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Introduction

Autoimmune diseases such as systemic lupus erythematosus
(SLE) and rheumatoid arthritis are marked by chronic inflamma-
tion in end organs that can be associated with the development
of tertiary lymphoid organs (TLOs)'=. TLOs are also known as
tertiary lymphoid tissues, ectopic lymphoid follicles, or ectopic
lymphoid structures and are accumulations of lymphocytes and
stromal cells in an organized structure that occur outside of sec-
ondary lymphoid organs (SLOs). TLOs share many features with
SLOs, such as the presence of T and B cell compartmentaliza-
tion into T cell zones and B cell follicles, chemokines that medi-
ate the compartmentalization, antigen-presenting cells, lymphatic
sinuses, high endothelial venules, follicular dendritic cells, and
fibroblastic reticular cells (FRCs)’"'!. In SLE, inflammation in the
kidney interstitial tissue is associated with greater risk for kidney
failure'”. Up to almost half of patients have well-circumscribed
aggregates of B cells, plasma cells, and T cells and a small fraction
can have well-organized germinal centers with follicular dendritic
cells'”. In rheumatoid arthritis, TLOs ranging from B and T cell
aggregates to germinal centers are found in the inflamed synovium
of about half of biopsied patients and are associated with more
severe joint and systemic inflammation®*"*. TLOs are also found
in other organs in other autoimmune diseases or models, such as
in the salivary and lacrimal glands in Sjogren’s syndrome'*'¢, the
central nervous system in multiple sclerosis”'’~, the pancreas in
diabetes™ >, the thymus in myasthenia gravis’**’, and the intestines
in inflammatory bowel disease*”’. While findings in recent years
have begun to delineate the mechanisms that regulate the forma-
tion of TLOs (recently reviewed in 7-11), it is unclear whether
TLOs provide pathogenic or protective contributions to SLE,
rheumatoid arthritis, and other autoimmune diseases. Here
we will review evidence that TLOs may generate potentially
pathogenic cells but that they may limit the extent of pathogenic
cell activity.

Tertiary lymphoid organs can generate potentially
pathogenic cells

In the setting of infections, TLOs have been generally consid-
ered to be protective, adopting SLO-like functions and acting as
“outposts” of SLOs that are directly positioned at the site of inflam-
mation. TLOs form in the lung of influenza-infected mice’~* that
can maintain and reactivate memory CD8+ T cells** and produce
plasma cells and antiviral serum immunoglobulins’’. Remark-
ably, although there is a delay in anti-viral immunity development,
TLOs are sufficient for protection when the hosts are deficient in
SLOs*, underscoring the idea that TLOs can generate effector
cells that provide effective host defense. Innate lymphoid cells
(ILCs) in the lung are induced after influenza infection and have
been shown to maintain lung function, epithelial integrity, and
airway remodeling®. Although it is unknown whether TLOs play
a role in maintaining or stimulating lung ILCs after influenza
infection, ILCs have been shown to be associated with TLOs and
have even been associated with decreased disease progression in
lung cancer™. Tt is possible that influenza-induced lung TLOs
also provide a suitable environment for ILCs to populate and
function in a protective manner. Similar to influenza virus infec-
tion, TLOs form with pulmonary Mycobacterium tuberculosis
(MTB) infection®*~’. Latent tuberculosis is associated with more
frequent, well-organized TLOs while TLOs are less frequent and
less well-formed in active tuberculosis, suggesting a protective
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role for TLOs in controlling disease. The TLOs contribute to the
formation of granulomas, which function to promote immunity
and limit tissue damage*'. Additionally, CXCL13 expression that
organizes the B cell follicles serves to recruit CXCRS5-expressing
T helper (Th) cells into granulomas to activate macrophages that
are essential to infection control*®*’. These studies on TLOs in
infection models highlight the ability of TLOs to support immune
responses that are capable of protecting the host.

Similar to immune responses generated in SLOs, immune
responses targeted to self may be harmful to the host. The TLOs
in SLE kidneys contain germinal centers that show clonal expan-
sion and somatic hypermutation characteristic of germinal
center responses in SLOs’, demonstrating well-developed effec-
tor responses. The TLOs correlate strongly with the presence of
immune complexes, suggesting that the locally generated antibod-
ies are autoantibodies to renal antigens that can fix complement
and thus cause tissue inflammation and damage’. Similarly, the
B cell responses associated with TLOs in the rheumatoid arthritis
synovium®, the salivary glands in Sjogren’s syndrome*, and other
target tissues show autoimmunity'’. SLE kidneys and rheumatoid
synovium are also characterized by the accumulation of Th17 cells,
which can have proinflammatory roles*~**. While IL-17-express-
ing cells could help to induce TLO formation, as has been shown
in the central nervous system and in neonatal lung”*>*, the TLOs
could potentially also help to support Th17 cell maintenance or
acquisition of additional proinflammatory properties® """,
Indeed, B cells are necessary for the accumulation of activated
T cells, likely by presenting antigen to the T cells*>, and B cells
in TLOs may be pathogenic in part by stimulating autoreactive
T cells, which then can contribute to the inflammatory milieu
in the affected end organs. TLOs in autoimmune diseases, then,
can be a source of potentially pathogenic lymphocytes.

Tertiary lymphoid organs can potentially limit
pathogenic responses

Despite the generation of autoreactive and proinflammatory
cells, TLOs could also have a protective role by sequestering
pathogenic lymphocytes and preventing them from leaving the
specific tissue or tissue compartment to cause further damage.
For example, in SLE, glomerular damage is unrelated to the
extent of interstitial inflammation'”, but failure to sequester lym-
phocytes within the interstitial tissue could potentially result in the
migration of lymphocytes to the glomeruli and worsened
glomerular damage. Alternatively, in the absence of TLOs, the
lymphocytes could enter the circulation to home to and potentially
damage additional organs outside the kidneys. That inflamma-
tory cells are able to find alternative niches despite the absence of
TLOs is seen in MTB infection, where antigen-specific T cells
still accumulate, showing an altered, perivascular location, in the
absence of TLOs**. Also, B cell selection in the pancreas is
unaltered by follicular disruption of TLO in the pancreas of non-
obese diabetic mice”. Interestingly, TLOs within tumors but not
at the tumor periphery are correlated with good outcomes in a
study of pancreatic carcinoma patients®, raising the possibility
that the TLOs at the tumor periphery prevent potential anti-tumor
lymphocytes from accessing the tumor parenchyma. The concept
that TLOs might have a sequestration function is analogous to the
sequestration of lymphocytes within SLOs with the S1P agonist
fingolimod, which is used to treat multiple sclerosis®®. Fingolimod
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downregulates SIP receptor 1, preventing lymphocyte egress from
the SLOs and subsequent migration to end organs’’. Sequestration
of potentially pathogenic cells, then, may help limit the extent of
disease.

TLOs can also be protective if they provide a microenvironment
that generates regulatory or reparative cells that reduce the
pathogenicity of inflammatory cells. In the apoE-/- model of
atherosclerosis, TLOs that form on the outer aspects of the athero-
sclerotic vessel wall generate regulatory T cells (Tregs). These
TLOs are dependent on lymphotoxin B receptor (LTBR) stimula-
tion of presumably local vascular smooth muscle, and preventing
TLO formation by deleting LTBR from smooth muscle cells
resulted in more and enlarged plaques’. These results suggested
that the TLOs were protective, perhaps by the generation of the
Tregs. Here, the TLO stroma may be critical for the generation
of regulatory cells. Lymph node FRCs have been implicated in
Treg generation by presenting self-antigen on MHCII and by
guiding T cells into a tolerance-inducing environment™”". FRCs,
along with endothelial cells, can additionally promote tolerance
by MHCI presentation of autoantigen®-®> and regulate the mag-
nitude of T cell activation by expressing inducible nitric oxide
synthase®~“. Tregs have also been shown to mediate tissue repair
via amphiregulin in lung with influenza infection®® and in mus-
cle after injury®, and thus TLO generation of Tregs can have
protective effects independent of their immunosuppressive func-
tions. Similarly, ILCs are another source of amphiregulin that is
important for repair*’, and TLOs may potentially support their
development®. Interestingly, both SLE patients and lupus-
prone mice possess decreased numbers and abnormal function
of Tregs"~” while exhibiting increased calcium/calmodulin-
dependent protein kinase IV (CamK4)*”, which is responsible
for an imbalance in Th17 cells and Tregs with a shift towards
more Th17 cells. Inhibition of CamK4 corrected this imbalance in
lupus-prone mice, decreasing Th17 cells and increasing Tregs
in the kidney in association with reduced organ damage’. It is
tempting to speculate that the TLOs (and perhaps the SLOs) in
SLE do not function correctly to foster optimal Treg generation.
TLOs, then, may not only sequester potentially pathogenic cells
but also provide an environment that limits the magnitude or
severity of the response.

References

F1000Research 2017, 6(F1000 Faculty Rev):196 Last updated: 28 FEB 2017

Conclusion

In conclusion, in autoimmune diseases, TLOs can generate and
harbor autoreactive and proinflammatory, potentially patho-
genic lymphocytes but could potentially serve to limit pathogenic
responses by sequestering these cells or by reducing the magni-
tude of the response. Therapeutically, targeting TLOs may offer
opportunities to ameliorate disease, and more understanding of the
potential pathogenic and protective functions is needed. For
example, can we identify TLOs that generate more pathogenic
cells versus those that have more regulatory functions? Do these
different functions in part reflect the evolution of TLO devel-
opment and maturation? What are the vascular, stromal, and
hematopoietic elements that contribute to the different micro-
environments, and can we modulate them to generate a more
immunoregulatory environment? Furthermore, understanding how
the affected tissue outside the TLOs may be similar or distinct
in supporting the generation and maintenance of autoreactive
lymphocytes would enrich our understanding of the distinct
nature of TLOs and also allow us to prevent the lymphocytes from
potentially accumulating elsewhere upon TLO disruption.
Continued improved understanding of TLO biology will help
us better understand how to treat autoimmune disease.
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