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Introduction

DES is a relatively common clinical ophthalmic 
condition, characterized by a disorder of the preocu-
lar tear film and affecting approximately 1 out of 7 
individuals aged 48 and above [1]. Besides DES, this 
condition can also be known as keratoconjunctivitis 
sicca (KCS), dry eye disease (DED), ocular surface 
disease (OSD) or dysfunctional tear syndrome (DTS) 
[2]. It is a dysfunction of the nasolacrimal unit (nasol-
acrimal glands, corneal surface and eyelids) which 
leads to defective or insufficient tear film formation 
[3].

The maintenance of a physiologically complete 
tear film is imperative for normal vision as it is, along 
with the cornea, responsible for focusing light onto 
the retina [4]. Additionally, it also functions to lubri-
cate the eye, remove debris from the ocular surface 
as well as maintain nutrition and oxygenation of the 
ocular structures [5]. Patients who developed DES 
may experience ocular burning, blurred vision or 
even pain and often have a reduced quality of life as 
common daily tasks that require visual attention (e.g. 
reading, computer work, etc.) become significantly 
challenging. However, while treatments are avail-
able to minimize the negative impacts, they are often 
suboptimal and unable to specifically target the root 
cause(s) of this disease.

It is now known that DES can be caused by a non-
exhaustive list of factors which include autoimmun-
ity, hormonal imbalance, deleterious environmental 
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settings and many more. Unbeknown to many, symp-
toms associated with dry eyes may even at times be 
indicative of undiagnosed systemic diseases which, if 
treated timely, may avoid life-threatening outcomes 
[5]. Over the years, given a more profound under-
standing of the various mechanisms involved in the 
development of this condition, a wide range of novel 
treatments are underway to provide more effective 
results and overcome limitations posed by conven-
tional therapeutics utilized in the clinic currently. 
This review aims to summarize the causes of DES 
and its respective mechanism, explore ongoing clini-
cal trials for DES treatment and lastly, discuss prom-
ising technologies that can potentially shape future 
treatment strategies.

Secretory components and tear film composition

The tear film is regulated by an integrated lachrimal 
functional unit (LFU) which consists of the lachri-
mal glands, cornea, conjunctiva, eyelids, meibomian 
glands, goblet cells as well as the sensory and motor 
nerves that connect them [6]. As measured by ultra-
high resolution optical coherence tomography (OCT) 
and validated with interferometry techniques [7, 8], it 
was found that the tear film, when spread across the 
exposed conjunctiva and cornea, is approximately 2 
to 5.5 μm thick [9]. Correspondingly, this extremely 
thin layer of film is constituted by an even thinner top 
layer of lipid (about 42 nm) [10] and a mucin-aque-
ous (mucoaqueous) layer with decreasing concentra-
tion of mucins from the cornea epithelium towards 
the lipid layer [11, 12].

The lipid layer is derived from meibum produced 
by the meibomian gland and secreted through the 
lid margins. Meanwhile, blinking helps to spread the 
lipid layer across the tear film through surface ten-
sion forces. This configuration functions to stabilize 
the film by preventing the aqueous component from 
evaporating too rapidly [13–15]. The aqueous fluid in 
the tear film, which contains water, electrolytes, small 
molecule metabolites, plethora of proteins (more than 
1500 detected [16]) and peptides (more than 200 
[17]) is mostly produced by the lacrimal glands. The 
aqueous portion in the mucoaqueous layer provides 
oxygen and nutrients to the underlying avascular 
corneal tissue and assist in flushing away epithelial 
debris, toxins and foreign bodies [18].

Secreted mucins are present in the aqueous compo-
nent as well and are produced by the goblet cells pre-
sent in the conjunctiva while transmembrane mucins 
(glycocalyx) that can extend up to 500 nm from the 
plasma membrane are formed on the apical surfaces 
of the corneal and conjunctival epithelia [19]. Mucins 
are large high molecular weight glycoproteins that 
contain one of more protein domains which are rich 
in serines and threonines extensively glycosylated via 
O-glycan attachments [20, 21]. They are essential for 
providing lubrication, hydration as well as protection 
against infection and injury [22, 23]. On the ocular 
surface, it was shown recently that they further main-
tain a disadhesive property to the apical epithelial 
cells such that, during blinking or sleeping, cell sur-
faces facing each other like the cornea and conjunc-
tiva do not adhere to each other [24]. Together, these 
constituents maintain the tear film and any slight 
dysregulation such as decreased aqueous volume or 
abnormal production of mucins or lipids will lead to 
DES [25, 26].

Etiology of DES

There are a multitude of factors that have been discov-
ered to result in such dysregulations which, in gen-
eral, can be classified as intrinsic and extrinsic. Intrin-
sic factors are defined as conditions present within the 
body and include autoimmunity [3, 27, 28], hormonal 
imbalance [29, 30], systemic diseases [31–34], hered-
itary diseases [35, 36], nerve damage [37, 38] and gut 
dysbiosis [39, 40]. On the other hand, extrinsic ele-
ments are derived from stimulus that occur outside 
the body and consist of environmental influences [41, 
42], behaviour and/or habits [43–46], eye accessories 
[47] and eye surgeries [48, 49] (Fig. 1).

Intrinsic factors

Autoimmunity

Dry eyes caused by autoimmunity could be attrib-
uted to Sjörgen’s syndrome (SS), a chronic autoim-
mune disorder that primarily affects the salivary 
and lacrimal glands. Specifically, these exocrine 
glands are heavily infiltrated with lymphocytes (T 
cells and B cells) and macrophages which produces 
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pro-inflammatory signalling molecules such as IL-1, 
TNF-α and IFN-γ [28, 50–52].  CD4+ T cells are the 
primary immune effectors [53] and interact closely 
with antigen presenting-macrophages to provoke 
ocular disease development through inflammation-
induced (IL-1 and IFN-γ) local tissue damage [51]. 
Additionally, they are also associated with peripheral 
neuropathy in the lacrimal glands, suggesting possible 
denervation and loss of function [54]. Besides  CD4+ 
T cells, it was recently observed that highly cytotoxic 
activated  CD8+ T cells are correlated with lacrimal 
gland epithelial cell death [50] and may account for 
the reduction in tear production. Given the varied 
possible causes of DES, the diagnosis of SS-induced 
dry eyes is relatively tedious and requires defined bio-
markers for validation. Accordingly, it is known that 
the tear film of patients who developed SS contained 
elevated amounts of pro-inflammatory cytokines such 
as IL-1, IL-6, IL-8 and TNF-α. Their presence also 
corresponded to lower tear secretion levels [55–57]. 

Other biomarkers include MMP-9 [58, 59], HLA-DR 
[60, 61] and potentially MUC5AC [62].

Graves’ opthalmopathy, also known as thyroid eye 
disease, is another autoimmune condition that can 
lead to DES [63]. Patients afflicted with this disease 
produce excessive thyroid hormones which induce 
an inflammatory response in the orbital tissues [64]. 
Mechanistically, DES is caused by a combination of 
mechanical impairment of the lids [65] and autoan-
tibodies targeting the thyroid-stimulating hormone 
receptors on the lacrimal gland [66]. Incomplete 
blinking due to lid impairment results in inadequate 
tear distribution over the ocular surface and exces-
sive tear evaporation [65] while autoantibodies bind-
ing causes aberrant signal transduction in the lacrimal 
gland and subsequent tear hyposecretion [66].

While not commonly known, multiple sclerosis, 
where the central nervous system (CNS) becomes 
demyelinated, is also an autoimmune disease that is 
correlated to DES. Specifically, poor corneal sensory 

Fig. 1  Schematic of dys-
regulated tear film during 
DES and the various intrin-
sic (blue background) and 
extrinsic (red background) 
etiologies
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impulse conduction due to demyelination can lead to 
insufficient tear production [67].

Hormonal imbalance

Hormones are known to influence both the lacrimal 
and meibomian glands [68]. Sex hormones, particu-
larly androgens, appeared to account for many of 
the sex-related disease susceptibility of the lacrimal 
gland in a variety of species [69]. For instance, tes-
tosterone was able to upregulate and downregulate a 
substantial amount of lacrimal gland genes found to 
be highly and lowly expressed respectively in male 
vs. female mice [70, 71]. On the other hand, estrogen 
and progesterone only impacted a small percentage 
[71] of these differentially expressed genes between 
male and female mice [70]. Mechanistically, andro-
gens have been demonstrated to regulate the lacrimal 
glands’ fluid and protein secretion [72–74] through 
saturable, high-affinity and steroid-specific receptors 
binding in acinar and ductar epithelial cells [69, 75]. 
Accordingly, the lack of androgens was linked to lac-
rimal gland dysfunction and corresponding aqueous 
tear deficiency [30, 76], which helps to explain the 
higher DES prevalence among females [77, 78] since 
they are prone to reduced serum androgen levels dur-
ing various stages of their life (lactation and meno-
pause) [79, 80]. The meibomian glands, which are 
sebaceous in nature and contain acinar epithelial cells 
with androgen receptors, are also regulated by andro-
gens [81, 82]. This form of regulation is dependent 
on 5α-reductase, an enzyme crucial for the produc-
tion of the potent androgen, 5α-dihydrotestosterone 
(DHT). In the presence of DHT, these acinar cells 
display enhanced synthesis and secretion of lipids. 
Conversely, a reduction in DHT resulted in attenuated 
gland activity, size and lipid release [82, 83], which, 
in the context of DES, leads to the formation of an 
unstable tear film attributable to the increased rate of 
evaporation.

Systemic diseases

Diabetes mellitus (DM) is regarded as one of the 
leading systemic risk factors for DES due to the high 
prevalence (~ 18% to 54%) observed in Type 2 dia-
betic patients [84–86]. However, regardless of Type 
1 or 2 diabetes, both conditions heighten the risk of 
developing LFU dysfunction such as corneal and 

conjunctival epithelium damage due to increased lev-
els of HbA1c in blood serum [87]. HbA1c are gly-
cated haemoglobins and provide an estimate of the 
blood sugar levels of an individual over the last three 
months [88]. As the conjunctiva epithelium contains 
goblet cells, the damage sustained will also be asso-
ciated with diminished mucin production. Addition-
ally, hyperglycemia has been shown to activate aldose 
reductase, an enzyme that catalyzes the conversion of 
glucose to the cytotoxic sorbitol [89]. Correspond-
ingly, elevated amounts of sorbitol within cells will 
lead to cellular apoptosis and ultimately lacrimal 
gland structure dysfunction followed by the reduction 
in tear secretion [31].

Xerophthalmia is a systemic disease that consists 
of a variety of eye disorders, including DES [90]. It 
is attributed to vitamin A deficiency and is the only 
vitamin deficiency disease in the world that causes 
major concern to the public health personnel [91, 
92]. Vitamin A is crucial for maintaining the dif-
ferentiation and proliferation of the conjunctiva and 
corneal epithelium [93] by inhibiting the upregula-
tion of apoptotic signals [94]. The lack of vitamin A 
will therefore lead to loss of goblet cells and mucin 
production.

Hereditary diseases

Familial dysautonomia (FD), also known as Riley-
Day syndrome, is a rare, hereditary autosomal reces-
sive disorder that impairs the development of specific 
sensory and autonomic neurons during embryogen-
esis [35]. As a result of this maldevelopment, patients 
with FD are highly vulnerable to optic neuropathy 
during their childhood, which becomes worse as they 
age [36]. Without proper control of their LFU, they 
lack the ability to produce tears at a basal, reflex and 
emotional level [95].

Nerve damage

All the secretory functions in the LFU are regu-
lated by autonomic nerves. The lacrimal gland 
is largely innervated by the Vasoactive Intestinal 
Peptide immunoreactive (VIP-IR) parasympathetic 
nerve fibers (secretory control) [96, 97] and, to a 
lesser extent, sympathetic nerve fibers (vasculature 
control) immunoreactive to Neuropeptide Y (NPY-
IR), Tyrosine Hydroxylase (TH-IR) and Dopamine 
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β-Hydroxylase (DBH-IR) [98]. Upon stimulation, 
water and electrolytes, supplied by the blood, are 
transported into the duct system by the coordinated 
activation of ion channels and pumps [99–101]. 
Meanwhile, proteins produced and stored in the 
secretory granules of the lacrimal gland acinar cells 
will be released through stimulus-induced exocyto-
sis [102] and carried along with the ionic fluid.

The meibomian gland and goblet cells in the con-
junctiva is regulated by both parasympathetic VIP-
IR and sympathetic DBH-IR and NPY-IR nerve fib-
ers as well [97, 103, 104]. VIP-IR nerve fibers are 
located in close proximity to the acini and central 
duct of the meibomian gland where they influence 
the secretion of lipids, contributed by the meibo-
cyte acinar cells, into the lumen of the duct system 
[97, 105]. On the other hand, VIP-IR nerve fibers 
are located at the epithelial-stroma junction in the 
conjunctiva, near the basal membrane of the goblet 
cells [104]. Upon receiving an appropriate stimu-
lus, the secretory granules within the goblet cells 
fuse with each other and with the apical membrane 
to release the mucins, along with some amount of 
water and electrolytes, onto the ocular surface.

Correspondingly, the activity of these autonomic 
nerves are dependent on reflexes initiated by the 
activation of sensory neurons, which are present 
in high density, on the ocular surface [38]. At that 
location, they are very susceptible to direct injury 
caused by environmental factors and mechanical 
trauma [38]. Indirect forms of injury can also occur. 
For example, patients with aqueous tear deficiency 
from other causes may blink too frequently, which 
can generate enough stress to damage terminal 
nerve branches. Besides that, inflammation also 
plays a key role in altering the physiological state 
of the peripheral sensory neurons. Specifically, pro-
inflammatory signalling molecules are able to either 
reduce the sensory neurons’ threshold for activa-
tion (sensitization) or increase their ongoing nerve 
activity (excitation) [106]. Such changes are linked 
to the kinetics of the transduction ion channels and 
voltage-gated ion channels in the axonal membrane 
[107], affecting the generation and propagation of 
action potentials [108, 109]. Without consistent 
control over the activation of the autonomic nerve 
fibers, tear production will therefore be defective.

Gut dysbiosis

The human body is host to trillions of microbiota. 
Among the various regions, such as the oral cav-
ity, respiratory tract, skin and gastrointestinal tract, 
that harbor these microorganisms [110], the colon is 
the organ which consists of the densest number of 
microbes [111]. This additional diversity of microbi-
ome serves as a functional expansion of host genomes 
[112] and produces signaling molecules that facilitate 
host metabolism and regulation of host physiology 
[113]. Studies have revealed correlations between gut 
dysbiosis, defined as an imbalance of the gut microbi-
ota diversity (disturbed or inversed Firmicutes/Bacte-
roidetes ratio), and DES. Specifically, this connection 
was hypothesized to occur through the gut dysbiosis-
ocular surface-lacrimal gland axis which consists of 
five proposed immune-related mechanisms describing 
how ratio changes of gut commensal can lead to DES 
[114, 115]. For example, one of the mechanisms pro-
posed involve the migration of gut dysbiosis-activated 
 CD103+ or  CXCR1+ dendritic cells or monocytes/
macrophage to the ocular surface where they prime 
T cells to secrete pro-inflammatory cytokines in the 
ocular surface and lacrimal glands [114]. Conse-
quently, the immune response mounted will lead to a 
decrease in goblet cells and acinar cells in the con-
junctiva and lacrimal glands, respectively, resulting in 
reduced mucin and tear secretion.

Extrinsic factors

Environmental influences

The LFU is well-equipped to withstand tolerable 
amounts of impurities in the environment and pre-
vent ocular surface damage through tear secretion. 
However, the protection provided by the tear film can 
be eroded if the pollution becomes too overwhelm-
ing, especially if it affects the function of the various 
secretory components in the LFU. Particulate matter 
smaller than 2.5 and 10 μm  (PM2.5 and  PM10), which 
consists of inorganic dust, dirt, soot particles and 
organic allergens like pollen grains, mold and micro-
bial colonies, are common pollutants associated with 
DES [116–121]. Excessive and prolonged exposure 
of these pollutants to the ocular surface were shown 
to trigger chronic inflammatory responses and induce 
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oxidative stress, both of which have cytotoxic effects 
on the secretory cells [41]. Similarly, gaseous pollut-
ants such as  NO2,  SO2,  O3 and volatile organic com-
pounds (VOCs) such as formaldehyde, toluene and 
acetone were all found to be positively correlated 
with DES through inflammatory and cytotoxic causes 
[122–125].

Even in the absence of impurities and reactive 
gases, constant exposure to extreme environmental 
conditions such as strong winds, low humidity, high 
temperature and high altitude can directly affect ocu-
lar health as well [125–127]. These scenarios reduce 
the tear film stability and cause faster tear evaporation 
[41], resulting in DES.

Behaviour and/or habits

Tobacco consumption is one of the main causes 
of morbidity and mortality globally and has been 
associated with a number of systemic disorders and 
conditions, including DES [43–45]. Besides con-
ventional cigarettes, battery-powered electronic ciga-
rettes (ECs), which deliver nicotine through a heated 
vapor [128], are also recently shown to increase the 
risk of developing dry eyes [129]. Accordingly, both 
types of cigarettes affect ocular functionality through 
the smoke and/or combustion by-products produced, 
leading to inflammation and subsequent decreased 
quantity and quality of tear secretion as well as ocular 
surface damage [129, 130].

Additionally, long-term usage of computer, tablet 
and cell phone can also result in DES [131]. It was 
observed that users blink less when using such dis-
play devices with a screen, which prevented the for-
mation of a stable tear film and therefore leading to a 
faster rate of tear evaporation [46].

Eye accessories

Contact lenses provide an aesthetic means for ocular 
refractive error correction over glasses and an esti-
mated 140 million people in the world use them [132]. 
This estimation has remained relatively consistent 
over the past decade despite numerous improvements 
in contact lens technology [133]. Correspondingly, a 
major reason for this observation arises from eye dis-
comfort, mostly the sensation of dry eyes, after pro-
longed usage [134]. Specifically, the close proximity 

of contact lens to the ocular surface poses a host of 
issues to the LFU and the tear film.

When fitted correctly, the contact lens cover 
the cornea completely and extends by ~ 2  mm onto 
the conjunctiva. In this configuration, every blink 
will cause it to move along the conjunctiva, which 
induces mechanical friction and goblet cells damage 
within the epithelium [135] over time [136, 137]. A 
reduction in goblet cell density will therefore lead 
to decreased mucin production and secretion, which 
affects tear film spreading. Besides that, contact 
lenses have also been associated with the loss of the 
meibomian gland and its orifice obstruction, result-
ing in impeded lipid synthesis and their transport to 
the tear film. Together, these dysregulations reduce 
the stability of the pre-lens tear film (PrLTF), the thin 
layer of fluid constrained between the cornea and the 
contact lens which is half the thickness of the normal 
pre-corneal tear film [138], and cause it to be suscep-
tible to rapid evaporation, rupture and dry spot forma-
tion [139]. The lack of a consistent PrLTF is therefore 
a manifestation of DES.

Eye surgeries

Surgical procedures for ocular refractive errors such 
as laser-assisted in  situ keratomileusis (LASIK), 
photorefractive keratectomy (PRK) and small inci-
sion lenticule extraction (SMILE) are recognized risk 
factors for developing dry eye [48, 49, 140]. This is 
attributable to a limitation posed by these surgical 
procedures where the sensory nerves present on the 
ocular surface will inevitably get damaged [48, 49, 
140]. Without reliable sensory detection, the cor-
neal sensation become impaired, which decreases 
basal and reflex tearing as well as rate of blinking 
[141–143]. Moreover, sensory denervation will also 
disrupt tear production by the lacrimal gland, lead-
ing to reduced tear secretion [144]. In addition to 
nerve damage, these refractive surgeries are also 
known to inflict damage to the conjunctival goblet 
cells [145–147]. Consequently, a reduction in goblet 
cell density signifies reduced mucin production and 
therefore, reduced tear film stability. Inflammatory 
responses induced as a result of postoperative wound-
healing process is the last contributing factor to DES.

Altogether, these factors constitute the major 
known causes of DES. For clarity, they are compiled 
and summarized in Table 1.
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Table 1  Summary of all the intrinsic and extrinsic etiologies and how they lead to dry eyes

Etiology How it leads to DES References

Autoimmunity Sjörgen’s syndrome - Lymphocytes and macrophages infiltrate lacrimal 
glands

- ↑ inflammatory cytokines, ↑ cell death, ↓ tear 
secretion

[28, 50–52]

Graves’ opthalmopathy - Excessive thyroid hormones
- ↑ inflammation in orbital tissue
- Lid impaired mechanically, ↓ rate of blinking, ↑ 

tear evaporation
- Autoantibodies target lacrimal gland, ↓ tear secre-

tion

[64–66]

Multiple sclerosis - Poor corneal sensory impulse conduction
- ↓ tear secretion

[67]

Hormonal imbalance Androgens - Androgens bind to steroid-specific receptors in 
epithelial cells

- ↓ androgens, lacrimal and meibomian gland 
dysfunction, ↓ tear secretion, ↓ lipid secretion, ↑ 
tear evaporation

[30, 69, 72–76, 82, 83]

Systemic diseases Diabetes mellitus - ↑ HbA1c in blood serum
- Corneal and conjunctival epithelium damage, 

lacrimal gland dysfunction
- ↑ goblet cell death, ↓ mucin secretion, ↓ tear 

secretion

[31, 87, 89]

Xerophthalmia - Vitamin A deficiency
- ↓ goblet cells, ↓ mucin secretion

[91–94]

Hereditary diseases Familial dysautonomia - Impaired sensory and autonomic neurons
- Lack LFU control, no tears produced

[35, 95]

Nerve damage VIP-IR nerve fibers - VIP-IR nerve fibers regulate lacrimal and meibo-
mian gland and goblet cells

- Damage to the nerve itself or to its corresponding 
sensory neurons leads to ↓ tear secretion, ↓ lipid 
secretion, ↓ mucin secretion

[38, 96, 97, 103, 104]

Gut dysbiosis Firmicutes/Bacteroidetes ratio - Altered ratio lead to dendritic cells’ and mac-
rophages’ migration to ocular surface

- T cells primed by their presence, secrete pro-
inflammatory cytokines

- ↓ acinar and goblet cells, ↓ tear and mucin secre-
tion

[114, 115]

Environment PM2.5 and  PM10 - Prolonged exposure to ocular surface causes 
inflammation and damage

- ↓ secretory cells

[41]

Gaseous pollutants - Prolonged exposure to ocular surface causes 
inflammation and damage

- ↓ secretory cells

[122–125]

Extreme weather conditions - Strong winds, low humidity, high temperature and 
high altitude

- ↓ tear film stability, ↑ tear evaporation

[41, 125–127]

Behavior and/or habits Conventional and battery-
powered electronic ciga-
rettes

- Smoke and/or combustion by-products produced
- Ocular surface inflammation and damage
- ↓ quality and quantity of tear

[129, 130]

Display devices - ↓ rate of blinking, ↓ tear film stability, ↑ tear 
evaporation

[46]
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Upcoming clinical trials for DES treatment

Method of search

A primary search was conducted using ClinicalTri-
als (http:// clini caltr ials. gov) and the key words used 
were dry eye, keratoconjunctivitis sicca, dryness, 
ocular, ophthalmic and optic. The search filters ‘Not 
yet recruiting’, ‘Recruiting’, ‘Enrolling by invitation’ 
and ‘Active, not recruiting’ were then applied to sieve 
out all the upcoming clinical trials related to these 
keywords. From there, the studies were reviewed 
and included only if they are associated with DES 
treatment.

Search results

All the pending and current clinical trials that focused 
on DES treatment were compiled and tabulated 
in Table  2. Applying the ‘Not yet recruiting’ filter 
yielded a total of 47 studies, of which 14 were rel-
evant for this review. For the ‘Recruiting’ filter, there 
were a total of 146 studies and 34 of them were rel-
evant. Meanwhile, the ‘Enrolling by invitation’ fil-
ter provided a total of 10 studies and 5 of them were 
found to be relevant. Lastly, the ‘Active, not recruit-
ing’ filter returned a total of 23 studies and 7 of them 
were screened to be relevant.

For each of these filter categories, the studies-of-
interest were further grouped according to various 
treatment types such as biologic, drug, device, drug 
delivery system, dietary supplement, physical activ-
ity, combinatorial as well as unknown. Here, bio-
logics are distinct from drugs and defined as large 
complex biological molecules or a combination of 
molecules that can be derived from carbohydrates, 
lipids, proteins, nucleic acids, whole cells and even 
tissues. On the other hand, drugs are designated as 

molecules that are synthesized chemically and have 
well-characterized molecular structures. Based on 
the classification, around 50% of the recent clinical 
trials will be utilizing biologics and drugs for DES 
treatment. These therapeutics vary greatly and will 
mostly be concocted into a solution for delivery as 
eye drops. Among them, cyclosporine will be one of 
the most commonly tested anti-inflammatory drug. 
Even though cyclosporine was already approved for 
use in clinics to treat DES [207, 208], many of these 
studies are attempting to further improve its potency 
by testing different concentrations (NCT04835623), 
duration (NCT04144413) and delivery method such 
as sustained release (NCT04541888) and nanoencap-
sulation (NCT04172961). On the other hand, hyalu-
ronic acid and its salt derivative, sodium hyaluronate, 
will be the most popular biologics utilized in these 
studies to constitute artificial tears with lubricating 
[156, 209] and antibacterial properties [210, 211]. 
As they were also FDA approved, improvements 
included the addition of other dietary supplements 
(NCT04485533) and lubricants (NCT03697876).

Besides biologics and drugs, medical devices 
are also quite commonly employed, especially for 
DES caused by Meibomian Gland Dysfunction 
(MGD). These commercial devices such as Tear-
Care System (NCT04309799, NCT04795752) and 
MiBo Thermoflo (NCT03767530) usually have 
components that are attached to the users’ eyelids 
for providing heat and/or pressure which enhances 
meibum lipid flow [162, 212]. For other causes of 
DES, one study will be investigating the efficacy of 
quantum molecular resonance (QMR) on patients 
with DES (NCT04320563). QMR is a recent inno-
vative technology that involves the application of 
low-power high-frequency oscillating electrical 
currents (4 to 64  MHz), a range which resonates 
with biological tissues, in order to elicit cellular 

Table 1  (continued)

Etiology How it leads to DES References

Eye accessories Contact lenses - Mechanical friction, ↓ goblet cells, ↓ mucin secre-
tion

- Meibomian gland damaged, ↓ lipid secretion
- ↓ tear film stability, ↑ tear evaporation

[135–139]

Eye surgeries LASIK, PRK, SMILE - Damaged sensory nerves and goblet cells
- ↓ rate of blinking, ↓ mucin production, ↓ tear 

secretion, ↓ tear film stability, ↑ tear evaporation

[48, 49, 140–147]

http://clinicaltrials.gov
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Table 2  A summary of upcoming and ongoing clinical trials for DES treatment as of Feb 2022. Most of the treatments will be deliv-
ered in the form of eye drops

Identifier Status Treatment/Interven-
tion

Treatment type Route of adminis-
tration

Phase Related literatures

NCT05169931 Not yet recruiting Amniotic membrane 
extract

Biologic Ophthalmic (Eye 
drops)

1 [148, 149]

NCT04938908 Not yet recruiting Probiotic from 
bacterial lysate

Biologic Ophthalmic (Eye 
drops)

2 [150]

NCT04608084 Not yet recruiting Autologous platelet 
rich plasma

Biologic Ophthalmic (Eye 
drops)

4 [151, 152]

NCT04510428 Not yet recruiting Ocular Surface 
Immune Globulin 
(OSIG)

Biologic Ophthalmic (Eye 
drops)

2 N.A

NCT04819269 Not yet recruiting Tivanisiran (siRNA 
against TRPV1)

Biologic Ophthalmic (Eye 
drops)

3 [153, 154]

NCT04704531 Not yet recruiting Lagricel Ofteno 
(Sodium hyaluro-
nate 0.4%)

Biologic Ophthalmic (Eye 
drops)

2 [155, 156]

NCT03953703 Not yet recruiting Levocarnitine Drug Oral 2 [157]
NCT04668118 Not yet recruiting Diquafosol Drug Ophthalmic (Eye 

drops)
4 [158, 159]

NCT04835623 Not yet recruiting Cyclosporine 0.09% 
ophthalmic solu-
tion

Drug Ophthalmic (Eye 
drops)

4 [160]

NCT04965974 Not yet recruiting Digital blue light 
blocking filter

Device N.A N.A N.A

NCT04877483 Not yet recruiting Acupuncture Device N.A N.A [161]
NCT04309799 Not yet recruiting Tear Restore Mask 

(warms the 
eyelids)

Device N.A N.A [162]

NCT04541888 Not yet recruiting CsA eye gel 
(cyclosporine-
based gel)

Drug delivery 
system

Ophthalmic (Eye 
drops)

3 [163]

NCT04679883 Not yet recruiting 5% GLH8NDE N.A Ophthalmic (Eye 
drops)

2 N.A

NCT05136170 Recruiting Oxervate (ceneg-
ermin a.k.a. 
rhNGF 20mcg/
mL)

Biologic Ophthalmic (Eye 
drops)

3 [164]

NCT05109702 Recruiting Tanfanercept 
(0.25% HL036 
ophthalmic solu-
tion)

Biologic Ophthalmic (Eye 
drops)

3 [165]

NCT04899518 Recruiting ALY688 ophthalmic 
solution

Biologic Ophthalmic (Eye 
drops)

2 and 3 [166]

NCT04633213 Recruiting HBM9036 (TNF-α 
inhibitor)

Biologic Ophthalmic (Eye 
drops)

3 [167, 168]

NCT04615455 Recruiting Allogeneic adipose-
derived mesen-
chymal stem cells 
(injection into 
lacrimal gland)

Biologic Transplant 2 [169]

NCT04877210 Recruiting Insulin (in diabet-
ics)

Biologic Ophthalmic (Eye 
drops)

1 [170]
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Table 2  (continued)

Identifier Status Treatment/Interven-
tion

Treatment type Route of adminis-
tration

Phase Related literatures

NCT04683796 Recruiting Autologous platelet 
rich plasma vs. 
autologous serum

Biologic Ophthalmic (Eye 
drops)

3 [171–173]

NCT04217785 Recruiting Umbilical cord 
serum

Biologic Ophthalmic (Eye 
drops)

1 and 2 [174, 175]

NCT03953118 Recruiting Azithromycin (anti-
biotic)

Drug Oral 4 [176]

NCT04357795 Recruiting CequaTM (Cyclo-
sporine 0.09%) 
ophthalmic solu-
tion

Drug Ophthalmic (Eye 
drops)

4 [177]

NCT05213156 Recruiting Oxatrex (0.3% 
ofloxacin)

Drug Ophthalmic (Eye 
drops)

4 [178]

NCT04030962 Recruiting AGN-242428 
(RORγ inhibi-
tor) + AGN-
231868 
(chemokine 
antagonist)

Drug Ophthalmic (Eye 
drops)

1 and 2 [179]

NCT05056155 Recruiting Systane Complete 
(0.6% propylene 
glycol)

Drug Ophthalmic (Eye 
drops)

N.A N.A

NCT04735393 Recruiting Reproxalap (cova-
lent inhibitor of 
RASP)

Drug Ophthalmic (Eye 
drops)

3 [180, 181]

NCT04734210 Recruiting SURF-200 (beta-
methasone sodium 
phosphate)

Drug Ophthalmic (Eye 
drops)

2 N.A

NCT04172961 Recruiting Nanomicellular 
cyclosporine 
formulation

Drug Ophthalmic (Eye 
drops)

4 [160]

NCT04144413 Recruiting Ikervis (1 mg/
ml cyclosporine 
formulation)

Drug Ophthalmic (Eye 
drops)

3 [160]

NCT04553432 Recruiting Omnigen (processed 
amniotic mem-
brane)

Device N.A 4 [182]

NCT05203796 Recruiting Transcutaneous 
pulsed electri-
cal stimulation 
(NuEyne 02)

Device N.A N.A [183]

NCT04795752 Recruiting TearCare system 
(thermal treat-
ment)

Device N.A N.A [184]

NCT04120584 Recruiting Forma eye applica-
tor (radio fre-
quency treatment)

Device N.A N.A N.A

NCT04320563 Recruiting Rexon-eye (4 to 
64 MHz, quantum 
molecular reso-
nance)

Device N.A N.A [185]
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Table 2  (continued)

Identifier Status Treatment/Interven-
tion

Treatment type Route of adminis-
tration

Phase Related literatures

NCT03767530 Recruiting MiBo Thermoflo 
(thermal therapy)

Device N.A N.A [186]

NCT04730336 Recruiting Tixel (peri-orbital 
fractional thermo-
mechanical treat-
ment)

Device N.A N.A N.A

NCT04763018 Recruiting iTEAR100 (neuro-
stimulate external 
nasal nerve)

Device N.A N.A [187]

NCT04096898 Recruiting Senofilcon A con-
tact lens

Device N.A N.A [188, 189]

NCT04498468 Recruiting DEXTENZA 
(Dexamethasone-
loaded intracanali-
cular insert)

Drug delivery 
system

Implant 4 N.A

NCT05119920 Recruiting Pilocarpine ophthal-
mic topical cream

Drug delivery 
system

Eyelid 2 N.A

NCT04527887 Recruiting Dexamethasone-
loaded intracanali-
cular insert

Drug delivery 
system

Implant 4 [190]

NCT04645446 Recruiting Pro-ocular gel 
(loaded with 1% 
progesterone)

Drug delivery 
system

Transdermal 2 [191]

NCT05027087 Recruiting Blueberry gummy Dietary supplement Oral 3 [192]
NCT04785261 Recruiting Artelac eye 

drops + Vidisic 
gel + traditional 
chinese medicine 
formula

Drug + Biologic Ophthalmic (Eye 
drops) + Oral

2 [193]

NCT04413279 Recruiting Dexamethasone-
loaded intracanali-
cular insert + Lipi-
Flow thermal 
pulsation

Drug delivery sys-
tem + Device

Implant 4 [190, 194]

NCT03652051 Recruiting AZR-MD-001 (topi-
cal ointment)

N.A Ophthalmic (Eye 
drops)

2 N.A

NCT03302273 Enrolling by invita-
tion

Corneal epithelial 
stem cells

Biologic Transplant N.A [195, 196]

NCT04056221 Enrolling by invita-
tion

Acupuncture Device N.A N.A [161]

NCT04884217 Enrolling by invita-
tion

Pro-ocular gel 
(loaded with 1% 
progesterone)

Drug delivery 
system

Transdermal 2 [191]

NCT04421300 Enrolling by invita-
tion

Smiling exercise Physical activity N.A N.A [197]

NCT04658927 Enrolling by invita-
tion

iLUX (applies heat 
and compression 
to eyelids) + Dexa-
methasone-loaded 
intracanalicular 
insert

Device + Drug 
delivery system

Implant 4 [190, 198]
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responses [213]. This procedure will be performed 
using Rexon-Eye, a noninvasive, QMR-based pat-
ented instrument. Patients will wear the device like 
an eye mask and electrodes will stimulate their 
periorbital region during the therapy for enhanced 
tear secretion.

The rest of the treatment types form the minor-
ity within the list of clinical trials. These included 
drug delivery systems that will provide sustained 
release through dexamethasone-loaded implants 
(NCT04527887, NCT04413279, NCT04658927) 
and hydrogels (NCT04541888, NCT04645446, 
NCT04884217), dietary supplements consist-
ing of vitamins and lipids (NCT04181593) as 
well as physical activities for boosting well-being 
(NCT04421300).

Future prospects for DES treatment

As discussed, DES could be caused by a large vari-
ety of factors. However, current treatments mainly 
addressed the symptoms by hydrating or lubricating 
the ocular surface without tackling the root prob-
lems [148]. Besides creating unhealthy depend-
ence in patients, such approaches will also lead to 
significant financial burden due to recurring treat-
ment costs. Therefore, it is encouraging to witness 
the trajectory of upcoming DES treatment strate-
gies where cellular and tissue regeneration in the 
LFU are the key focus. Specifically, studies that 
employ blood components such as platelet rich 
plasma or serum hold great promise in the clinics 
not only for treating DES but for other diseases as 
well [214]. However, like many other treatment 

Table 2  (continued)

Identifier Status Treatment/Interven-
tion

Treatment type Route of adminis-
tration

Phase Related literatures

NCT03697876 Active, not recruit-
ing

PRO-165 (con-
tains chondroitin 
sulphate, sodium 
hyaluronate)

Biologic Ophthalmic (Eye 
drops)

1 [156, 199]

NCT03937882 Active, not recruit-
ing

RGN-259 (contains 
Tβ4)

Biologic Ophthalmic (Eye 
drops)

3 [200, 201]

NCT03878628 Active, not recruit-
ing

Allogeneic adipose 
tissue-derived 
mesenchymal 
stem cells (injec-
tion into lacrimal 
gland)

Biologic Transplant 1 [169]

NCT04485533 Active, not recruit-
ing

VisuXL gel (con-
tains Coenzyme 
Q10, Vitamin E, 
sodium car-
boxymethylcel-
lulose) + HYLO 
(contains sodium 
hyaluronate)

Biologic Ophthalmic (Eye 
drops)

N.A [156, 202, 203]

NCT04425551 Active, not recruit-
ing

Micropulse laser Device N.A N.A [204]

NCT04608942 Active, not recruit-
ing

Jett Plasma Medi-
cal Lift (remove 
hyperkeratinized 
layer to unblock 
gland ducts)

Device N.A N.A [205]

NCT04181593 Active, not recruit-
ing

OmegaD softgels 
(Omega-3)

Dietary supplement Oral 3 [206]
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options, allogeneic stem cell and body fluid therapy 
come with their own limitations that cannot be eas-
ily circumvented. Most notably, they involve inva-
sive procedures and may deter patients from opting 
for this method. Additionally, the effectiveness of 
these components in inducing favorable outcomes is 
highly dependent on the patients’ suitability as well.

Therefore, for treatments to be inclusive, they 
should be varied and multipronged. In our opinion, 
one promising alternative is gene therapy, which 
enables the alteration of genetic sequences within 
tissues and cells with recombinant nucleic acids 
[215]. Commonly used nucleic acids such as DNA, 
mRNA, siRNA, miRNA and anti-sense oligonu-
cleotides can be strategically delivered into a defec-
tive target cell or tissue in order to either restore 
the gene(s) responsible for disease suppression or 
inhibit the gene(s) related to disease development 
[216]. Besides its versatility, these nucleic acids can 
also be administered noninvasively for DES treat-
ment. Accordingly, the efficacy of this technology 
will be investigated in one of the upcoming clini-
cal trials listed in Table 2 which utilizes Tivanisiran 
(NCT04819269), a novel 19 nucleotide siRNA for 
suppressing the expression of the transient recep-
tor potential cation channel subfamily V mem-
ber 1 (TRPV1) [153]. TRPV1 is a pain receptor 
found in some components of the LFU [217] and 
the responses it mediates in the sensory neurons 
was found to be associated with the development 
of inflammation and neuropathic pain [218]. The 
delivery of this siRNA-based of eye drop will poten-
tially result in the reduction in TRPV1’s expression 
in the ocular tissues and therefore, alleviate inflam-
mation and improve tear secretion [219]. Of note, 
naked nucleic acids are very inefficiently uptaken 
by cells as they possess similar negative charges 
as the cell membrane, which leads to electrostatic 
repulsion [220, 221]. Delivery vehicles are required 
to transport nucleic acids across the cell membrane 
and herein determines the success of gene therapy. 
Recently, a breakthrough in vaccination strategy has 
shed valuable insights about the optimal form of 
nucleic acid carriers. Specifically, the Pfizer vaccine 
for Covid-19 utilizes a specially formulated lipo-
some for delivering mRNAs into cells with great 
efficiency [222]. With the approval of this revolu-
tionary delivery platform, gene therapy is thus in a 
favorable position to take off.

Another prospective DES treatment option is fecal 
microbiota transplantation (FMT), which is the trans-
fer of fecal materials from a healthy donor into the 
intestinal tract of an ill or diseased recipient. By doing 
so, the recipient’s gut microbial composition can be 
adjusted to resemble the healthy donor’s, thereby con-
ferring health benefits [223]. Since DES was found to 
be associated with gut dysbiosis, FMT is a potentially 
relevant and practical technique for treatment. How-
ever, there were not many clinical trials investigating 
the efficacy of FMT on DES patients as it was only 
quite recently that a correlation between DES and gut 
dysbiosis was uncovered. The first and only study was 
completed on June 2020, which explored the effects 
of FMT on patients with SS (NCT03926286). Alter-
natively, we may also expect ocular microbiota trans-
plantation in future as studies have identified microbi-
ome differences between closed dry eye patients and 
healthy closed eye patients [224–226].

Conclusion

DES is a relatively common ophthalmic disease that 
can manifest in various degrees of severity and can 
be caused by many factors. While not life threaten-
ing, patients may often have to continuously endure 
discomfort or even pain, which puts a damper in their 
quality of life. Given the multitude of conditions 
which DES can originate from, a variety of treatment 
options is critical to ensure inclusivity and effective-
ness. Encouragingly, current clinical trials are trend-
ing towards this notion and investigating promising 
research-backed treatments like stem cell therapy, 
blood component therapy and gene therapy. If suc-
cessful, these strategies may define treatments for 
other diseases in future as well.
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