
p = 0.01*

1.01(1.00, 1.03), 
p = 0.03

0.98 (0.97, 0.99), 
p = 0.003*

Table 5.  Significant association of viral miRNAs with inflammatory and pro-thrombotic biomarkers in 
2763 people (FHS, Offspring Cohort, Visit 8). All associations were significant at p < 0.05. Those surviving 
corrections for multiple comparisons are marked with *. Full results are available in Table S3. Fold-change 
values for quantitative measures are for a 1 SD change in that value. Biomarker values were log-transformed 
for association analyses; P-selectin- platelet selectin; sTNFRII- soluble tumor necrosis factor receptor II 
(TNFRSF1B); sICAM1- soluble intercellular adhesion molecule 1; Il-6- interleukin 6; OPG- Osteoprotegerin, 
aka tumor necrosis factor receptor superfamily 11B (TNFRSF11B).

ebv-miR-BART11-5p fold 
change (95%CI), p-value

kshv-miR-K12-10a-5p fold 
change (95%CI), p-value

hcmv-miR-US25-2-3p fold 
change (95%CI), p-value

Age (years) 0.99 (0.97, 1.01), p = 0.4 0.97 (0.93, 1.00), p = 0.1 1.02 (1.01, 1.03), p = 0.004*
Sex (women) 1.02 (0.97, 1.07), p = 0.5 1.02 (0.95, 1.09), p = 0.7 1.01 (0.99, 1.04), p = 0.3

Hypertension (HT) 0.97 (0.91, 1.02), p = 0.2 0.96 (0.89, 1.05), p = 0.4 1.00 (0.97, 1.03), p = 0.9

Coronary Heart Disease (CHD) 0.99 (0.92, 1.07), p = 0.8 0.96 (0.86, 1.08), p = 0.5 1.04 (1.00, 1.08), p = 0.1

Cancer (any) 1.03 (0.97, 1.10), p = 0.3 1.08 (0.98, 1.19), p = 0.1 1.01 (0.98, 1.05), p = 0.4

Regular Aspirin Use 1.00 (0.96–1.05), p = 0.9 1.01 (0.94–1.08), p = 0.9 1.00 (0.98–1.03), p = 0.8

Anti-Hypertensive Medication 0.97 (0.92–1.02), p = 0.2 0.95 (0.88–1.02), p = 0.1 1.03 (1.01–1.06), p = 0.01

Lipid Lowering Medication 0.98 (0.94–1.03), p = 0.5 0.98 (0.92–1.06), p = 0.6 1.00 (0.98–1.03), p = 0.7

Table 6.  Association of viral miRNAs in plasma with age and clinical outcomes in 2763 people (FHS, Offspring 
Cohort, Visit 8). Fold-change values for quantitative measures are for a 1 SD change in that value. Associations 
are considered significant at p < 0.05. Those surviving corrections for multiple comparisons are marked with *. 
Biomarker values were log-transformed for association analyses.
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with immune suppression in patients with chronic liver disease26. Osteoprotegerin is a member of the tumor 
necrosis factor receptor superfamily and was initially discovered as a contributor to bone turnover homeostasis27. 
Interestingly, patients with multiple myeloma have significantly lower levels of osteoprotegerin28–30, and viruses 
such as KSHV are known to modulate osteoprotegerin levels in a COX2-dependent manner31. As shown in our 
findings, hcmv-miR-US25-2-3p significantly associated with osteoprotegerin. In summary, the overall presence 
of viral miRNAs in this human cohort is associated with a dysregulated inflammatory and prothrombotic plasma 
profile but is not associated with overt disease, suggesting that the relationship between inflammation and clinical 
outcome during the viral dormant stage is complex.

As previously mentioned, the presence of viral miRNA in the circulation has been described in studies 
that included small numbers of cancer, septic or virus infected patients. In 2 small cohorts of septic patients 
(33 patients without cancer and 66 with cancer), (EDTA) plasma levels of KSHV miRNAs were elevated, and 
kshv-miR-K12-12 (not detected in our cohort), in particular, exhibited higher levels in patients of African 
descent32,33. EBV miRNAs have also been detected in plasma of patients with chronic lymphocytic leukemia 
(CLL) and correlate with shorter survival in 2 independent small cohorts34. However, the EBV viral miRNA that 
we detected in the plasma was not present in these leukemic cohorts34. In chronic hepatitis B patients, serum 
presence of 1 HCMV viral miRNA has been suggested as an indicator for effective interferon treatment35. From 
this study, however, it is unclear if HCMV viral miRNA can freely circulate in plasma or if it is part of the cell 
miRNome released during the coagulation process that occurs with serum collection. Although EBV and KSHV 
are associated with oncological disease, in our study, we did not find plasma viral miRNAs associated with cancer. 
The lack of viral miRNA association with cardiac disease or risk factors suggests that, in immunocompetent indi-
viduals, DNA viral infections may manipulate the immune system to establish a latent infection without flagrantly 
influencing cardiovascular disease.

With regard to the role of miRNAs in plasma, it has been established that miRNAs packaged in microvesicles 
can be transferred to distant cells where they can affect gene expression and modulate functional effects36,37. In the 
case of EBV, it has been shown that viral miRNAs are delivered to uninfected cells through exosome secretion and 
exert functional repression of targeted mRNA38,39. Establishing the specific targets for the miRNAs found in our 
population is beyond the scope of our study but certainly merits future investigation. Although our findings do 
not show an association with cardiovascular disease or cancer, this is an important and novel negative observation 
suggesting that the presence of these viral miRNAs may not always be harmful.

The presence of viral miRNA in a large well-characterized cardiovascular cohort such as the FHS has not 
been previously described. Additionally, the presence of the 3 viral miRNAs identified in our study has not 
been previously reported in plasma. A study utilizing a small patient cohort (n = 250) reported an increase of 
hcmv-miR-UL112 levels in the EDTA-plasma of hypertensive patients40. In our study utilizing 2763 patients 
(using CPD-plasma) of whom 661 were hypertensive, we did not find this association with hypertension. 
However, hcmv-US25-2-3p mildly associated with hypertensive treatment. Ethnic differences also exist between 
our studies40 that may contribute to a diverse response to viral susceptibility. Genetic polymorphism of viral 
immune receptors described in Chinese vs. Caucasian cohorts may reflect differences in responses to viral infec-
tion and clinical outcome41. In our study, hcmv-US25-2-3p associated positively with sTNFRII, OPG, and IL-6 
but negatively with prothrombotic P-selectin (platelet-selectin). Incubation of HCMV-infected cells with platelets 
increases P-selectin secretion at early stages of infection42. In our study hcmv-miR-US25-2-3p associated with 
reduced P-selectin and increased inflammatory biomarkers, suggesting that dysregulation of the host’s hemo-
static/immune response may be necessary for efficient latency.

There are limitations to this study. First, we can only identify viral miRNAs that were already recognized and 
deposited into the Genboree database prior to our analysis. In addition, there is a potential for primer inefficiency 
in plasma that may lead to the inability to detect viral miRNA levels below the detection threshold. Another 
important and related technical limitation is the small size of viral miRNAs and their similarity to host miRNA 
or to the miRNAs of other DNA viruses. Due to this concern, we confirmed through miRBase that there is no 
sequence similarity between the viral miRNAs and human miRNAs or other human viruses. Limitations of the 
co-expression model analysis have been previously described15 and further work is necessary to confirm mRNA 
targets, cells of interest and physiological implication for these viral miRNAs. Finally, the FHS population used 
in this study (Offspring Cohort, Visit 8) is older and of European descent and ongoing studies in our laboratory 
are exploring the impact of race, ethnicity and age. Additionally, surrogates of cardiovascular disease such as the 
carotid intima-media thickness (IMT) test were not available from this cohort visit.

In conclusion, this is the first large observational cohort study to identify expression of 3 viral miRNAs from 3 
different viruses that have not been previously identified in the circulation. These miRNAs, which are functionally 
related mostly to latency in cells, associated with inflammatory and thrombotic biomarkers but did not associate 
with cardiovascular disease or cancer. The novelty of our findings is that overall DNA viral presence may not asso-
ciate with prevalent disease despite association with inflammatory markers. Further studies including broader, 
more inclusive populations are necessary to establish viral miRNA signatures for dormant or active infections and 
their clinical outcomes.

Materials and Methods
Study cohort and design.  The Framingham Heart Study (FHS) is a community-based, prospective study 
of cardiovascular disease and its risk factors. Cohorts undergo an examination at the FHS once every ~4–8 years 
and have been extensively phenotyped over multiple examinations with a wide variety of noninvasive tests. In 
the present study we used data and plasma samples from the 8th visit of the offspring (and their spouses) of the 
Original FHS participants (FHS Offspring Cohort). The participants have an extraordinary wealth of clinical 
data available allowing us to examine the relation of disease and risk factors to gene expression. As previously 
described, we determined the broadest number of exRNAs in human plasma by performing RNA sequencing on 
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40 previously stored samples from FHS participants (Offspring Cohort, Visit 8)13. We identified 3 viral miRNAs 
in plasma samples of 40 participants that were evaluated in the entire FHS cohort (n = 2763) by RT-qPCR (see 
below). Basic characteristics of the full cohort can be found in Table 1.

Human subjects.  The investigations outlined in this manuscript were conducted according to the principles 
of the Declaration of Helsinki. Studies outlined by the FHS protocol were approved by and carried out in accord-
ance with Boston University Medical Center and by UMass Medical School Institutional Review Boards. All 
participants provided informed consent and were identified by number and not by name.

Biomarker assessment.  Biomarker levels were measured in the 2763 participants of the FHS cohort. 
A detailed description for the detection of circulatory biomarkers has been previously reported43–45. Briefly, 
P-Selectin, C-reactive protein (CRP) and osteoprotegerin were detected in plasma44,45. Levels of Interleukin-6 
(IL6), soluble Intercellular Adhesion Molecule 1 (sICAM1), Monocyte Chemotactic Protein 1 (MCP1) and sol-
uble Tumor Necrosis Factor Receptor II (sTNFRII) were measured in serum44,45. Biomarker levels are provided 
in Table 1.

Plasma RNA isolation.  RNA isolation from plasma was performed as described13. Briefly, RNA samples 
were isolated from 1 mL plasma using a miRCURY RNA Isolation Kit –Biofluids (Exiqon, Denmark). The RNA 
isolation was carried out via an automated QIAcube system (Qiagen, Germany). RNA samples were eluted in 14 μl 
and stored at −80 °C.

Template Preparation for RNA Sequencing.  An Ion Chef System, Ion PI Chip Kit v3 and Hi-Q Chef 
kits were used for template preparation as described13. The entire procedure was automated using the Ion Chef 
System. At the end of the template preparation, loaded PI Chips (Life Technologies, USA) were sequenced13. RNA 
Sequencing was performed on an Ion Proton System13 using the Ion PI Hi-Q Chef Kit (Life Technologies, USA).

Sequencing Data Analysis Using the Genboree Sequencing Pipeline.  Detailed procedures for this 
analysis using the exceRpt tool available on the Genboree Workbench [http://www.genboree.org/] were previ-
ously published13. After alignment to endogenous sequences and removal of all contaminants with endogenous 
sequences, the software aligned the remaining sequences to exogenous small RNAs. Reads not mapped to any 
exogenous small RNAs were aligned again using sRNAbench to the complete set of viral miRNA sequences avail-
able in miRBase.

RT-qPCR for viral miRNAs in plasma.  A detailed description of this procedure was previously provided13. 
Briefly, reverse transcription was performed using the miScript SYBR Green PCR Kit (Qiagen, Germany). 
Viral miRNA primers were purchased from Qiagen (MD, USA). Pre-amplification was done using miScript 
Microfluidics PreAMP Kit (Qiagen, MD, USA). RT-qPCR was resolved by Dynamic Arrays (Fluidigm, CA, USA) 
using primers designed by Qiagen (Supplementary Table S2).

mRNA expression profiling.  Whole blood mRNA expression was measured in 2446 participants in the 
FHS (Offspring Cohort, Visit 8), using Affymetrix exon array ST 1.0 platform, as previously described46. This 
platform included 17,318 mRNA transcripts. A robust multichip analysis (RMA) algorithm was applied using 
Affymetrix Power Tools (APT) for generation of signal values (i.e., log-2 transformed expression intensity) to 
yield an initially normalized dataset.

Statistics.  All statistical analyses were performed using STATA 13.0. Descriptive statistics are displayed as 
mean ± standard deviation (SD) for continuous variables and count (percentage) for categorical variables. For all 
plasma viral miRNA detection, any miRNA with undetermined Ct values in 23 cycles was considered not present 
thereby accounting for the detection limit of the BioMark instrument technology (note, this technology is not a 
traditional qPCR system and it has different detection limits). Ordinary least squares linear regression models 
were used to test for association with the Ct value of each viral miRNA that was present and each phenotype 
(i.e. biomarkers, clinical factors, and disease status). The distributions of biomarker assay levels in the restricted 
sample were not normally distributed and were consequently natural log (ln) transformed for statistical analysis. 
To account for the number of statistical comparisons conducted, we employed a false discovery rate (FDR = 5%) 
correction for the number of phenotypes tested (7 biomarkers and 8 clinical factors, Table 1) within each of the 
viral miRNAs.

Viral miRNA-mRNA co-expression analysis.  Co-expression analysis was performed only in the 
FHS participants for whom both viral miRNA and mRNA data were available (N = 2395). For each viral 
miRNA-mRNA pair (4 viral miRNA x 17,318 mRNA), we performed continuous analysis: analysis included only 
samples in which viral miRNAs were expressed. A linear mixed model implemented in “lmekin” function of 
R47,48 was used to model mRNA as a response variable and viral miRNA as an independent variable, adjusting for 
age, sex, technical covariates for mRNA expression profiling measurements described previously49, imputed cell 
counts49, and family structure. Benjamini-Hochberg methods were used to calculate FDR or Bonferroni-corrected 
P < 0.05.

In silico prediction of viral miRNA targets.  Viral miRNA targets were predicted using the VIRmiRNA 
database tool (http://crdd.osdd.net/servers/virmirna) by exactly matching the 7mer seeded region of a viral 
miRNA with the untranslated region and coding region of mRNAs50.

http://www.genboree.org/
http://crdd.osdd.net/servers/virmirna
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Data availability.  The RT-qPCR data described in this manuscript has been deposited in dbGaP, accession 
number phs000007.v27.p10; the RNA-seq data can be accessed under Jane Freedman at http://genboree.org/
exRNA-atlas/exRNA-Grids.rhtml?grid=analysisTable.
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