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Gene expression profiling offers a great opportunity for studying multi-factor diseases and for understanding the 
key role of genes in mechanisms which drive a normal cell to a cancer state. Single gene analysis is insufficient to 
describe the complex perturbations responsible for cancer onset, progression and invasion. A deeper under-
standing of the mechanisms of tumorigenesis can be reached focusing on deregulation of gene sets or pathways 
rather than on individual genes. We apply two known and statistically well founded methods for finding path-
ways and biological processes deregulated in pathological conditions by analyzing gene expression profiles. In 
particular, we measure the amount of deregulation and assess the statistical significance of predefined pathways 
belonging to a curated collection (Molecular Signature Database) in a colon cancer data set. We find that path-
ways strongly involved in different tumors are strictly connected with colon cancer. Moreover, our experimental 
results show that the study of complex diseases through pathway analysis is able to highlight genes weakly 
connected to the phenotype which may be difficult to detect by using classical univariate statistics. Our study 
shows the importance of using gene sets rather than single genes for understanding the main biological processes 
and pathways involved in colorectal cancer. Our analysis evidences that many of the genes involved in these 
pathways are strongly associated to colorectal tumorigenesis. In this new perspective, the focus shifts from 
finding differentially expressed genes to identifying biological processes, cellular functions and pathways per-
turbed in the phenotypic conditions by analyzing genes co-expressed in a given pathway as a whole, taking into 
account the possible interactions among them and, more importantly, the correlation of their expression with the 
phenotypical conditions.  
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Introduction 
Gene expression profiling has become a mainstay 

of the current research in applied genomics [1]. In on-
cology, in particular, the advent of DNA microarray 
technology has allowed a deeper understanding of the 
role that many genes play in onset, progression and 
treatment of tumors [2,3]. Typically, specimens of tis-
sues in two different phenotypical conditions (e.g dis-
eased patients vs. healthy controls, or patients in two 
different stages of the same pathology) are collected 
and genes which are differentially expressed (DE) in 
the two conditions analyzed are determined. To this 
end, appropriate univariate statistical tests are applied 
to the gene expression profiles of the specimens and 
genes with high statistical significance levels (p-value) 

are considered associated with the trait of interest. Due 
to the huge number of hypotheses tested simultane-
ously, suitable statistical strategies are applied to con-
trol false positive findings [4]. Finally, the list of DE 
genes statistically associated to the phenotype is used 
to find the main pathways or biological processes in-
volved in the analyzed pathology. Such processes are 
coded through lists of genes defined on the basis of 
a-priori biological knowledge or experimentally. In the 
first case, such lists are composed of those genes which 
cooperate or are co-expressed in a particular cellular 
mechanism or function [5–7]. In the second case, the 
gene set represents the signature (response) of cells 
(system) to a given stimulus [8]. Many tools have been 
proposed for measuring deregulation of pathways and 
for assessing their statistical significance [9].  
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This approach has a few major limitations. a) The 
results obtained with this method are not always con-
firmed by studies carried out on independent cohorts 
of subjects [10]. This means that studies performed by 
different groups on the same trait or pathology may 
produce lists of DE genes with little overlap. b) The 
information embedded in genes weakly connected 
with the phenotype may be lost due to both the statis-
tic adopted and the correction for multiple hypothesis 
testing. c) Single gene analysis provides a limited view 
of the phenomena under examination since it does not 
take into account interactions among genes and is un-
able to uncover the correlation between groups of 
genes and phenotype. Many different genes contribute 
to a given disorder, with no particular gene having a 
remarkably large effect [11]. Thus, a specific pheno-
type may result from the combination of effects by a 
large number of moderately contributing genes.  

To overcome these drawbacks, a new approach is 
emerging in genomics research in which instead of 
inferring pathways involved in a given disorder start-
ing from the analysis of DE genes, it aims to measure 
pathway deregulation by considering simultaneously 
all the genes co-operating in the pathway [12–14]. In 
this new perspective, the focus shifts from finding DE 
genes to identifying biological processes, cellular 
functions and pathways perturbed in the phenotypic 
conditions by analyzing genes co-expressed in a given 
pathway as a whole, taking into account the possible 
interactions among them and, more importantly, the 
correlation of their expression with the phenotypical 
conditions [8,15].  

In this paper we describe the results obtained by 
applying this new approach to a data set composed of 
gene expression profiles relative to patients affected by 
colon cancer, collected in Casa Sollievo della Soffer-
enza Hospital, Foggia -Italy [16]. Two well known 
methods recently proposed for finding deregulated 
pathways were applied. GSEA (Gene Set Enrichment 
Analysis) [12] finds perturbed pathways comparing 
the rank distribution of genes belonging to a given 
gene set with the rank distribution of the remaining 
genes. To this end a Kolmogorov-Smirnov like statistic 
is used for assessing the statistical significance of the 
deregulation. GLAPA (Gene List Analysis with Pre-
diction Accuracy) [14] uses the prediction accuracy of 
the phenotypic status of specimens to find the path-
ways involved in the pathology. Both use non para-
metric permutation tests [17] and false discovery rate 
(FDR) [4] for assessing the statistical significance of the 
estimates. The database of gene sets we use in this 
study is the Molecular Signatures Database (MSigDB) 
[12]. This is a collection of 1687 curated gene sets with 
sizes ranging from 2 to 1594 genes, obtained from 

online pathway databases, publications in PubMed 
and expert knowledge.  

Our study highlights two relevant and different 
aspects of the application of pathway analysis in on-
cology. In fact it shows that specific pathways de-
regulated in different types of tumors are found per-
turbed in colon cancer with high statistical signifi-
cance. Moreover, such an approach provides a more 
complete portrait of complex diseases like tumors be-
cause it points out genes moderately associated to the 
trait which would not be detected by using classical 
univariate statistics.  

Material and methods  
Data set description  
Study population  

Twenty-five patients (14 males; mean age: 60 ± 14 
years), who underwent colonic resection for colorectal 
cancer (CRC) at CSS hospital, were prospectively re-
cruited into this study. Two samples from each patient 
were available, one from colon cancer tissue and one 
from normal colonic mucosa tissue. The samples had 
been obtained during the surgery, immediately frozen 
in liquid nitrogen and then stored at −80°C. All of 
them were reviewed by the same experienced pa-
thologist to confirm the histological diagnosis. None of 
the patients suffered from hereditary CRC or had re-
ceived preoperative chemo-radiotherapy. Informed 
consent to take part in this study was obtained from all 
the patients. The study was approved by the Hospital’s 
Ethics Committee.  

RNA extraction from fresh frozen tissue  
Total RNA from 150-200 mg of fresh frozen tissue 

was isolated by phenol-chloroform extraction (TRIzol 
Reagent, Invitrogen, Carlsbad, CA) and subsequently 
purified through column chromatography (RNeasy 
Mini Kit, Qiagen, Valencia, CA) according to the 
manufacturer’s instructions. RNA integrity was 
monitored using denaturing agarose gel electrophore-
sis in 1X MOPS. Three neoplastic samples were dis-
carded from the final analysis since their RNA prepa-
ration was suboptimal.  

Microarray assays  
Biotinylated target cRNA was generated from 12 

mg as described by the Affymetrix Expression Analy-
sis GeneChip Technical Manual (Affymetrix, Santa 
Clara, California). Briefly, double-stranded cDNA was 
synthesized from total RNA using the SuperScript 
Choice System (Invitrogen, Carlsbad, California), a 
primer containing poly(dT) and a T7 RNA polymerase 
promoter sequence. In vitro transcription using dou-
ble-stranded cDNA as a template in the presence of 
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biotinylated UTP and CTP was carried out using 
BioArray High Yield RNA Transcript Labeling Kit 
(Enzo Diagnostics, Farmingdale, New York). The re-
sulting biotynilated-cRNA ”target” was purified and 
quantified. Fifteen micrograms of biotinylated cRNA 
were randomly fragmented to an average size of 50 
nucleotides by incubating in 40mM TRIS-acetate, pH 
8.1, 100 mM potassium acetate, and 30 mM magne-
sium acetate at 94°C for 35 minutes. The fragmented 
cRNA was hybridized for 16 hours at 45°C on Human 
Genome U133A GeneChips containing a total of 22,283 
probe sets and after stained in a Fluidics station with 
streptavidin/phycoerythrin, followed by staining 
through a streptavidin antibody and strepta-
vidin/phycoerythrin. Arrays were scanned on a Ge-
nearray scanner G2500A by using standard Affymetrix 
protocols. Absolute data analysis was performed using 
the Affymetrix Microarray Suite 5.0 software.  

GSEA  
This method provides an enrichment score of 

pre-defined gene sets whose magnitude is propor-
tional to the association of the gene set to the particular 
phenotype [12]. Given a gene expression dataset, the 
genes are ordered in a ranked list S according to their 
differential expression between the two classes. GSEA 
provides a score which measures the degree of en-
richment of a given gene set L at the extremes (top or 
bottom) of the rank-ordered list S. The method is based 
on a maximum deviation statistic of two distribution 
functions, similarly to the Kolmogorov-Smirnov test 
that is used to estimate the difference between two 
distributions. In fact, the score is calculated by walking 
down the list S, increasing a running-sum statistic 
when a gene in the gene set is encountered, and de-
creasing it when genes not belonging to the gene set 
are encountered. The magnitude of the increment de-
pends on the correlation of the gene with the pheno-
type. The enrichment score (ES) is the maximum de-
viation from zero in the walk. These ES are then nor-
malized to take into account the size of the gene sets 
resulting in a normalized enrichment score (NES). The 
gene sets related to the phenotypic distinction will 
tend to show high values of NES. The significance of 
NES is assessed by permutation testing: the observed 
NES is compared with the distribution of enrichment 
scores under the null hypothesis that the gene expres-
sion levels and the phenotype are independent ran-
dom variables. The nominal p-value (py) is given by 
the percentage of random normalized enrichment 
scores greater than the observed value of NES.  

GLAPA  
This method uses an estimate of the generaliza-

tion error of predictors trained by using raw expres-

sion levels of the genes belonging to a gene set L as a 
measure of enrichment of L [14]. The rationale is that a 
functional category coded through a list of genes is 
perturbed in a particular disease if it is possible to 
correctly predict the occurrence of the pathology in 
new subjects on the basis of the expression levels of 
those genes only. In other words, a functional category 
is informative for or is deregulated in a disease if the 
expression levels of the genes involved in the category 
are useful for training classifiers able to generalize, that 
is, able to correctly predict the status of new subjects 
[18]. So, the generalization ability of predictors trained 
by using the expression levels of the genes 
co-operating in a given cellular mechanism or function 
can be seen as a measure of the relevance of the func-
tion in the pathology at hand. The phenotype is pre-
dicted through regularized least squares (RLS) classi-
fiers with linear kernel [16, 19–21]. The error rate of the 
phenotype eL is estimated by using a multiple random 
validation strategy which provides a statistically sig-
nificant estimate of the generalization error of outcome 
cancer predictors [22, 23]. The statistical significance of 
the measured accuracy is assessed against a couple of 
null hypothesis by using two independent permuta-
tion tests [17]. The first one (T1) controls for how likely 
the error rate eL was due to chance. The statistical sig-
nificance py, power πy and false discovery rate FDRy 

were estimated by phenotypic permutations. The sec-
ond one (T2) controls for the effect of the gene set size 
in the error rate eL. The statistical significance pn, 
power πn and false discovery rate FDRn were estimated 
by randomly selecting gene sets of the same size as L.  

Results and discussion  
Statistical analysis  

The deregulation of the whole collection of gene 
sets belonging to MSigDB was measured applying 
GSEA and GLAPA tools on our colon cancer data set 
independently. The GSEA software parameters were 
set to their default values. The statistical significance of 
the normalized enrichment score (NES) associated to 
each gene set was assessed through a non parametric 
permutation test in which 1000 random permutations 
of the phenotypic labels were carried out. GSEA found 
915 gene sets up-regulated in tumor and 769 
up-regulated in normal specimens. Among these, only 
399 gene sets up-regulated in tumor and 3 
up-regulated in normal were found statistically sig-
nificant with FDRy ≤ 25%. For measuring the deregu-
lation of each gene set L with GLAPA, we measured 
the prediction error of the phenotype eL associated to 
L. To this end, for each gene set, 1000 cross validations 
of the data set were carried out. In each cross valida-
tion, we used 30 examples for training and the re-
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maining 17 for testing RLS classifiers with linear ker-
nel. We found 1381 pathways with an error rate eL ≤ 
25%. To assess the statistical significance of eL, 1000 
random permutations of the phenotypic labels were 
performed. This permutation test revealed 690 statis-
tically significant gene sets (py ≤ 0.01, FDRy ≤ 0.024) 
having error rates eL ≤ 17%. In order to determine if the 
deregulation of a particular pathway was due to the 
identity of the genes cooperating in the given pathway, 
or simply to the number of genes present in the gene 
set, a second permutation test was carried out. Spe-

cifically, indicated with n the size of a gene set L, 1000 
gene sets were generated composed of n probes ran-
domly drawn from the ones available on the microar-
ray. The error rate associated to each random gene set 
was evaluated performing 200 cross validations and 
compared with the error rate eL. Such analysis revealed 
58 pathways (pn ≤ 0.02, FDRn ≤ 0.25) having an error 
rate eL ≤ 11% (py ≤ 0.010, FDRy ≤ 0.024). Table 1 shows 
the 21 (P − value =0.021 Fisher’s exact test) statistically 
significant pathways found deregulated by GSEA and 
GLAPA methods simultaneously.  

 

Table 1. Pathways of MSigDB database deregulated in our colon cancer gene espression data set. For each pathway we report the 
name, the number of probes (size) and the most relevant statistical parameters as measured by GLAPA and GSEA tools. 

 
 

Biological and functional analysis  
We analyzed in depth some gene sets found de-

regulated with high statistical significance in the cur-
rent experimental conditions for finding biological 
confirmations of their involvement in the pathology. In 
particular, we studied 2 pathways found perturbed by 
both methods: ADIPOCYTE BRCA UP and CELL 
CYCLE CHECKPOINT. The former was analyzed be-
cause this pathway seemed at first glance to be not 
correlated with colon cancer. In fact this gene set was 
found to be deregulated in breast cancer [24]. More-
over, both methods indicated a strong and statistically 
significant deregulation of this pathway in the current 

data set (see Table 1). The latter was analyzed because 
this pathway is not cancer specific. In fact, cell cycle 
has been identified as one of the hallmarks of cancer 
[25]. Moreover, we studied the biological relevance of 
a third gene set, HDACI COLON SUL12HRS UP, 
which is known to be correlated to colon cancer [26], 
and found statistically deregulated by GLAPA only. In 
fact this method showed a prediction error of 13% (py 

=0.006, FDRy =0.024,pn =0.074, FDRn =0.439) in classi-
fying the phenotypic status of specimens by using the 
expression levels of the genes belonging to this gene 
set.  
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ADIPOCYTE BRCA UP  
This gene set, composed of ten genes, was ex-

perimentally determined and found upregulated in 
breast cancer cells (MCF-7) treated with adipo-
cyte-conditioned growth media [24]. However, an 
analysis in detail of the genes co-expressed shows a 
strong correlation of this pathway with colon cancer. 
ATF3 (activating transcription factor 3; Location: 
1q32.3), a member of the ATF/CREB family, is a eu-
karyotic transcription factor that is upregulated tran-
scriptionally during the cellular response to a variety 
of stresses, in particular the DNA damage [27]. Dys-
function of ATF3 impairs the p53-mediated cellular 
response to DNA damage, allowing cells to be readily 
transformed by oncogenes. Consistent with this notion 
is the observation of downregulated ATF3 expression 
in most human cancers [28,29]. Furthermore, ATF3 
may play a pivotal role in 
DIM(3,3’-diindolylmethane)-induced  NAG-1(Non-
steroidal anti-inflammatory drug-activated gene-1) 
expression in human colorectal cancer cells [30]. The 
second gene analyzed was IGF2 (insulin-like growth 
factor 2; Location: 11p15.5) that plays a critical role in 
the regulation of cell growth and transformation. IGF-I 
and IGF-II inhibit apoptosis, promote tumor growth, 
and induce transformation and metastasis in many 
types of malignancies. The gastrointestinal system may 
be one of the major targets of the IGF action and there 
is increasing evidence that alterations in IGF signaling 
are involved in the neoplastic transformation and 
progression of the colorectal carcinoma. A significant 
overexpression of IGF-II mRNA and protein levels 
have been reported in 30-40% of colorectal carcinoma 
patients [31]. It has also been suggested that IGF-II 
plays a role in the development of liver metastasis 
from colorectal cancer and that 44% of colorectal can-
cer patients showed loss of imprinting of IGF-II [32]. 
For this reason, it may be a valuable predictive marker 
of colorectal cancer [33]. Another gene analyzed was 
MMP1 (matrix metallopeptidase 1; Location: 11q22.3). 
It is a component of matrix metalloproteinases (MMPs) 
that collectively degrade most of the components of 
the extracellular matrix (ECM), contributing to the 
proliferation, invasion and metastasis of tumor cells by 
eliminating the surrounding ECM barrier [34,35]. 
Numerous MMPs, including MMP1, MMP3 and 
MMP7, have been associated also with the develop-
ment of colorectal cancer [35, 36]. Another gene be-
longing to ADIPOCYTE BRCA UP gene set was NFkB 
(nuclear factor of kappa light polypeptide gene en-
hancer in B-cells 1; Location: 4q24) that is a generic 
name for a transcription-factor system that is involved 
in the regulation of cell proliferation, development, 
and apoptosis. The analysis of the expression of NFkB 

in various colorectal carcinoma cell lines shows that 
the inactive cytoplasmic NFkB form is evidently 
up-regulated in the tumor epithelium, especially in the 
metastatic cases, as compared to normal tissue. The 
transcription factor SOX9 (sex determining region 
Y-box 9; Location: 17q24.3-q25.1) is another gene 
co-expressed in this pathway. A study carried out on a 
human colon carcinoma cell line showed that this gene 
down-regulates the human carcinoembryonic antigen 
(CEA) gene expression which contributes to the car-
cinogenesis, and induces apoptosis [37]. Altered pat-
terns of STC1 (stanniocalcin 1; Location: 8p21-p11.2) 
expression have a role in human cancer development. 
Hypoxia can stimulate STC1 gene expression in vari-
ous human cancer cell lines, including those derived 
from colon carcinomas [38].  

CELL CYCLE CHECKPOINT  
This gene set belongs to the Gene Ontology (GO) 

data base and is composed of twenty six genes. Cell 
cycle checkpoints are essential in eukaryotes for en-
suring high fidelity transmission of genetic informa-
tion from one generation to the next. They include 
DNA damage checkpoints, DNA replication check-
points, spindle assembly checkpoints, and cytokinesis 
checkpoints. Also in this case we give a short descrip-
tion of the single genes belonging to this gene set, un-
derlining their importance in oncogenesis. ABL1 (v-abl 
Abelson murine leukemia viral oncogene homolog 1; 
Location:9q34.1) proto-oncogene has been implicated 
in processes of cell differentiation, cell division, cell 
adhesion, death, and stress response. Several findings 
suggest that the 9q34 region was altered in some cases 
of sporadic colorectal carcinomas [39]. The protein 
encoded by ATM (ataxia telangiectasia mutated; Loca-
tion:11q22-q23) gene is an important cell cycle check-
point kinase which functions as a regulator of a wide 
variety of downstream proteins. ATM and the closely 
related kinase ATR are thought to be master control-
lers of cell cycle checkpoint signaling pathways which 
are involved in the cell response to DNA damage and 
for genome stability. The ATM gene could be valuable 
in the cancer’s gene therapy. Frequent allelic imbal-
ances at the ATM locus have been reported in colo-
rectal cancer and some findings led us to hypothesize 
that loss of expression of this gene may have a role in 
the early stage of colorectal cancer development and it 
may be related to advanced tumor stage and poorer 
patient survival [40]. Another interesting gene ana-
lyzed was BRCA1 (breast cancer 1; Location: 17q21) 
which plays a role in maintaining genomic stability 
and acts as a tumor suppressor.  

Defects in BRCA1 are a cause of genetic suscepti-
bility to breast cancer, and BRCA1 mutation carriers 
have a 4-fold increased risk of colon cancer. Recent 
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evidence shows that the expression of ATM and 
BRCA1 is a prognostic marker in colorectal cancer [40]. 
CHEK1 (checkpoint homolog; Location: 11q24-q24) 
gene is essential in human cells for cell cycle arrest in 
response to DNA damage, and has been shown to play 
an important role in the G2/M checkpoint. Some re-
sults suggest that the CHEK1 gene is a target of ge-
nomic instability in microsatellite instability 
(MSI)-positive colorectal cancers and that mutations of 
this gene might be involved in colorectal tumorigene-
sis [41]. Also CHEK2 (checkpoint homolog; Location: 
22q12.1) is a cell cycle checkpoint regulator and it was 
considered a putative tumor suppressor. Recently, a 
functionally defective CHEK2 variant I157T has been 
proposed to associate with an increased risk of colo-
rectal cancer in a large population based study in-
cluding a significant number of familial and sporadic 
colorectal cancer cases [42]. Also analysis of GADD45 
(growth arrest and DNA-damage-inducible, alpha; 
Location: 1p31.2-p31.1) was interesting. It is a growth 
arrest-associated gene that is induced in response to 
DNA damage. This gene is a target for coordinated 
regulation by both ZBRK1 and BRCA1. Analyzing the 
relationships between GADD45, ZBRK1, and BRCA1 
expression in colon carcinomas, it was reported that 
this pathway is deregulated in colon carcinomas [43].  

Another important finding was MAD2L1 gene 
(MAD2 mitotic arrest deficient-like 1; Location: 4q27) 
which expression was found higher in colorectal can-
cer than in the corresponding normal tissue. The ex-
pression of Mad2 in colorectal cancer was related with 
histological differentiation and lymph node metastasis. 
Overexpression of Mad2 protein in cancer tissue might 
be a marker for the prognosis of colorectal cancer [44].  

MRE11A (MRE11 meiotic recombination 11 ho-
molog A Location: 11q21) encodes a nuclear protein 
involved in homologous recombination, telomere 
length maintenance, and DNA double-strand break 
repair. MRE11 may be considered as a new common 
target in the mismatch repair deficient tumorigenesis 
with a role in colorectal carcinogenesis [45]. Also mu-
tations of the mismatch repair gene, MSH3 (mutS ho-
molog 3 ; Location: 5q11-q12) might play a role in the 
progression of tumors by increasing instability. 
Common polymorphisms in MSH3 may increase the 
risk of colorectal cancer, especially proximal colon 
cancer [46]. NBS1 (nibrin; Location: 8q21) is a member 
of the MRE11/RAD50/NBN complex which plays a 
critical role in the cellular response to DNA damage 
and the maintenance of chromosome integrity. Also 
NBS1 could be a tumor suppressor gene involved in 
proximal colorectal cancer [47]. Another important 
gene analyzed was RAD17 (RAD17 homolog; Loca-
tion: 5q13) which is a cell cycle checkpoint gene re-

quired for cell cycle arrest and DNA damage repair. It 
is overexpressed in various cancer cell lines and in 
colon carcinoma. Its chromosomal localization sug-
gests that a variety of human cancers shows a deletion 
of this gene [48].  

RPA1 (replication protein A1; Location: 17p13.3) 
and RPA2 (replication protein A2; Location: 1p35) are 
required for the stabilization of single-stranded DNA 
during the DNA replication. Experimental studies in 
colon cancer cell lines have shown that the RPA pro-
tein may be the target of cytotoxins designed to inhibit 
cellular proliferation. So RPA1 and RPA2 proteins 
appear to be useful prognostic indicators in colon 
cancer patients and attractive therapeutic targets [49].  

Finally we have analyzed TP53 (tumor protein 
p53; Location: 17p13.1) which plays an essential role in 
the regulation of cell cycle, specifically in the transition 
from G0 to G1. p53 is a tumor suppressor which acti-
vates the expression of downstream genes which in-
hibit growth and/or invasion, and induces apoptosis. 
Over 8000 mutations of this gene have been identified, 
and the spectrum of p53 mutations varies among tu-
mor types. The G→A transition in codon 175 of p53 
gene may be useful as a potential marker of colorectal 
cancer progression and in evaluating the margins of 
surgical resection [50].  

HDACI COLON SUL12HRS UP  
This gene set, composed of twenty six genes, 

seems to be specific for colorectal cancer. It was ob-
tained experimentally by SW620 colonic epithelial cells 
as described in [26]. This gene set was found deregu-
lated by GLAPA software only. ANXA2 (annexin A2; 
Location: 15q21-q22) gene encodes a member of the 
annexin family which plays a role in the regulation of 
cellular growth and in signal transduction pathways. 
In addition to these functions, it has been suggested 
that annexin II is involved in cell prolifera-
tion/differentiation and in the pathogenesis of carci-
noma. Overexpression of annexin II has been reported 
in various carcinomas including colon malignant tu-
mors and it may be related to the progression and 
metastatic spread of colorectal carcinoma [51]. Also 
up-regulation of ANXA5 (annexin A5; Location: 
4q28-q32) is associated with human colon adenocar-
cinoma cell differentiation [52]. Another gene belong-
ing to this list is CD55 gene (decay accelerating factor 
(DAF) for complement; Location: 1q32), a membrane 
glycoprotein which regulates the activation of the 
complement. The expression of DAF is enhanced in 
colorectal cancer cells and in the colonic epithelium of 
ulcerative colitis in relation to the degree of mucosal 
inflammation [53, 54]. The expression of DAF is de-
tected in stool specimens of patients with colorectal 
cancer and its presence may be a valuable test for the 
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detection of colorectal cancer [55–57]. The CDH1 
(cadherin 1, type 1, E-cadherin (epithelial); Location: 
16q22.1) gene belongs to the cadherin superfamily. 
Mutations in this gene are correlated with gastric, 
breast, colorectal, thyroid and ovarian cancer. Loss of 
function is thought to contribute to progression in 
cancer by increasing proliferation, invasion, and/or 
metastasis. The examination of E-cadherin expression 
and distribution in colorectal tumors can be extremely 
valuable in predicting disease recurrence [58]. More-
over, some findings suggest that E-cadherin may play 
an important role in tumor metastasis in colorectal 
cancer [59]. Another important gene analyzed was 
GSR (glutathione reductase; Location: 8p21.1). The 
gastrointestinal tract is particularly susceptible to re-
active oxygen species attacks which lead to carcino-
genesis, and an important role in the defense strategy 
against these reactive oxygen species is played by an-
tioxidants. The activity of glutathione reductase results 
increased in colorectal tumor [60]. HSP90AA1 (heat 
shock protein 90kDa alpha (cytosolic), class A member 
1; Location: 14q32.33) gene is a member of molecular 
chaperones and it was thought to promote tumor cell 
survival. HSP90 was low or non-detectable in normal 
colon tissues while high levels of HSP90 expression 
were observed in human colon cancer tissues, sug-
gesting that HSP90 expression is a promising marker 
for malignant colon cancer [61]. Furthermore HSP90 
are marker genes for the stress signaling pathway, so 
the induction of these genes in colorectal cancer tissue 
indicate the activation of stress signaling pathway in 
cancer tissue [62]. The protein encoded by MYC 
(v-myc myelocytomatosis viral oncogene homolog 
(avian); Location: 8q24.21) gene is a multifunctional, 
nuclear phosphoprotein that plays a role in cell cycle 
progression, apoptosis and cellular transformation. It 
functions as a transcription factor that regulates tran-
scription of specific target genes. Some findings indi-
cate that failure of the normal apoptotic process to-
gether with de-regulation of c-MYC proto-oncogene 
might promote the development of colorectal tumors 
and its overexpression is observed in most colorectal 
cancers [63, 64].  

An essential requirement for the development, 
progression and metastasis of malignant tumors is 
angiogenesis. VEGF (vascular endothelial growth fac-
tor; Location: 6p12), a member of the PDGF/VEGF 

growth factor family, plays an essential role in the de-
velopment of angiogenesis of numerous solid malig-
nancies including colon cancer. VEGF is associated 
with the development and prognosis of colorectal 
cancer, but its relation with degree of differentiation 
remains to be studied [65]. Some data suggested that 
VEGF functions as regulator of colon cancer cell inva-
sion.  

A key regulator of the expression of VEGF is the 
Sodium butyrate (NaB), a short-chain fatty acid natu-
rally present in the human colon. NaB is able to induce 
cell cycle arrest, differentiation and apoptosis in colon 
cancer cells suggesting a possible clinical application of 
this fatty acid as an anti-angiogenic compound in as-
sociation with conventional chemotherapeutic agents 
[66]. Other factors which may induce alterations of 
VEGF expression in colon cancer are hypoxia, muta-
tions of p53 and activation of the Ras/MAPK pathway 
[67, 68].  

Conclusions  
In this paper we have described the biological 

and functional relevance in colon cancer of some 
pathways found deregulated in a gene expression 
profile data set composed of normal and tumor 
specimens of patients affected by this pathology [16]. 
Other studies have pointed out the fundamental role of 
pathways in studying onset and progression of tu-
mors. In [8], human primary mammary epithelial cell 
cultures (HMECs) were used for studying in vitro 
pathways associated to the activation of Myc, Ras, 
E2F3, Src and β-catenin oncogenes. To this end, re-
combinant adenoviruses were used to express the ac-
tivities of these oncogenes in an otherwise quiescent 
cell and RNA from multiple independent infections 
were collected for DNA microarray analysis using 
Affymetrix Human Genome U133 Plus 2.0 Array. For 
each oncogene, a microarray data set was used to 
identify a gene set (signature) associated to the activity 
of the oncogene. This unique signature was used to 
assess the activity of the oncogene in lung and breast 
cancer. In [69], a pathway approach was used to study 
the genetic perturbations implicated in initiation and 
progression of prostate cancer and melanoma. In par-
ticular, pathways interaction networks were inferred 
for relevant pathways over the steps in progression.  

 



Int. J. Biol. Sci. 2008, 4 

 

375

Table 2. List of genes relevant in colon cancer as measured in our data set and discussed in our analysis. For each probe, we show 
the probe set ID, the rank, the nominal p-value and power of a two-sample t-test, the FDR and the corresponding pathway The first 
14 probes have FDR ≤ 5%.  

 
 
Finally, in [15] the deregulation of pathways was 

measured in human prostate cancer by using gene sets 
experimentally derived from cell types other than 
prostate. In our study, two well founded statistical 
methods were applied to measure the deregulation of 
pathways and to assess their statistical significance. 
GSEA [12] is an associative method which determines 
gene sets statistically correlated with the phenotype. 

GLAPA [14] is a predictive method which classifies the 
specimens by using the expression levels of the genes 
belonging to a given pathway. Since it evaluates the 
prediction error of the phenotypic status of new 
specimens, it can be used as a prognostic tool. In par-
ticular, we measured the deregulation in colon cancer 
of the whole MSigDB collection, a curated pathway 
database composed of 1687 gene sets obtained from 
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different sources [12]. In our analysis, we have shown 
the relevance in colon cancer of two pathways found 
statistically altered by both methods. The former was a 
gene set which seemed to be not associated to colon 
cancer. In fact it was found implicated in breast cancer 
[24]. The latter was a pathway usually altered in can-
cer. In fact, cell cycle has been identified as one of the 
hallmarks of cancer [25]. Moreover, we have studied 
the biological relevance of a third gene set, which is 
known to be correlated to colon cancer and that was 
found implicated in the pathology at hand by GLAPA 
only.  

Our study highlights the importance of using 
gene sets rather than single genes for understanding 
the main biological processes and pathways involved 
in colorectal cancer. Our analysis shows that many of 
the genes involved in pathways found deregulated are 
strongly associated to colorectal tumorigenesis. Many 
of the genes that we have discussed in this work, and 
found involved in the pathology at hand, would not 
have been detected by the classical single gene ap-
proach. In fact, by applying a two-sample t-test statis-
tics to the expression levels of each of 22283 probes in 
our data set, we found 1743 statistically significant DE 
probes with FDR ≤ 5%. Among these, only 14 belong to 
the set of probes determined by using the pathway 
approach and found strongly implicated in colon can-
cer as demonstrated by our analysis (see Table 2). Note 
that, 34 out of 48 probes showed associated to the pa-
thology, having rank in the range [2125,21121], would 
not have been analyzed by adopting classical single 
gene approach. This highlights the importance of 
pathway approach to the study of complex diseases 
because it allows detection of genes weakly correlated 
to the phenotype of interest which would be difficult 
to find using classical univariate statistics. So individ-
ual gene analysis could give a limited interpretation of 
the processes involved in the tumorigenesis and could 
not be able to provide a full description of the complex 
interactions among genes. Unlike single gene analysis, 
pathways analysis allows to get a more complete pic-
ture of altered biological processes in cancer patholo-
gies.  
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