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Abstract

Hebbian plasticity describes a basic mechanism for synaptic plasticity whereby synaptic

weights evolve depending on the relative timing of paired activity of the pre- and postsynap-

tic neurons. Spike-timing-dependent plasticity (STDP) constitutes a central experimental

and theoretical synaptic Hebbian learning rule. Various mechanisms, mostly calcium-

based, account for the induction and maintenance of STDP. Classically STDP is assumed

to gradually emerge in a monotonic way as the number of pairings increases. However,

non-monotonic STDP accounting for fast associative learning led us to challenge this mono-

tonicity hypothesis and explore how the existence of multiple plasticity pathways affects the

dynamical establishment of plasticity. To account for distinct forms of STDP emerging from

increasing numbers of pairings and the variety of signaling pathways involved, we devel-

oped a general class of simple mathematical models of plasticity based on calcium tran-

sients and accommodating various calcium-based plasticity mechanisms. These

mechanisms can either compete or cooperate for the establishment of long-term potentia-

tion (LTP) and depression (LTD), that emerge depending on past calcium activity. Our

model reproduces accurately the striatal STDP that involves endocannabinoid and NMDAR

signaling pathways. Moreover, we predict how stimulus frequency alters plasticity, and how

triplet rules are affected by the number of pairings. We further investigate the general model

with an arbitrary number of pathways and show that depending on those pathways and their

properties, a variety of plasticities may emerge upon variation of the number and/or the fre-

quency of pairings, even when the outcome after large numbers of pairings is identical.

These findings, built upon a biologically realistic example and generalized to other applica-

tions, argue that in order to fully describe synaptic plasticity it is not sufficient to record

STDP curves at fixed pairing numbers and frequencies. In fact, considering the whole spec-

trum of activity-dependent parameters could have a great impact on the description of plas-

ticity, and a better understanding of the engram.
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Author summary

The brain’s capacity to treat information, learn and store memory relies on synaptic con-

nectivity patterns, which are altered through synaptic plasticity mechanisms. Experimen-

tally, such plasticities were evidenced through protocols involving numerous repetitive

stimulations of a given synapse, and were shown to be supported by multiple pathways.

Using a simple biologically grounded mathematical model, we show how activation time-

scales and inactivation levels of each pathway interact and alter plasticity in an intricate

manner as stimuli are presented. Building upon data from the synapse between cortex

and striatum, we show that synaptic changes may revert or re-emerge as stimuli are pre-

sented, and predict specific responses to changes in stimulus frequency or to distinct sim-

ulation patterns. Our general model shows that a given plasticity profile emerging in

response to a repetitive stimulation protocol can unfold into various scenarii upon varia-

tions of the number of stimulus presentations or patterns, which tightly depends on the

underlying activated pathways. Altogether, these results argue that in order to better

understand learning and memory, single plasticity responses obtained through intensive

stimulations do not reveal the complexity of the responses for smaller number of presenta-

tions, which may have a strong impact in fast learning of stimuli with low numbers of

presentations.

Introduction

Synaptic plasticity, one of the paramount biological mechanism supporting learning and

memory in the brain, has been the object of a wide literature spanning from experimental

works [1–3] to computational investigations [4–6]. In 1949, Donald Hebb’s pioneering work

postulated that long-term modifications of the synaptic efficacy can be induced in response to

patterns of activity of the pre- and postsynaptic neurons [7]. Since then, many experimental

studies have confirmed and extended Hebb’s postulate and have highlighted the complexity of

the signaling pathways and their neuromodulation leading to synaptic efficacy changes in

response to pre- and postsynaptic activity patterns [1, 2, 8, 9]. Numerous mathematical models

were also developed to emulate this diversity and infer their computational capabilities [4–6].

Spike-timing-dependent plasticity (STDP) is a biological phenomenon of activity-depen-

dent change in synaptic connectivity that is viewed as a synaptic Hebbian learning rule. STDP

has been widely studied in the last two decades and experimentally observed at many synapses

in various forms, and those were classified depending on the manner in which they implement

Hebb’s postulate [8, 9].

STDP is assessed experimentally through repetitive paired activations of the pre- and post-

synaptic sites with a prescribed timing that is denoted in this paper Δt. By convention, we con-

sider Δt< 0 when the postsynaptic stimulation occurs before the paired presynaptic one (post-

pre pairings), and Δt> 0 when the presynaptic stimulation occurs before the postsynaptic one

(pre-post pairings). Classically, the same paired stimulation is repeated between 80 and 150

times at a constant frequency (between 0.1 and 5 Hz) [8–10]. In many cases, these pairing pat-

terns induce long-term plasticity exhibiting various polarities (increase or decrease of the syn-

aptic weight as a function of the sign of Δt) or magnitudes. In the vast majority, the expression

of STDP is restricted to a narrow interval of values for Δt; thus, when pre- and postsynaptic

activities are separated by a large Δt (|Δt|> 50 ms in most of the cases), no long-term plasticity

is observed [11, 12].
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In this study, we term Hebbian STDP the plasticities whereby sequences of presentations of

a presynaptic spike followed by a postsynaptic spike lead to Long-Term Potentiation (LTP)

when repeated a specific number of times (denoted NPairings) at a certain frequency, whereas

reverse sequences induce Long-Term Depression (LTD). Hebbian STDP was reported in vari-

ous structures such as the hippocampus [11, 13–15], the cerebral cortex [12, 16–19] and the

striatum [20–23]. Conversely, we will term here (bidirectional) anti-Hebbian STDP, the forms

of STDP exhibiting a reverse polarity when compared to the aforementioned Hebbian STDP:

causal pre-post pairings induce LTD and anti-causal post-pre pairings induce LTP. Bidirec-

tional anti-Hebbian STDP was also observed, for instance in the striatum [24–28], in the

somatosensory cortex [29] or in the cerebellum-like structure of the electrical fish [30]. Unidi-

rectional anti-Hebbian STDP, i.e. LTD for both post-pre and pre-post pairings, is another

main form of STDP observed in the neocortex [31, 32], the dorsal cochlear nucleus [33], the

cerebellum [34, 35] and the hippocampus [36]. We underline that different definitions of

(anti-)Hebbian STDP were used in the literature; the present study follows the terminology of

early experimental studies [11, 12], or Figure 2 of the review [8], but differs, e.g., from the defi-

nitions used in [37].

These plasticities were shown to be dependent upon the parameters of the stimulation

beyond spike-timing: for instance, varying the frequency at which pairings are presented or

the total number of pairings, presenting distinct spike patterns (triplets, single spike, theta

bursts, . . .) [17, 38–41] or changing neuromodulatory tones [21] may lead to distinct forms of

STDP.

Despite the existence of multiples forms of STDP [8, 9], all of them have in common the

crucial role played by the calcium transients in the pre- and postsynaptic compartments for

the induction and maintenance of plasticity. Postsynaptic calcium influxes through NDMA

receptors (NMDAR) and voltage-sensitive calcium channels have been demonstrated to be

key factors governing plasticity expression and polarity [10]. Regarding Hebbian plasticity, cal-

cium-dependent mechanisms act as coincidence detectors, essential to implement any type of

STDP. In addition, distinct signaling pathways appear to be involved, namely (i) calcium trig-

gering downstream cascades modulating calcium/calmodulin-dependent kinase II (CaMKII)

[42] which ultimately regulates the gene expression and/or (ii) the endocannabinoid (eCB) sys-

tem, whose synthesis and release is calcium-dependent, acting retrogradely on the presynaptic

element [43–45]. Importantly, both of these pathways are able to trigger LTP or LTD depend-

ing on the spatio-temporal kinetics of the calcium [19, 40, 46]. Calcium dynamics thus consti-

tute a key factor in synaptic plasticity induction and in selecting plasticity forms. Accordingly,

numerous mathematical models were based on calcium transients and described various

forms of STDP [5]. In particular, Graupner and Brunel [47] proposed simple calcium-based

models able to account for a wide range of experimental observations on synaptic plasticity.

However, while calcium-based models succeed in reproducing the results of the “classical”

STDP (* 100 pairings), they do not take into account the dynamics of the establishment of

plasticity and the variety of timescales involved in plasticity induction. Indeed, in computa-

tional neuroscience, it is implicitly admitted that the synapse gradually amplifies synaptic

changes as the number of stimulus presentation increases to reach the final plasticity profiles.

However, plasticity occurs at vastly distinct timescales and protocols based on one hundred tri-

als (i.e., pairings), as classically performed in STDP experiments, only reveal an extreme steady

state outcome. Actually, a dozen of trials can be sufficient to induce plasticity, if not less in the

case of associative memory [39, 40, 48, 49]. Importantly, it was recently shown that depending

on the number of pairings, STDP on the cortex-to-striatum synapses (cortico-striatal STDP)

exhibits three distinct forms of plasticity: an NMDAR-mediated LTP and an eCB-mediated

LTD for 100 post-pre and pre-post pairings, respectively [20, 21, 24, 25, 27], and an eCB-
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mediated LTP for 5-15 post-pre pairings [39, 40]. Note that at cortico-striatal synapses, GABA

operates as a Hebbian/anti-Hebbian switch [27, 28] and that without the blockade of GABA

transmission, an anti-Hebbian STDP is induced as observed in vivo [26]. These phenomena

were reproduced in a biophysical model of the cortico-striatal synapse accounting for recep-

tors activation dynamics (36 equations and 150 parameters) [40]. However, no simple

phenomenological model reproduces these phenomena, and in particular models of plasticity

based on the calcium hypothesis fail to reproduce such complex dynamical emergence of

plasticity.

Here, we propose a new model built upon the calcium hypothesis and taking into account

the existence of multiple signaling pathways at a given synapse that may be activated at distinct

calcium levels. We instantiate one model to fit the data from cortico-striatal STDP [39, 40],

and show that the model accurately reproduces the experiments on the dependence of STDP

on both the number and frequency of pairings. We use this model to predict the response of

the system as the stimulus frequency and number of presentations are varied, and extend the

model to show how triplet rules will depend on the number of stimulus presentations. Our

model goes beyond the case of the cortico-striatal synapse with two signaling pathways, and

we further explore the diversity and limited range of dynamical plasticity establishments that

can be unfolded from classical Hebbian STDP. In the face of this diversity, we further propose

experimentally implementable protocols to differentiate those scenarii. This study thus sheds a

new light on the interplay of multiple signaling pathways at single synapses and how this mul-

tiplicity endows the synapse with the capacity of encoding multiple STDP profiles depending

on the number and frequency of stimulus presentation, and argues that experiments based on

stereotypical stimulus presentations are not sufficient to finely account for the complexity of

plasticity, even in widely studied synapses.

Results

A generalized model for STDP with multiple calcium-based mechanisms

We developed a general calcium-based model of the synapse allowing to take into account the

presence of multiple pathways and past activity in the establishment of plasticity. Our develop-

ments build upon the Graupner and Brunel model [47], and extend it by (i) introducing multi-

ple plasticity pathways, and (ii) taking into account the fact that receptor activation thresholds

may depend on past activity. We provide here the details of the models and the emergent

changes in synaptic weight, as well as a theoretical formula thereof.

A heterogeneous synapse model. Motivated by the variety of biological situations in

which multiple pathways take part in STDP, such as the cortico-striatal [20, 24–28, 39] or neo-

cortical [16–19, 33, 50, 51] synapses, we introduced a new simplified calcium-based model

reproducing the dynamics of the establishment of STDP in these situations. The calcium-

based model for STDP introduced in [47] describes changes in the individual synaptic efficacy

as a one-dimensional variable ρ, function of postsynaptic calcium transients. This variable can

be stabilized into one of two states, potentiated or depressed, depending on the activation of

potentiation and depression mechanisms triggered when the instantaneous calcium concen-

tration exceeds specific thresholds. At long timescales and for experiments involving large

numbers of stimulus presentations, this model is able to accurately reproduce the plasticity

rules observed experimentally. However, this model was not designed to reproduce the precise

changes in plasticity for various numbers of stimulus presentations, and does not distinguish

the respective impact of distinct pathways. Moreover, because it considers a unique plasticity

pathway, the model generates progressive (monotonic) plasticity inductions as the number of

pairings increases (see S1 Fig for an example of monotonic Hebbian plasticity). To account for

Multiple activity-dependent pathways in STDP
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non-monotonic plasticity inductions, we define here a new model based on the assumptions

of [47], conserving the same calcium dynamics, but expanded to incorporate multiple signal-

ing pathways and history dependence.

When multiple signaling pathways contribute to the establishment of plasticity, calcium

activation thresholds are distinct in each pathway, and thus the contribution of each pathway

may be distributed over time. Moreover, the temporal dynamics of the establishment of plas-

ticity require refining the model and dropping the assumption of [47] that only instantaneous

calcium transients play a role. Indeed, although the dynamics of uptake and release of calcium

are fast, LTP and LTD activation thresholds depend upon the past activity of the cell. This is

due to a variety of phenomena, including the limited resource of cytoplasmic calcium in the

vicinity of the synapse (resulting in the decrease of calcium spikes amplitudes with repeated

stimulation), pre- and postsynaptic receptor desensitization and saturation mechanisms. To

take into account these phenomena, we expanded the model introduced in [47] to the plastic-

ity of a heterogeneous synapse with P plasticity pathways whose state is given by P synaptic

efficacies (ρα)α2{1� � �P}. We conserve, at the level of each individual pathway, the assumption

made in [47] and experimentally motivated [52], that the synaptic efficacies are in one of the

two states: potentiated or depressed, depending on the calcium transients following pre- and

postsynaptic stimulations triggering biochemical cascades leading either to LTP or LTD [53,

54]. The different signaling pathways are assumed to be independent functions of (the same)

postsynaptic calcium concentration c(t), and individual synaptic efficacies follow the system of

stochastic differential equations:

t
dra

dt
¼ � rað1 � raÞðr� � raÞ þ gp

a
ð1 � raÞY½cðtÞ � y

p
a
ð~ctÞ�

� gd
a
raY½cðtÞ � y

d
a
ð~ctÞ� þ NoiseaðtÞ;

ð1Þ

where ~ct ≔ ðcðsÞÞ0�s�t is the past values of calcium concentration up to time t. The calcium

concentration is identical to the model of [47]. In detail, calcium concentration relaxes expo-

nentially to its equilibrium value (here chosen equal to 0 without loss of generality) with a time

constant τCa in the absence of spikes. Each pre- or postsynaptic spike (occurring at times

denoted respectively tprei and tpostj ), evokes a calcium peak with amplitude Cpre and Cpost respec-

tively:

dcðtÞ
dt
¼ �

1

tCa
cðtÞ þ Cpre

X

tprei <t

dðt � tprei � DÞ þ Cpost

X

tpostj <t

dðt � tpostj Þ; ð2Þ

where D models the relative delay between calcium influx in response to a post- and a presyn-

aptic spike (note that this delay can be positive or negative depending on the respective proper-

ties of pre- and postsynaptic calcium responses).

In Eq (1), τ denotes the time constant of the synapse evolution (on the order of a few min-

utes and slower than the calcium dynamics); it is assumed to be identical for each pathway.

The bistable nature of each synaptic efficacy is incorporated in the model through the nonlin-

ear (cubic) term: the potentiated corresponds to ρα = 1 and the depressed state to ρα = 0, and

the synaptic efficacy converges to one of these two states after a stimulation protocol depend-

ing on whether the stimulus has brought the individual efficacy, respectively, higher or lower

than a value ρ�.
The individual synaptic efficacy varies depending on the calcium concentration through

LTP and LTD mechanisms that are activated when the calcium concentration exceeds specific

thresholds y
p
a

and y
d
a

intrinsic to each synaptic pathway and that depend on past calcium
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concentration (see next section). In detail, as soon as the calcium trace reaches y
p
a

(resp., y
d
a
),

the rate of variation of the individual synaptic efficacy increases of intensity gp
a

(resp., decreases

of gd
a
). This phenomenon is modeled by the presence of the Heaviside step-function Θ(x) = 0

if x< 0 or Θ(x) = 1 otherwise. As noted above, the thresholds for LTP and LTD depend on

the calcium concentration due to a variety of homeostatic or biochemical (deactivation)

phenomena.

A noise term only active during the phases where LTP and LTD occur, completes the

model. These fluctuations are intrinsic to each pathway and given by a Gaussian white noise

with diffusion coefficient:

NoiseaðtÞ ¼ s
ffiffiffi
t
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðY½cðtÞ � y
p
a
ð~ctÞ� þY½cðtÞ � y

d
a
ð~ctÞ�Þ

q

ZaðtÞ ð3Þ

with σ the noise intensity and (ηα(t))α2{1� � �P} a collection of P independent Gaussian white

noise processes.

Heuristically, this model states that an individual synaptic efficacy switches from a potenti-

ated to a depressed state as soon as the LTD terms exceed, for a sufficient duration, the potenti-

ation terms, so that the individual synaptic efficacy eventually crosses the critical value ρ�.
These switches strongly depend on calcium concentration, in turn depending on the precise

timing and order of pre- and postsynaptic traces, see Fig 1(c). In response to a paired activity

on either side of the synapse, each pairing can trigger LTP and/or LTD, or have no effect,

depending on whether the calcium transients exceed LTP/LTD thresholds. The repetition of

this pairing at a certain frequency and a fixed number of times (on the order of 100) reinforces

these effects, summing up these elementary synaptic changes and possibly leading to a switch

between the potentiated and the depressed states or conversely.

Activation thresholds. The assumption of constant activation thresholds for LTP and

LTD in [47], while being sufficient to reproduce a variety of plasticity profiles, cannot account

for the variability observed as the number of pairings varied [17, 39, 40, 55]. This dependence

on past activity likely is a multifarious phenomenon, relying for instance upon homeostasic

mechanisms and reversible (but durable) changes in the properties of receptors after sustained

stimulation. Accounting for these phenomena require considering threshold depending on the

past cell activity. To incorporate these effects in our model, we assume that LTP and LTD inac-

tivate when the cumulative calcium concentration exceeds a given threshold. We will consider

two such models:

• the exponential threshold model in which the inactivation occurs in a finite (but brief) time

of order �:

y
x
a
ððcðsÞÞ

0�s�tÞ ¼ y
x
a;0
þ exp

1

�

Z t

0

cðsÞds � mx
a

� �� �

for each plasticity pathway α 2 {1, � � �, P}, with x = p or d. In this equation, mx
a

denotes the cal-

cium levels beyond which receptors are no more responsive, thus silencing the LTP or LTD

of mechanism α.

• the piecewise constant threshold case, corresponding to the limit of the exponential thresh-

old model when � is very small compared to the observation time:

y
x
a
ððcðsÞÞ

0�s�tÞ ¼
y
x
a;0

if
Z t

0

cðsÞds � mx
a
< 0

þ1 otherwise

8
><

>:
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Fig 1. Model for the cortico-striatal STDP. (a) Schematic representation of the cortico-striatal synapse: three independent mechanisms of

plasticity can be induced in response to calcium influx: eCB-LTD, eCB-LTP and NMDAR-LTP. The dynamics of the NMDAR pathway rely on

released glutamate activating NMDAR and AMPA receptors (AMPAR), ultimately acting on calcium-cadmodulin released glutamate activating

NMDAR and AMPA receptors (AMPAR), ultimately acting on calcium-cadmodulin voltage-sensitive calcium channels (VSCC). The eCB synthesis

is under the control of metabotropic glutamate receptors (mGluR) and calcium concentration, and acts retrogradely on CB1 receptors (CB1R) on

the presynaptic element. (b) Block diagrams of the reduced calcium-based model proposed where each block corresponds to a different individual

synapse whose efficiency splits into individual efficacy of NMDAR and eCB pathways. The proportion of synapses changing states are then

computed and the sigmoid function H is then applied. The macroscopic change is the product of the contribution of each individual pathway. (c)

Calcium spikes and plasticity thresholds for different STDP protocols (see parameters in Table 1, thresholds are those associated with the eCB

pathway, red for LTD and green for LTP).

https://doi.org/10.1371/journal.pcbi.1006184.g001
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The piecewise constant approximation will be particularly useful for our analytical computa-

tion of the solutions of the system below.

This history-dependent thresholds is evocative of the early works on homeostasis in a learn-

ing rule for the visual cortex, in particular by Bienenstock, Cooper and Munro [56, 57]. This

BCM model introduced such a dependence at the level of a given cell’s firing rate through a

modulation of F-I curves upon the average firing rate received. The history-dependent thresh-

olds used in our model thus describe distinct phenomena that are more local (a single synapse

vs neural assemblies), and probably faster (desenzitisation or homeostasis via calcium concen-

trations vs slower modulation of firing rates).

Computation of the macroscopic synaptic strength. The model described in the previ-

ous sections represents the dynamics of one given synapse subject to multiple plasticity path-

ways. Biological experiments generally stimulate a large number of synapses, on the order of

hundreds to thousands, each being subject to its own intrinsic fluctuations. To account for

the emerging change in synaptic weight resulting from these interactions, we considered a

system composed of N synapses described as above [47], whose initial state is uniformly dis-

tributed between the potentiated and depressed steady states, and since they respond to the

same stimulations, they perceive the same calcium concentration. The effective change in

synaptic transmission is computed as the proportion of synapses that changed state during

the protocol, and this quantity is directly compared to electrophysiological experimental

measurements.

In detail, the macroscopic synaptic strength modification after a stimulation paradigm is

related to the collection of individual synaptic efficacies ðri
a
Þi¼1���N through the proportion of

synapses that got potentiated Ua ¼ Pað0! 1jp0Þ for pathway α, and the proportion of

depressed synapses Da ¼ Pað1! 0jp0Þ, both depending on the proportion p0 of synapses in

the depressed state prior to the stimulation. As this proportion is not controllable experimen-

tally, we propose here a new method to extract the synaptic strength whose fit with experimen-

tal data does not require to make an assumption of asymmetry of the initial state. To this end,

we assume that the change in the macroscopic synaptic strength is a non-decreasing function

H of the ratio Uα/Dα (conserving the relevant monotonicity in those two variables), with H
being such that:

• H(1) = 1: if the proportion of potentiated synapses is equal to the proportion of depressed

synapses, the macroscopic synaptic efficacy remains as before;

• H(0) = LTD?: the maximal depression value, observed experimentally, reached when no

individual efficacy is potentiated (Uα = 0, Dα> 0). Indeed, in that case, regardless of the ini-

tial proportion of potentiated synapses, all synapses will in the long run get depressed and

remain in that state for subsequent times.

• H(1) = LTP? the maximal potentiation, observed experimentally, reached when no depres-

sion occurs (Dα = 0, Uα> 0).

In our model, we consider the following sigmoidal function:

H
U
D

� �

¼ aþ
b

1þ e� sðUD� dÞ
ð4Þ

where s is a slope parameter and the only free parameter to be fitted to the data once the values

LTP? and LTD? are extracted. Indeed, the above conditions impose the following formulae for
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the coefficients:

d ¼ 1

s log D� es
1� D

� �
;

b ¼ LTP? � LTD?

1� 1

1þes d
;

a ¼ LTP? � b

8
>>>><

>>>>:

with Δ = (LTP? − LTD?)/(LTP? − 1).

When experiments allow activating the distinct pathways separately, the parameters of the

map H can be specified for each pathway α 2 {1� � �P}; the associated transform Hα is derived

specifically evaluating the values of LTP?, LTD? and s associated to that pathway. Since in most

cases we do not have access to this data, we shall consider here that all pathways have an identi-

cal map H whose parameters are evaluated on the resulting dynamics. Given a postsynaptic

calcium trace, the efficacies from different pathways are mutually independent, since they are

driven by independent random fluctuations (see Eq (1)). Therefore, the resulting macroscopic

synaptic strength modification due to all pathways is given by:

Total change in macroscopic synaptic strength ¼
YP

a¼1

Ha

Ua

Da

� �

ð5Þ

In our results, we will compare this variable to the change in macroscopic synaptic strength

estimated experimentally as the relative change in EPSC size after the stimulation protocol is

applied.

Mean-field approximation and theoretical solution. The nonlinear dynamical system

described above is well-posed and its solutions can be computed numerically using simula-

tions based on the Euler-Maruyama numerical scheme. In order to finely understand the

structure of the system and obtain extensive and rapid simulations, we derive here an approxi-

mate explicit analytical solution of the system, valid under the assumptions that:

1. The number of synapses is large (N� 1): in that case, since elementary efficiencies are

independent realizations of the same process, the proportion of synapses getting potenti-

ated or depressed is well approximated by the probability that one given efficiency performs

the associated switch, as a result of the law of large numbers. Moreover, the central limit

theorem implies that this approximation is accurate to order Oð1=
ffiffiffiffi
N
p
Þ;

2. Thresholds are piecewise constant, and only depend on past activity through the total num-

ber of past pre- and postsynaptic spikes. This hypothesis is relevant here because the inte-

gral calcium does not depend, in first approximation, on the precise timing between the

pre- and postsynaptic spikes;

3. a single calcium transient induces a small change in individual synaptic efficacy during one

pairing and the cubic term can be neglected.

Under these assumptions, the stochastic equation Eq (1) reduces to a linear Eq (7), whose solu-

tion is given by an Ornstein-Uhlenbeck process with switching coefficients (varying as a step

function). These processes can be fully characterized analytically and provide a very efficient

way to compute synaptic changes resulting from a stimulation protocol, as made explicit in the

Methods section. We note that this approximation only models transient dynamics occurring

during the protocol; after the end of stimulation, the calcium concentration will decay and the

dynamics become deterministic (the standard deviation of the noise term is equal to 0 as soon

as c is less than the potentiation and depression thresholds, see Eq (3)). Because the dynamics

Multiple activity-dependent pathways in STDP
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becomes deterministic and bistable after the protocol, the probabilities U and D computed at

the end of the protocol are the same as the steady state probabilities.

NMDAR- and endocannabinoid-dependent plasticity at cortico-striatal

synapses

The model we built in the previous section is general and is thus able to reproduce a variety of

synapses and plasticity mechanisms relying on calcium dynamics. We study in this section the

case of STDP at the cortico-striatal synapse, which was studied experimentally with varying

Npairings [39, 40]. In these contributions, it was shown that STDP at the cortico-striatal synapse

relied both on NMDAR and endocannabinoid pathways (see Fig 1(a)), and that synaptic

changes after paired pre- and postsynaptic spikes not only depended on the timing between

the pre- and postsynaptic spikes, but also varied with the number and the frequency of the

pairings presented. Namely, it was shown that for pre-post pairings (0< Δt< +40 ms), an

eCB-LTD progressively appeared as the number of pairings was increased, while for post-pre

pairings (−30 ms< Δt< 0 ms), a biphasic STDP emerged with an eCB-LTP for a low number

of pairings (5 − 15 pairings), an absence of plasticity between 25 and 50 pairings, leaving room

for NMDAR-LTP at higher numbers of pairings (� 75 pairings). A schematic representation

of the biological pathways involved is provided in Fig 1(a) together with the biophysical mech-

anisms and proteins cascades (described in more detail in [40]).

A minimal model of cortico-striatal plasticity thus requires taking into account two differ-

ent and independent calcium-dependent pathways (P = 2), an eCB-dependent mechanism

(α = e) which induces both LTP or LTD depending on the specific timing Δt of the pairings,

and an NMDAR-dependent (α = n) associated to LTP only. This yields to the following system

of stochastic differential equations (see schematic diagram in Fig 1(b)):

t
dre
dt ¼ � reð1 � reÞðr� � reÞ þ gpeð1 � reÞY½cðtÞ � y

p
eð~ctÞ�

� gdereY½cðtÞ � y
d
e ð~ctÞ� þ NoiseeðtÞ

t
drn
dt ¼ � rnð1 � rnÞðr� � rnÞ

þ gpnð1 � rnÞY½cðtÞ � y
p
nð~ctÞ� þNoisenðtÞ

8
>>>>>>><

>>>>>>>:

ð6Þ

The complete synapse model is made of N� 1 independent pairs ðri
e; r

i
nÞi¼1���N satisfying

Eq (6), and a synaptic change deduced from the proportion of synapses that switch from being

potentiated to depressed or reciprocally, through the sigmoidal map H of Eq (4). As described

above, in response to pre- and postsynaptic spike-timing (Δt = tpost − tpre), the calcium dynam-

ics c undergoes jumps followed by exponential relaxation as described in Eq (2), activating

eCB-LTP, eCB-LTD and NMDAR-LTP as soon as c exceeds specific LTP or LTD thresholds

(see Fig 1(c), where the LTP and LTD thresholds are represented by the green and red lines

respectively) with both thresholds taken from the adjusted parameters of Table 1 for the eCB

pathway. When only one presynaptic spike (thus without postsynaptic spike) is evoked, the

calcium concentration amplitude exceeds the LTP threshold for a short amount of time, and

remains below the level of LTD induction: repeating this protocol does not lead to significant

plasticity. For a pre-post stimulation (Δt> 0), the summation of the pre- and postsynaptic cal-

cium spikes triggers both LTP and LTD. The same is valid for Δt< 0, but the relative time

spent above the LTP and LTD thresholds would be significantly different depending on Δt,
underlining the importance of the timing and order between the spikes in the resulting plastic-

ity: in the example depicted in Fig 1(c) and parameters gx
a

from Table 1, a pre-post stimulation

yields LTD whereas a post-pre stimulation yields LTP, consistent with anti-Hebbian STDP at
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cortico-striatal synapses ex vivo [27, 28] in the absence of GABAA receptor antagonist and in
vivo [26].

Dependence of the different thresholds on the calcium trace. To complete the defini-

tion of the model, we defined the three thresholds y
p
n, y

p
e and y

d
e and their variations as a

function of the calcium integral. To this purpose, we have compared the model results to

electrophysiological recordings obtained at cortico-striatal synapses [39, 40].

Based on the fact that eCB-LTP disappears around 25 pairings in cortico-striatal STDP,

we defined the LTP activation threshold to switch from activated to inactivated at a value

evaluated as mp
e ¼ 6 which corresponds to 14 pairings (the LTP lingers for some time before

disappearing). Homeostatic and saturation mechanisms take place to overcome unlimited

potentiation, which was modeled considering, consistently with the electrophysiological data

[39, 40], that NMDAR-LTP inactivates above a specific level of cumulated calcium, set to

74 pairings, corresponding to mp
n ¼ 32. eCB-LTD was considered active during the whole

STDP pairings. We did not add an additional homeostasis-and-saturation mechanism for

eCB-LTD in our minimal model, to avoid introducing additional parameters and the risk of

overfitting.

These thresholds thus define three distinct regimes of cumulated calcium concentration

with specific active plasticities (see Fig 2):

• Regime I (0-14 pairings): both eCB-LTP, eCB-LTD and NMDAR-LTP are active,

• Regime II (15-74 pairings): eCB-LTD and NMDAR-LTP are active, eCB-LTP is inactive,

Table 1. Default parameters.

Cortico-striatal STDP

Figs 1–8, S2 and S3 and M1

Symmetric anti-Hebbian LTD

Figs 9 and S4

Hebbian STDP from [47]

S1 Fig

� = 1 for Figs 2 and S2 Scenario 1 2 3 Scenario Asymmetric Symmetric

Cpre 7 Cpre 7 7 7 Cpre 1 2

Cpost 17.1 Cpost 7 15 15 Cpost 2 2

τCa 18 ms τCa 17 ms 17 ms 17 ms τCa 20 ms 20 ms

D 10 ms D 0 10 ms ms D 13.7 ms 0

ρ� 0.5 ρ� 0.5 0.5 0.5 ρ� 0.5 0.5

τ 165 τ 280 280 280 τ 150 150

σ 1 σ 1 1 1 σ 2.8284 2.8284

LTP? 3,475 LTP? 4 4 4 LTP? 4 4

LTD? 0.55 LTD? 0.5 0.5 0.5 LTD? 0.5 0.5

c 0.7 c 0.5 0.5 0.5 c 0.5 0.5

y
p
e;0 6 y

p
A;0 6 11 y

p
A;0 1,3 1,3

gpe 290 g
p
A 430 420 g

p
A 321.808 257.447

mp
e 6 m

p
A 8 +1 m

p
A +1 +1

y
d
e;0

13.5 y
d
A;0

6 10 10 y
d
A;0

1 1

gde 250 gdA 190 220 360 gdA 200 160

md
e +1 md

A +1 29 +1 md
A +1 +1

y
p
n;0 5.8 y

d
B;0

5.8 14

gpn 50 gdB 100 550

mp
n 32 md

B 25 25

N 1000 N 1000 1000 1000 N 1000 1000

Niter 102000 Niter 204000 204000 204000 Niter 102000 102000

https://doi.org/10.1371/journal.pcbi.1006184.t001
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• Regime III (75+ pairings): only eCB-LTD is active.

Analytical solution for cortico-striatal STDP. We fitted this model to the data of the

cortico-striatal synapse. Because of the number of system parameters compared to the experi-

mental points, we developed a multi-step fitting algorithm consistent with the underlying bio-

logical system. We fitted independently the parameters of NMDAR- and eCB-dependent

mechanisms using the data of [39, 40] and adding the constraint that for large |Δt| (> 40 ms)

no plasticity occurs. These parameters were used to calculate the total change in macroscopic

synaptic strength, using the analytical formula, and we depict the result of this calculation as a

function of Δt and the number of pairings in Fig 3(a). This calculation allows one to uncover

the continuous profile of the synaptic strength change as a function of the number of pairing

presentations, and we confirmed that the theoretical calculation is in good agreement with

simulations of the full nonlinear system for N = 1000 synapses, as shown in Fig 3(b)–3(d) (and

S2(a) Fig for the full heatmap).

These results also showed a good qualitative agreement with the experimental data. In

particular, we found that for Δt< 0, LTP appears rapidly after a few stimulus presentations

(Fig 3(b)), disappears as the number of pairings increases (around 25 stimulus presentations,

Fig 3(c)), before re-emerging beyond 50 pairings (Fig 3(d)). The fast emergence of eCB-LTP

followed by a slower NMDAR-LTP points towards the fact that the potentiation effects of the

eCB pathway are significantly larger than those of the NMDAR pathway. Analyzing the quan-

titative values of the fit parameters (see Table 1), we indeed observe that gpe is approximately 6

times larger than gpn. For Δt> 0, LTD progressively establishes, becoming significant around

40 pairings and strengthening in a monotonic way. Typical STDP profiles illustrative of this

Fig 3(b)–3(d) for three sample pairing numbers highlighting the presence of three main

regimes: single-sided LTP between 10 and 25 pairings (represented here for 13 pairings), no

significant plasticity around 40 pairings, and anti-Hebbian STDP at 100 pairings as observed

experimentally in [24, 27, 28]. These STDP arise due to the calcium transients generated by a

single pairing, and typical configurations of calcium concentrations and thresholds for one

Fig 2. Activity-dependent thresholds. (a) Cumulative calcium concentration as a function of time for 100 pairings at 1 Hz (Δt = 0). (b)

Thresholds for eCB-LTP (green), eCB-LTD (red) and NMDAR-LTP (blue) as a function of the cumulative calcium concentration (dotted lines:

piecewise constant model, solid lines: exponential thresholds, � = 1). Three typical regimes of plasticity emerge depending on which pathway is

activated (see text).

https://doi.org/10.1371/journal.pcbi.1006184.g002
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Fig 3. Cortico-striatal STDP and its dependence with pairing number. (a) Change in macroscopic synaptic strength as a function of the number of

pairings Npairings and spike timing Δt computed with the analytical formula derived in the Methods section shows a non-monotonic LTP induction for

Δt< 0 and monotonic LTD establishment of Δt> 0. The respective role of eCB and NMDAR pathways is investigated in Fig 5(b)–5(d) Sample STDP

profiles for 13 (b), 40 (c) and 100 (d) pairings (top), with calcium traces associated with Δt = −10 ms (left) and Δt = +10 ms (right). Analytical solution

(Eqs (16) and (17), brown line) and numerical simulations of Eq (6) (blue crosses) are both represented for comparison.

https://doi.org/10.1371/journal.pcbi.1006184.g003
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given pairing at Δt = ±10 ms in Fig 3(b)–3(d) show how activity-dependent thresholds relate

to the changes detailed above in synaptic plasticity.

The numerical results show a good agreement with the data, as shown in Fig 4. In this fig-

ure, we superimposed experimental data points and statistics from [39, 40] together with the

numerical simulations of the change in macroscopic synaptic strength for post-pre and pre-

post pairings predicted by the model. The only noticeable deviation arises for less than 10 pair-

ings, where the model shows no significant plasticity while experiments show a rapid establish-

ment of plasticity. This may be explained by the rigidity of the bistability hypothesis requiring

a significant change in the individual synaptic efficacy to induce a switch from one potential

well to the other and, in turn, a variation in the macroscopic synaptic strength.

Finally, we note that our results, derived in the case of piecewise constant thresholds, per-

sist with our more realistic exponential thresholds model (see S2(b) Fig) illustrating the sta-

bility of our model and the relevance of piecewise constant approximations of the STDP

thresholds.

Pathway inactivation in the cortico-striatal synapse. To test the validity of the cortico-

striatal synapse built upon eCB and NMDAR signaling pathways, we computed the plasticity

predicted when one of the two mechanisms is inactivated. Experimentally, it was shown that

Fig 4. Cortico-striatal model and experimental data. Change in macroscopic synaptic strength (numerical simulations) as a function

of the number of pairings in the simplified model show a good agreement with experimental points from [39, 40]. Each experimental

point is marked by an empty circle, together with the associated mean (filled circle) and standard deviation (error bar), for pre-post

(red) and post-pre (black) pairings. For the model, we performed the mean for +5 ms< Δt< +40 ms and −40 ms< Δt< −5 ms.

https://doi.org/10.1371/journal.pcbi.1006184.g004
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when eCB system was impaired, the synapse displays LTP for post-pre pairings (−30 ms<

Δt< 0 ms) arising after high numbers of stimulus presentations (NPairings > 70). Blocking

NMDAR pathways leads to post-pre LTP for low numbers of pairings progressively disappear-

ing as pairings are presented, and a pre-post LTD (Δt> 0) for large numbers of pairings (> 75)

[40]. In our model, blocking eCB pathways is equivalent to computing the synaptic changes

through ρn only, and blocking NMDAR-dependent pathways reduces synaptic changes to ρe
only. In these two cases, we obtained a very good agreement of the model simulations with

these observations, as shown in Fig 5. We note in our model the emergence of a weak

NMDAR-LTP on the pre-post side for large numbers of presentations. This is inconsistent

with the experimental data, and related to our choice of considering no NMDAR-LTD to keep

a minimal model with a limited set of free parameters reproducing the most prominent aspects

of the cortico-striatal STDP. This effect could be readily avoided by adding NMDAR-LTD.

Overall, the model appears thus not only consistent with experimental data on the com-

bined effect of multiple pathways to which it was fitted, but also to the response of the synapse

in pharmacological situations whereby one of the pathways is blocked, validating the hypothe-

sis that the present dependence on numbers of presentations relies on distinct and indepen-

dent mechanisms.

Influence of the frequency of stimulus presentation. To further test the stability and to

harness the predictive power of the model, we considered the changes in macroscopic synaptic

strength and its dependence on the pairing frequency. The analytical formula derived in the

Methods section is only valid when the pairing frequency is sufficiently small to ensure that

the calcium concentration goes back to its baseline between two pairings; at higher frequen-

cies, deriving a similar formula remains possible, but becomes much more intricate because of

the interactions between multiple pairings. Indeed, for pairings presented at high frequency,

the synaptic change associated to a pairing interacts with the previous and the following repeti-

tions of the stimulation protocol. For instance, an STDP protocol with pre-post pairings

(Δt> 0) presented at a frequency F will result in a change depending both on Δt, but also to

Fig 5. Respective roles of eCB and NMDAR signaling pathways. eCB- (left) and NMDAR- (right) dependent plasticity only

computed numerically as a function of the number of pairings and Δt, together with experimental points obtained from [39, 40] by

pharmalogically impairing, respectively, NMDAR- or eCB-dependent plasticities.

https://doi.org/10.1371/journal.pcbi.1006184.g005
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post-pre pairings at Δt0 = −1/F + Δt < 0 (with the following stimulation), a negligible effect for

small frequencies (when Δt0 is significantly larger than Δt), but becoming prominent for rapid

stimuli and tending to overwhelm timing-dependence (when Δt0 and Δt are of the same order

of magnitude). As expected, in response to pairings with increasing frequency, a periodic pat-

tern appears (with a period identical to that of the stimulation), and thus the range of values of

relevant Δt decreases to the interval (−1/2F, 1/2F).

Fig 6 represents the response of the model for STDP protocols with various stimulation fre-

quencies. We first observed for 10 Hz and 30 Hz (Fig 6(a)), the appearance of periodic patterns

as predicted above. At 10 Hz, the STDP profile seems not to be different (except for the peri-

odic pattern) from the one at 1 Hz. We observed that increasing pairing frequency altered the

plasticity profile in several ways. At higher frequencies (30 Hz), plasticity tends to lose its

dependence in the spike timing. At 30 Hz pairing frequency and 100 pairings, LTP tends to

dominate since LTD has disappeared on the pre-post side and LTP starts emerging. This is

illustrated in Fig 6(b) where is depicted a plasticity occurring at 100 pairings for a small range

of Δt, highlighting the progressive establishment of a unidirectional LTP as frequency

increases. This model prediction is qualitatively consistent with experimental observations

[17]. At 30 Hz, the model predicts that an LTD independent of the spike timing (i.e. rate-based

LTD) should appear between 40 and 60 pairings. From the model viewpoint, this is due to an

almost flat unidirectional LTD arising in this range of number of pairings, but to date this

remains an open question and requires experimental validation.

A limit of the present model is reached when the frequency is sufficiently high for the cal-

cium trace to remain above LTP and LTD thresholds during the whole stimulation procedure.

Depending on the relative values of the LTP and LTD thresholds, either LTP or LTD ends up

dominating at high frequency. For higher frequencies (> 55 Hz) in our case, the calcium con-

centration remained above LTP and LTD thresholds after a small transition period. In this

regime, the resulting STDP chiefly relies on the choice of parameters LTD? and LTP?. This

effect can be seen for 40 Hz Fig 6(b), where we have a LTD independent of the timing of the

spikes. We limited our study up to 30 Hz pairing frequency since for higher frequency our

model starts losing biological relevance.

Triplets of spikes. Experimental evidence, as well as the model’s predictions, suggest that

the presence of multiple pathways induces a dependence of resulting plasticity on the number

of stimuli presented. The model allows to predict those dependences. In this section, we char-

acterize the predictions the model provides regarding plasticities induced by triplets of spikes.

Such plasticities, arising after repeated presentations of two presynaptic spikes and one post-

synaptic spike or conversely, were described experimentally in [38, 55, 58], but to date no

experiment has shown the dependence of those triplet rules upon variations of the number of

stimulus presentations.

Several models of triplets have been developed recently, aiming at reproducing the interac-

tion of three (or more) spikes. In particular, a model of triplets grounded on plasticity data

from pyramidal cells of layer 2/3 of rat visual cortex was developed and captured the influence

of the pre- and postsynaptic spikes preceding a paired stimulation [38](60-80 stimulus presen-

tations). Another model of interactions between spikes is developped in [59] to reproduce hip-

pocampal data from [58] at 60 pairings. In [60], voltage-based rules of STDP are used to study

triplets of spikes at 60 pairings specifically. Simulations with triplets were also performed for a

calcium-based model in [47], for two different number of pairings (30 and 100). Finally, a

model based on NMDAR kinetics [61] was developed in [37] to study the stability of the

weight distributions through numerical simulation of a population of synapses connected to

one neuron. All these models focus on Hebbian plasticity and do not include long time influ-

ence of the inactivation of the different signaling pathways. The models proposed in [59, 60]
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considered a fixed number of pairings, except [47] where simulations with two different num-

bers of pairings (30 and 100) showed a monotonic appearance of the plasticities even for trip-

lets protocols.

Our model, incorporating a long-time dependence of inactivation thresholds, highlights

new patterns of STDP that strongly depend on the number of triplet presentations. In Fig 7(a)

are depicted the changes in synaptic strength as a function of (i) the type of stimulus (number

Fig 6. Impact of stimulation frequency. (a) Synaptic strength modification (numerical simulations) as a function of the number of

pairings and spike timing Δt when stimuli are presented at 10 Hz and 30 Hz. (b) Average (and standard deviation) of the synaptic strength

modification as a function of Δt for 100 stimulus presentations and various frequencies.

https://doi.org/10.1371/journal.pcbi.1006184.g006
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Fig 7. Predictions of the dependence of triplet rules upon numbers of pairings. (a) Synaptic strength modification (numerical

simulations) as a function of the number of pairings for different triplets protocols. Each square represents the change in synaptic

strength (which intensity is color coded) as a function of the number of pairings, for a precise Δt1 and Δt2. Insets (right) provide an

alternative representation of the same quantity in the monophasic D (up), biphasic PD (middle) and triphasic PPD (down) case. (b)

Schematic representation of the different triplets configurations in (a) with Δti = tpost − tpre,i for pre-post-pre stimulations and Δti = tpost,i −
tpre for post-pre-post stimulations. (c) Different phases (mono-, bi- and triphasic) of STDP observed in protocols of triplets as a function

of Δt1 and Δt2. P and D code for potentiation (LTP) and depression (LTD).

https://doi.org/10.1371/journal.pcbi.1006184.g007
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of spikes of the pre- or postsynaptic neuron), (ii) the timing between spikes and (iii) the num-

ber of stimulations. Stimulations with two pre- and one postsynaptic spikes are depicted in the

upper-left triangle as a function of the timing of the presynaptic spikes relative to the postsyn-

aptic spike Δt1 < Δt2, and those with one pre- and two postsynaptic spikes are depicted in the

lower-right triangle as a function of the timing of the postsynaptic spikes relative to the presyn-

aptic spike, with Δt1 > Δt2 (see Fig 7(b)). In Fig 7(a), for each value of Δt1 and Δt2, a heatmap

describes the change in synaptic strength as a function of the number of pairings in the case of

the cortico-striatal synapse studied above. This diagram shows complex non-monotonic

dependences of plasticity as a function of the number of pairings, with vastly distinct profiles

depending on the timing.

Indeed, only a small portion of the diagram shows a monophasic establishment of plasticity

with only LTD (20%, blue squares in Fig 7(c)), as it would be the case with a single STDP

mechanism involved (note that, even for those stimuli, the establishment of plasticity may not

be monotonic, as shown in the monophasic inset). The majority of the stimulations therefore

yield a non-monotonic establishment of STDP as a function of the number of presentations.

We distinguished four main profiles of plasticity establishment:

• biphasic potentiation-depression plasticity (PD), characterized by an early potentiation of

the synapse followed by depression (green squares in Fig 7(c), arising for *32% of the sti-

muli considered), characterized by a phase of early eCB-LTP followed by the establishment

of a stable eCB-LTD;

• biphasic potentiation-potentiation plasticity (PP), characterized again by an early eCB-LTP

followed by an absence of plasticity and the re-emergence of a potentiation relying on

NMDAR pathways as stimuli are presented (red squares in Fig 7(c), arising for 20% of the

stimuli considered);

• triphasic potentiation-potentiation-depression plasticity (PPD), (yellow squares in Fig 7(c),

arising for *24% of the stimuli considered), distinct from biphasic PD cases with an early

establishment of eCB-LTP, followed by the emergence of an NMDAR-LTP eventually over-

come by eCB-LTD;

• triphasic potentiation-depression-potentiation plasticity (PDP), (orange squares in Fig 7(c)),

arising only for a few stimulus patterns (*4% of the stimuli considered), corresponding to

an early eCB-LTP disappearing progressively, leaving room for eCB-LTD eventually over-

come by NMDAR-LTP (this tight competition between eCB-LTD and NMDAR-LTP

explains the small range of parameters where this occurs).

Therefore, the dependence upon the number of triplet presentations highlights the complex

interplay of the multiple pathways in the establishment of plasticity for stimuli more complex

than spike pairs. In particular, Fig 7 shows that vastly distinct STDPs emerge for fixed numbers

of stimulus presentations. We observed that the map of synaptic efficacy changes depends on

the number of stimulus presentations Fig 8.

Because of the early activation of eCB-LTP, we observe at low numbers of triplet presenta-

tions (see Fig 8(a)) that only LTP is expressed, and is particularly prominent for post-pre-pre

presentations (upper-left triangle with Δt1 < 0 and Δt2 < 0), and smaller plasticity regions for

post-post-pre and post-pre-post triplets with respectively Δt2 sufficiently negative or Δt1 suffi-

ciently large. This LTP relies on the eCB pathway only, as shown in the S3 Fig. The latter plastic-

ities can actually be understood from spike pairing: indeed, when one of the timings Δt1 or Δt2
is sufficiently large, the synaptic change follows spike pair rules, leading to the observed early

eCB-LTP. Similarly, this effect is enhanced when a doublet of postsynaptic spikes precedes a
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presynaptic spike. At 25 presentations of spike doublets, we have seen in Fig 3 that no significant

LTD was present, and only eCB-LTP was expressed. This is not the case for spike triplets.

Indeed, triplets have the ability to reveal weak eCB-LTD (Fig 8(b)), particularly in the pre-post-

post regime where the doublet of postsynaptic spikes increases the associated calcium peak and

leads to the expression of the eCB-LTD significantly earlier than for spike pairs. eCB-LTP per-

sists for post-pre-pre stimulations, but no significant LTP was found for post-pre-post or pre-

post-post stimulations, for which the calcium spike does not exceed the increased threshold

anymore due to past calcium transients. For 40 triplets (not shown), the eCB-LTP in the post-

pre-pre regime is significantly reduced, and eCB-LTD influence broadens, while NMDAR-LTP

emerges in the post-post-pre, post-pre-post and pre-pre-post regions, significantly earlier than

the NMDAR-LTP arising for doublets of spikes. This emergence is even more visible for 50 trip-

let presentations (Fig 8(c)), together with the appearance of the NMDAR-LTP in the post-pre-

pre region. A new pocket of LTP arises also in the pre-post-pre region with Δt1 < Δt2, where the

NMDAR-LTP induced by the post-pre pairings of spikes overcomes the eCB-LTD of the pre-

post pairings of spikes. Interestingly, this new regime disappears as the number of stimulus

Fig 8. Triplet rules (numerical simulations) for 10, 25, 50 and 100 pairings. (same convention as in Fig 7(b)).

https://doi.org/10.1371/journal.pcbi.1006184.g008
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presentations is increased, arising together with the full expression of eCB-LTD for 100 pairings

(Fig 8(d)). The post-pre-pre NMDAR-LTP reaches larger values than in the case of doublets at

100 pairings Fig 8(d). A movie of the variation of synaptic efficacy as a function of the number

of pairings is provided in Supplementary Movie M1.

Variety and diversity of plasticity rules with multiple signaling pathways

STDP at the cortico-striatal synapse, studied in the previous section, provides a realistic exam-

ple of plasticity with multiple pathways. Our model, relying on only two equations and a small

number of biologically interpretable parameters emulating NMDAR- and eCB-dependent

pathways, reproduces all the phenomena reported at the cortico-striatal synapse, and allowed

to draw predictions on plasticity for more complex stimuli such as triplet rules. The present

model is however much more general than the case of the cortico-striatal synapse: it can

indeed emulate synapses with more than two signaling pathways with arbitrary independent

plasticity rules, and thus allows unraveling the dynamics of plasticity expression in a variety of

synapses with distinct plasticity. Interestingly, while being quite versatile, the repertoire of

behaviors that can be reproduced given a fixed number of pathways remains limited, and the

model thus also provides predictions on the minimal number of pathways involved given a

plasticity profile. Indeed, a single pathway shall induce a monotonic establishment of plasticity

if there is no inactivation of the pathway, whereas situations with two pathways can lead to

four changes of plasticity (LTP and LTD inactivation for each of the two pathways), possibly

with periods of non-significant synaptic changes. More generally, plasticity with P pathways

may lead to up to 2P changes of monotonicity, possibly interspersed with periods of non-sig-

nificant plasticity.

We investigate in the next sections a few possible scenarii relying on at most two signaling

pathways that could lead to Hebbian or anti-Hebbian plasticity and suggest experiments that

could distinguish distinct situations.

Symmetric anti-Hebbian LTD. In neocortical excitatory synapses onto inhibitory inter-

neurons, 60 pairings at 1 Hz leads to an anti-Hebbian symmetric LTD [32]. Another example

of anti-Hebbian symmetric LTD has been found at the synapses between parallel fibers and

Purkinje-like cells of the electrosensory lobe of mormyrid electric fish for a protocol of 60 pair-

ings at 0.5 Hz [34]. It remains unknown how the establishment of this plasticity depends on

the number of presentations of the stimulus or on the frequency of presentations, and those

can have dramatic effects if multiple pathways contribute to this phenomenon as in the case of

the cortico-striatal synapses. Indeed, anti-Hebbian LTD can unfold into diverse profiles as a

function of the number of pairings, and we explore a part of this diversity here, limiting our

exploration to the simplest non-trivial case of plasticities relying on up to two signaling path-

ways. We focus on three possible scenarii constrained to reproduce symmetric LTD at 100

pairings and 1 Hz.

Scenario 1: The simplest plasticity framework leading to symmetric LTD is composed of a sin-

gle plasticity pathway. In that case, LTD establishes monotonically without LTP expression

(see Fig 9(a) and parameters in Table 1). Variations in the frequency of the stimulus presen-

tation does not reveal any potentiation, and raising frequency up to 30 Hz leads to a con-

stant LTD independent of spike timings.

The situation is more complex when two signaling pathways contribute to the establish-

ment of the symmetric anti-Hebbian plasticity. Multiple scenarii can be designed leading to

unidirectional LTD at 100 pairings at 1 Hz. Here, we consider situations where two pathways
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Fig 9. Distinct mechanisms leading to unidirectional LTD at 100 pairings and 1 Hz. Synaptic strength modification

(numerical simulations) as a function of the number of pairings and Δt for a synapse (a) with a single plasticity mechanism

(Scenario 1), (b) relying on two mechanisms, one of which inducing an early LTP inactivating as the number of pairings

increases (Scenario 2), or (c) relying on two mechanisms, one of which inducing a Hebbian STDP and the second inducing a

pre-post LTD (Scenario 3).

https://doi.org/10.1371/journal.pcbi.1006184.g009
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interact, one of which (pathway A) induces LTD and LTP at a prescribed number of stimulus

presentation, and the other mechanism (pathway B) only leading to LTD:

Scenario 2: Pathway A leads to an early emergence of LTP that inactivates as pairing numbers

are increased. This mechanism is similar to the case of eCB-LTP in the cortico-striatal syn-

apse studied above.

Scenario 3: Pathway A leads to an enduring LTP not inactivated when the number of pairings

is increased, but which is dominated by the LTD generated by pathway B.

In detail, we consider in Scenario 2 that pathway A generates an early post-pre LTP that

inactivates as the number of pairings increases, and a late-appearing pre-post LTD. At the same

time, pathway B generates a unidirectional LTD arising after the early LTP of pathway A (see

S4(a) Fig depicting individual plasticity profiles for each mechanism when the other is inhibited,

and parameters in Table 1). In this situation, LTP disappears as pairing numbers increase, and

LTD takes over leading to bilateral LTD at 100 pairings (see Fig 9(b)). When presenting stimuli

at higher frequency, timing-dependence disappears in favor of a constant LTD at 100 pairings,

and thus experiments based on the presentation of a fixed and large number of pairings will not

allow to distinguish Scenario 1 from Scenario 2. However, the response of the synapse in Sce-

nario 1 and Scenario 2 as a function of the number of pairings at 30 Hz is distinct. Particularly,

at 20 pairings, Scenario 2 leads to a constant bilateral LTP, vastly distinct from the absence of

plasticity arising at this frequency and numbers of pairings in the single-mechanism case.

In Scenario 3, the plasticity pathway B leads to a unilateral pre-post LTD, while pathway

A induces a Hebbian STDP at 100 pairings and 1 Hz (LTP for Δt> 0, LTD for Δt< 0, see

S4(b) Fig depicting the plasticity induced by each pathway independently, and Table 1 for

parameters). When the LTD of mechanism A dominates the LTP of mechanism B, a unidirec-

tional LTD was observed at 100 pairings (1 Hz), and no significant region of LTP arises at this

frequency (see Fig 9(c)). However, increasing the pairing frequency yields vastly distinct

results, and the underlying LTP, invisible for presentations of the stimuli at lower frequencies,

re-emerges significantly for pre-post pairings, and the spike-timing dependence of plasticity

strengthens and displays a Hebbian STDP profile locally.

These STDP examples show a novel phenomenon: multiple independent mechanisms not

only affect emergent long-term plasticity for low number of pairings, but they can also lead to

non-trivial emergent plasticities when stimulation protocols are modified. These phenomena

cannot be predicted from the observation of the result of stimulation protocols with a fixed

and large number of pairings presented at low frequency.

Hebbian plasticity. We chose to examine in the previous sections two types of anti-Heb-

bian STDPs, asymmetric STDP [27, 28] and symmetric LTD [32, 34]. The model is also able to

reproduce the whole spectrum of plasticities described in [8], in the flavor of the simulations

performed in [47]. Asymmetric Hebbian plasticity is commonly observed at various synapses

[11–23, 62], and can be readily studied along the same lines as the anti-Hebbian case described

here, inverting LTP and LTD. Hebbian symmetric plasiticty is observed in the hippocampus

[36]. We show for instance in S1 Fig the case of Hebbian symmetric or asymmetric STDP

using parameters taken from [47], supported by a single plasticity pathway. Our present sim-

plified mathematical model is thus able to reproduce and predict various forms of STDP at

play in neural circuits.

Discussion

Synaptic plasticity is a complex phenomenon relying on the activation of a number of recep-

tors and signaling pathways [3, 10]. A substantial difficulty for experimentalists is to
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characterize plasticity in the large variety of possible situations occurring in vivo. To reduce

this complexity, a protocol designed to reveal plasticity consists in considering changes in syn-

aptic transmission after the reiterated presentation of a fixed spike pattern a large number of

times (on the order of one hundred) and at a slow rate. From these experiments, it remains

complex to decipher the multiple signaling pathways involved in the expression of plasticity,

and their complex interplay, particularly for low numbers of stimulus presentations or for vari-

ous pairing frequencies.

To disentangle the distinctive role of multiple pathways, we developed and studied a

phenomenological model of the evolution of synaptic weights and tested its responses in dis-

tinct situations. The model relies on calcium transients triggered by the spiking activity of

neurons on both sides of the synapses, and is built upon previous theoretical works (see [47]

and references therein). When plasticity (LTP and LTD) relies on multiple signaling path-

ways [10], the timescales at which these mechanisms activate and inactivate upon repetitive

stimulation can lead to a variety of behaviors as a function of the number and of the fre-

quency of pairings, which cannot be inferred from experiments where those are fixed. Our

model proposes a general and minimal framework to integrate multiple signaling pathways

and their dependences upon repetitive stimulations. We have instantiated this model with

two specific pathways, NMDAR- and eCB-dependent, that was inspired by experiments at

cortico-striatal synapse showing variations of the emergent plasticity upon variation of the

number of pairings [39, 40]. Our model reduces to two stochastic equations Eq (6) and a

small number of parameters, and accurately reproduced the data obtained in that experimen-

tal contribution. To our knowledge, this model is the most parsimonious model reproducing

STDP experimental results, yet many models of the class that we introduced can be proposed,

including for instance NMDAR-LTD or pathways activated by distinct molecules. We also

used the model to predict the response of the system when the number of stimulations, the

pairing frequency or the number of spikes, are varied. This led us to draw predictions on the

modifications of STDP profiles when the frequency of stimulus presentations was varied.

Eventually, we have made new predictions on the dependence of triplet rules upon the num-

ber of stimulus presentations, and showed that complex non-monotonic STDP profiles

emerge with up to three distinct phases. Our model goes beyond the particular case of the

cortico-striatal synapse for which data was available, and we pursued our investigations by

considering distinct mechanisms that could underlie another type of plasticity, symmetric

anti-Hebbian LTD (with LTD for pre-post and post-pre pairings). In this case, we investi-

gated three distinct possible scenarii involving up to two distinct pathways, and showed that

unexpected phenomena may arise upon variations of the number and frequency of pairings,

and in particular the emergence of an LTP at 100 pairings for high frequencies. Overall, these

results highlight the fact that electrophysiological experiments at a fixed frequency and a pre-

scribed number of pairings may not be sufficient to extrapolate to other situations with

smaller numbers of pairings or presentation frequencies.

To our knowledge, the present model is the first to take into account distinct signaling

mechanisms involved in plasticity in a simple and compact framework. The simplicity of the

present model allows to envision the implementation of this type of synapse at the level of a

neural network, opening the way to theoretical studies of information processing capacity of

networks endowed with complex activity-dependent plasticity rules. In addition to the devel-

opment of a framework integrating multiple pathways, one of the main novelties of this

model compared to other calcium-based models is that we have explicitly incorporated activ-

ity-dependent thresholds allowing to recover the response of plasticity mechanisms on the

past activity of cells. In the present model, we simply assumed that this history-dependence
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is parameterized by a cumulative calcium concentration. Explicitly incorporating this depen-

dence allows taking into account in the model multifarious experimental facts including

finiteness of the calcium pool in the postsynaptic compartment, desensitization of synaptic-

receptors and homeostasic mechanisms [63]. The present model proposing that this depen-

dence on past activity relies on cumulative calcium constitutes a first step, and could be

refined in several directions, for instance incorporating a slow decay of past-activity depen-

dence with time (considering integrated calcium spikes with an exponentially decaying

kernel for instance), moving averages in the flavor of sliding thresholds in the classical Bien-

enstock-Cooper-Munro (BCM) rule [56, 57]. In our case, the average activity of the neuron

would be simply modeled by postsynaptic calcium concentration (a reasonable proxy of neu-

ral activity), or with more refined models involving distinct molecular species and their

timescales.

Despite a good qualitative agreement and an improved accuracy on the dynamics of the

expression of plasticity, we found that our model shows a slight mismatch in the timescales at

which plasticity emerges: first, although experiments at cortico-striatal synapses show a signifi-

cant plasticity arising as early as 5 pairings and reaching a maximum at 10 pairings, we did not

find in the model significant plasticity at 5 pairings and the maximal plasticity occurred after a

slightly larger number of 12 pairings. Moreover, a unidirectional LTP in the cortico-striatal

plasticity at 100 pairings was observed experimentally when the frequency of pairing presenta-

tions reached 4 Hz, while the model reproduces this phenomenon slightly above 30 Hz. We

believe that this slower response of the present model relies on the bistable nature of the

model, following [47]. This bistability makes the system quite rigid and resistant to rapid

changes, and a direct perspective would be to implement a more flexible model dropping the

bistable model but conserving the long-term stability of macroscopic synaptic strength

ensured by the bistable potential. The present model would be also used in future works focus-

ing on the implementation of the cortico-striatal STDP in large stochastic neural networks,

with several classes of interneurons, aimed at understanding the possible role of implementing

distinct cortico-striatal plasticity, in particular LTP, arising at various timescales and their pos-

sible role in information processing in striatum.

All in all, the present model suggests to reconsider a current widely admitted implicit

hypothesis in models, and questions the usual view of STDP in models that consider a fixed

curve solely dependent on the spike timing (Δt). Indeed, in most neural network models with

STDP, it is considered that synaptic coefficients are progressively incremented depending on

spike timings and according to toy-models of STDP (e.g., double-exponential curves). This is

implemented in various manners, including additive or multiplicative changes depending on

all spike pairings or on the nearest-spike (see e.g. [64]).

At the level of networks, a number of stochastic models were developed to study the influ-

ence of STDP as a synaptic plasticity rule (see the review [4]). In particular, early works showed

the influence of classical Hebbian and asymmetric STDP in the dynamics of neuronal net-

works [65–67]. The role of STDP-based rules in the emergence of structures in recurrent neu-

ral networks was also studied in a series of papers, highlighting for instance a possible key

impact on the self-organization of microcircuits [68–70]. More recently, the distribution of

synaptic weights and its stability in randomly stimulated networks with different triplet rules

has been extensively studied [37]. The activity-dependent rule we proposed here, reproducing

variable synaptic changes as a function of the number of stimulations, may lead to significant

changes in the resulting connectivity and dynamics of neural networks. Our model offers an

avenue to revaluate the possible modifications of the resulting dynamics emphasizing the role

of timescales in these systems [71].
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Methods

Numerical methods and parameters

Simulations were performed with a custom code implemented in Python 2.7 or 3.5, developed

within the Spyder environment of the Anaconda suite (Anaconda Software Distribution. Com-

puter software. Vers. 2-2.4.0. Continuum Analytics, Nov. 2015. Web.<https://continuum.

io>). The main modules used numpy, matplotlib, math, scipy. Elementary simulations of the

model were run on a Macbook Pro (Intel Core i5 processor and 16 RAM) and more demanding

simulations were executed on the Inria Paris-Rocquencourt computer cluster. Figures and plots

were realized using matplotlib module of Python and Illustrator/Photoshop of the Adobe series.

Unless specified otherwise, we used the parameter values listed in Table 1. These parameters

were optimized starting from initial guesses chosen for consistency of the model with the data

using the extensive analysis of [47, Fig 2]. For adjusting our parameters to the cortico-striatal

plasticity, we used a global optimization algorithm, the differential-evolution function from

scipy.optimize module to obtain qualitative fits.

Simulations of the model were realized either from the theoretical expressions computed,

or with numerical simulations of the system of stochastic equations Eq (6). We used temporal

discretization using an Euler scheme on t = −1. . .101 s with Niter steps (see Table 1) and run

the simulation for a set of N = 1000 individual efficacies. To compute the change in macro-

scopic synaptic strength for the different pairings, we run the simulation for NPairings = 100

pairings and store the results for all the pairings during the STDP protocol. Therefore, for each

fixed Δt, the results obtained for different pairings are not independent, which has the interest

of uncovering the evolution of one given synapse, and has no impact on the global outcome of

the simulations as can be seen when compared with analytical results. Except for Fig 3 where

the analytical mean-field solutions are represented, all the figures show the numerical

simulations.

For Fig 6, we have reproduced 30 independent simulations in parallel to obtain the statisti-

cal means and standard deviations depicted. All heatmaps used a logarithmic color bar to rep-

resent changes in synaptic strength. The classification in mono-, bi- or tri-phasic regimes in

Fig 7(c) was done through a visual inspection of the STDP curves associated to each of the 20

Δt1 and Δt2.

The Ornstein-Uhlenbeck approximation

The model we studied is nonlinear, and as such, it was complex to derive the explicit form of

the probability distribution of the solutions. Following the approach proposed in the Appendix

of [47], we derived the probability distribution of the solution of an approximate model valid

when the system remains in the linear part of the cubic bistable term. The model involves a lin-

ear Ornstein-Uhlenbeck with deterministic time-dependent coefficients α(t) and β(t) that we

computed as follow. The solution of linear stochastic differential equations of type [72] (with B
a standard Brownian motion):

drðtÞ ¼ ðaðtÞrðtÞ þ bðtÞÞdt þ sðtÞdBðtÞ ð7Þ

with initial condition ρ0 can be easily expressed in closed form as:

rðtÞ ¼ r0 exp
Z t

0

aðsÞds
� �

þ

Z t

0

exp
Z t

u
aðsÞds

� �

bðuÞdu

þ

Z t

0

exp
Z t

u
aðsÞds

� �

sðuÞdBðuÞ:
ð8Þ
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As indicated in the main text, the synaptic change is obtained using a sigmoid transform of the

proportion U of synapses that, after the protocol, have crossed upwards the threshold value ρ�,
over the proportion D of those that crossed downwards. Since the above described Ornstein-

Uhlenbeck process is Gaussian, these probabilities are fully characterized by the mean and sin-

gle-time variance functions of ρ, which have the following expressions:

E½rðtÞjr0� ¼ r0 exp
Z t

0

aðsÞds
� �

þ

Z t

0

exp
Z t

u
aðsÞds

� �

bðuÞdu ð9Þ

and

Var½rðt Þjr0� ¼

Z t

0

exp 2

Z t

u
aðsÞds

� �

s2ðuÞdu ð10Þ

We thus derive the time-varying coefficients α and β arising in the approximated model, for

the eCB pathway (the other can be dealt with in the same way). These are computed describing

the time spent above the various thresholds of the model. We denote by Zx
i the average time

spent above the threshold y
x
i : this quantity only depends on the calcium dynamics can be easily

computed analytically for each given a pairing protocol. Similarly, we define te = T ne the time

at which the eCB-LTP is inactivated at the cortico-striatal synapse, with T being the duration

between two pairings and ne the pairing number at which eCB-LTP is first inactivated.

Denoting Gx
i ¼ gxi Z

x
i , we have the following compact formulae for the coefficients of the

Ornstein-Uhlenbeck processes αe, βe and σe:

aeðtÞ ¼

�
Gd

e þ Gp
e

t
¼ �

1

t1

if t < te

�
Gd

e

t
¼ �

1

t2

if te < t

8
>>>><

>>>>:

ð11Þ

beðtÞ ¼

Gp
e

t
¼

~r1

t1

si t < te

0 si te < t

8
><

>:
ð12Þ

seðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zd
e þ Zp

e

t

r

s ¼
s1
ffiffiffiffi
t1

p si t < te

ffiffiffiffiffi
Zd
e

t

r

s ¼
s2
ffiffiffiffi
t2

p si te < t

8
>>>>><

>>>>>:

ð13Þ

Because of the simple, piecewise constant form of the coefficients, we have, for determin-

istic initial conditions:

E½reðtÞjreð0Þ� ¼

reð0Þ exp �
t
t1

� �

þ ~r1 1 � exp �
t
t1

� �� �

if t < te

reð0Þ exp �
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t2

�
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� �

þ ~r1 exp �
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� �

1 � exp �
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>>>>>>><

>>>>>>>:
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and

Var½r e� ¼

s2
1

1 � exp � 2
t
t1

� �� �

if t < te

s2
1

exp � 2
t � te

t2

� �

1 � exp � 2
te
t1
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þ s2
2

1 � exp � 2
t � te

t2
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if te < t

8
>>>><

>>>>:

ð15Þ

The probability that an initially depressed synapse becomes potentiated is thus given by:

UeðnT Þ ¼ Pðre > r�j reð0Þ ¼ 0Þ ¼
1

2
1þ erf �

r� � E½rej reð0Þ ¼ 0�ðnT Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½r e�ðnT Þ

p

 ! !

; ð16Þ

and the probability of an initially potentiated synapse to become depressed by:

DeðnT Þ ¼ Pðre < r�j reð0Þ ¼ 1Þ ¼
1

2
1 � erf �

r� � E½rej reð0Þ ¼ 1�ðnT Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½r e�ðnT Þ

p

 ! !

: ð17Þ

allowing directly to obtain the change in synaptic weight associated as H UeðnT Þ
DeðnT Þ

� �
.

A comparison of the Ornstein-Uhlenbeck approximation with the numerical simulations

of the nonlinear system is provided in Fig 3(a) and S2(a) Fig, showing a good agreement for

the parameter set chosen.

Experimental data points

The data used to fit and validate our results were previously published in [39, 40]. We refer to

these papers for more specific information on the experimental protocol.

Supporting information

S1 Fig. Hebbian STDP. Change in the synaptic strength (numerical simulations) as a function

of the number of pairings and Δt for asymmetric (a) and symmetric (b) Hebbian STDP.

(TIF)

S2 Fig. Piecewise constant thresholds are a good approximation of exponential thresholds.

Change in the synaptic strength (numerical simulations) as a function of the number of pairing

and spike timing Δt for (a) piecewise constant thresholds or (b) exponential thresholds (� = 1)

show a good qualitative and quantitative agreement.

(TIF)

S3 Fig. Role of eCB and NMDAR pathways in triplet rules. Change in synaptic strength

(numerical simulations) for the same pairing numbers as in Fig 8 and with the same conven-

tion of representation as in Fig 7(b).

(TIF)

S4 Fig. Symmetric LTD induction. Change in the synaptic strength (numerical simulations)

induced by each individual mechanism in Scenario 2 (a) and Scenario 3 (b) as a function of

the number of pairings and spike timing Δt.
(TIF)

S1 Movie. STDP varying as a function of the number of pairings in a triplet protocol. Time

corresponds to the number of pairings, with a rate of 3 frames per second; the number of
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pairings is indicated on the top of the graph. Same convention as in Fig 7(b).

(AVI)

Acknowledgments

We thank Michael Graupner and Hugues Berry for helpful suggestions and critical comments

on the manuscript. We would also like to thank Sebastien Valverde for his careful reading of

the manuscript. GV is a Research Fellow of the Ecole Normale Superieure (Paris, France).

Author Contributions

Conceptualization: Laurent Venance, Jonathan D. Touboul.
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28. Valtcheva S, Paillé V, Dembitskaya Y, Perez S, Gangarossa G, Fino E, et al. Developmental control of

spike-timing-dependent plasticity by tonic GABAergic signaling in striatum. Neuropharmacology. 2017;

121:261–277. https://doi.org/10.1016/j.neuropharm.2017.04.012 PMID: 28408325

29. Letzkus JJ, Kampa BM, Stuart GJ. Learning Rules for Spike Timing-Dependent Plasticity Depend on

Dendritic Synapse Location. J Neurosci. 2006; 26(41):10420–10429. https://doi.org/10.1523/

JNEUROSCI.2650-06.2006 PMID: 17035526

30. Bell CC, Han VZ, Sugawara Y, Grant K. Synaptic plasticity in a cerebellum-like structure depends on

temporal order. Nature. 1997; 387(6630):278–281. https://doi.org/10.1038/387278a0 PMID: 9153391

Multiple activity-dependent pathways in STDP

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006184 August 14, 2018 30 / 32

https://doi.org/10.1152/physrev.00010.2015
http://www.ncbi.nlm.nih.gov/pubmed/26960344
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://www.ncbi.nlm.nih.gov/pubmed/9852584
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.275.5297.213
http://www.ncbi.nlm.nih.gov/pubmed/8985014
https://doi.org/10.1152/jn.1997.77.5.2851
https://doi.org/10.1152/jn.1997.77.5.2851
http://www.ncbi.nlm.nih.gov/pubmed/9163401
https://doi.org/10.1111/j.1469-7793.1998.237bu.x
https://doi.org/10.1111/j.1469-7793.1998.237bu.x
http://www.ncbi.nlm.nih.gov/pubmed/9490845
https://doi.org/10.1523/JNEUROSCI.5388-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16775149
https://doi.org/10.1016/S0896-6273(00)00008-8
http://www.ncbi.nlm.nih.gov/pubmed/10939330
https://doi.org/10.1016/S0896-6273(01)00542-6
http://www.ncbi.nlm.nih.gov/pubmed/11754844
https://doi.org/10.1038/nature03366
http://www.ncbi.nlm.nih.gov/pubmed/15759002
https://doi.org/10.1523/JNEUROSCI.1749-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17065442
https://doi.org/10.1126/science.1160575
http://www.ncbi.nlm.nih.gov/pubmed/18687967
https://doi.org/10.1523/JNEUROSCI.4402-07.2008
https://doi.org/10.1523/JNEUROSCI.4402-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18322089
https://doi.org/10.1113/jphysiol.2007.144501
https://doi.org/10.1113/jphysiol.2007.144501
https://doi.org/10.1016/j.neuroscience.2009.03.015
https://doi.org/10.1016/j.neuroscience.2009.03.015
http://www.ncbi.nlm.nih.gov/pubmed/19303912
https://doi.org/10.1523/JNEUROSCI.4476-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16339023
https://doi.org/10.1113/jphysiol.2010.188466
https://doi.org/10.1113/jphysiol.2010.188466
http://www.ncbi.nlm.nih.gov/pubmed/20603333
https://doi.org/10.1523/JNEUROSCI.5796-12.2013
https://doi.org/10.1523/JNEUROSCI.5796-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23719804
https://doi.org/10.1016/j.neuropharm.2017.04.012
http://www.ncbi.nlm.nih.gov/pubmed/28408325
https://doi.org/10.1523/JNEUROSCI.2650-06.2006
https://doi.org/10.1523/JNEUROSCI.2650-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17035526
https://doi.org/10.1038/387278a0
http://www.ncbi.nlm.nih.gov/pubmed/9153391
https://doi.org/10.1371/journal.pcbi.1006184


31. Egger V, Feldmeyer D, Sakmann B. Coincidence detection and changes of synaptic efficacy in spiny

stellate neurons in rat barrel cortex. Nat Neurosci. 1999; 2(12):1098–1105. https://doi.org/10.1038/

16026 PMID: 10570487

32. Lu Jt, Li Cy, Zhao JP, Poo Mm, Zhang Xh. Spike-timing-dependent plasticity of neocortical excitatory

synapses on inhibitory interneurons depends on target cell type. J Neurosci. 2007; 27(36):9711–9720.

https://doi.org/10.1523/JNEUROSCI.2513-07.2007 PMID: 17804631

33. Tzounopoulos T, Rubio ME, Keen JE, Trussell LO. Coactivation of Pre- and Postsynaptic Signaling

Mechanisms Determines Cell-Specific Spike-Timing-Dependent Plasticity. Neuron. 2007; 54(2):291–

301. https://doi.org/10.1016/j.neuron.2007.03.026 PMID: 17442249

34. Han VZ, Grant K, Bell CC. Reversible associative depression and nonassociative potentiation at a par-

allel fiber synapse. Neuron. 2000; 27(3):611–622. https://doi.org/10.1016/S0896-6273(00)00070-2

PMID: 11055442

35. Safo P, Regehr WG. Timing dependence of the induction of cerebellar LTD. Neuropharmacology.

2008; 54(1):213–218. https://doi.org/10.1016/j.neuropharm.2007.05.029 PMID: 17669443

36. Mishra RK, Kim S, Guzman SJ, Jonas P. Symmetric spike timing-dependent plasticity at CA3-CA3 syn-

apses optimizes storage and recall in autoassociative networks. Nature Communications. 2016;

7:11552. https://doi.org/10.1038/ncomms11552 PMID: 27174042

37. Babadi B, Abbott LF. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plas-

ticity. PLoS Comput Biol. 2016; 12(3):e1004750. https://doi.org/10.1371/journal.pcbi.1004750 PMID:

26939080

38. Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains.

Nature. 2002; 416(6879):433–438. https://doi.org/10.1038/416433a PMID: 11919633
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