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5-hydroxytryptamine has an endothelium- ® e
derived hyperpolarizing factor-like effect on
coronary flow in isolated rat hearts
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Abstract

Background: 5-hydroxytryptamine (5-HT)-induced coronary artery responses have both vasoconstriction and
vasorelaxation components. The vasoconstrictive effects of 5-HT have been well studied while the mechanism(s) of
how 5-HT causes relaxation of coronary arteries has been less investigated. In isolated rat hearts, 5-HT-induced
coronary flow increases are partially resistant to the nitric oxide synthase inhibitor Nw-Nitro-L-arginine methyl ester
(L-NAME) and are blocked by 5-HT; receptor antagonists. In the present study, we investigated the role of 5-HT;
receptor in 5-HT-induced coronary flow increases in isolated rat hearts in the absence of L-NAME, and we also
evaluated the involvement of endothelium-derived hyperpolarizing factor (EDHF) in 5-HT-induced coronary flow
increases in L-NAME-treated hearts with the inhibitors of arachidonic acid metabolism and the blockers of
Ca*"-activated K* channels.

Results: In isolated rat hearts, 5-HT and the 5-HT; receptor agonist 5-carboxamidotryptamine induced coronary
flow increases, and both of these effects were blocked by the selective 5-HT; receptor antagonist SB269970; in
SB269970-treated hearts, 5-HT induced coronary flow decreases, which effect was blocked by the 5-HT,, receptor
blocker R96544. In L-NAME-treated hearts, 5-HT-induced coronary flow increases were blocked by the phospholipase A,
inhibitor quinacrine and the cytochrome P450 inhibitor SKF525A, but were not inhibited by the cyclooxygenase
inhibitor indomethacin. As to the effects of the Ca’*-activated K* channel blockers, 5-HT-induced coronary flow
increases in L-NAME-treated hearts were inhibited by TRAM-34 (intermediate-conductance Ca’*-activated K* channel
blocker) and UCL1684 (small-conductance Ca®*-activated K* channel blocker), but effects of the large-conductance
Ca”*-activated K* channel blockers on 5-HT-induced coronary flow increases were various: penitrem A and paxilline did
not significantly affect 5-HT-induced coronary flow responses while tetraethylammonium suppressed the coronary flow
increases elicited by 5-HT.

Conclusion: In the present study, we found that 5-HT-induced coronary flow increases are mediated by the activation
of 5-HT; receptor in rat hearts in the absence of L-NAME. Metabolites of cytochrome P450s, small-conductance
Ca”*-activated K channel, and intermediate-conductance Ca®™activated K™ channel are involved in 5-HT-induced
coronary flow increases in L-NAME-treated hearts, which resemble the mechanisms of EDHF-induced vasorelaxation.
The role of large-conductance Ca**-activated K* channel in 5-HT-induced coronary flow increases in L-NAME-treated
hearts needs further investigation.
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Background

5-hydroxytryptamine (5-HT) has both vasoconstrictive
and vasodilating effects on coronary arteries [1, 2];
injecting low doses of 5-HT into normal human coron-
ary arteries induces vascular dilations, but at high doses
5-HT injections cause vasoconstrictions [1]. The vaso-
constrictive effect of 5-HT on coronary arteries is mostly
mediated by 5-HT,, receptor, and to a lesser extent by
the activation of 5-HT;p receptor [3, 4]. The knowledge
about the vasoconstrictive effects of 5-HT on coronary
arteries has been applied to develop treatments of cor-
onary artery diseases [3].

5-HT- receptor is the latest identified subtype of 5-HT
receptors [5]. It couples to Gs protein and induces
cAMP accumulation when activated [6], and in rat glo-
merulosa cells the activation of 5-HT receptor increases
calcium influx via T-type Ca** channels by raising ade-
nylyl cyclase activity [7]. Activation of 5-HT; receptor
has been reported mediating 5-HT-induced relaxation in
isolated dog coronary arteries [8] and 5-HT-induced cor-
onary flow increases in Nw-Nitro-L-arginine methyl
ester hydrochloride (L-NAME)-treated rat hearts [9].
The functional role of 5-HT receptor in human coronary
arteries has not been reported, but the mRNA expression
of 5-HT; receptor in human coronary vasculature has
been identified [4].

The mechanism(s) of how 5-HT mediates coronary
artery relaxation remains controversial. In dog coronary
arteries, both endothelium-dependent [10] and endothelium-
independent [8] vasodilating effects of 5-HT have been
reported. In rat, coronary flow increases/coronary ar-
tery relaxation effect of 5-HT has been proposed to be
endothelium-dependent [11, 12] and nitric oxide (NO)-
dependent [13]; however, prostacyclin (PGI,)-dependent
[14] and nitric oxide synthase (NOS) inhibitor-resistant
[9] components of this effect have also been reported.

Endothelium-derived hyperpolarizing factor (EDHF) is
a putative factor that mediates endothelium-dependent
vasorelaxation [15, 16]. It induces vasodilation by hyper-
polarizing the membrane potential of smooth muscle
cells, which effect consequently prevents the activation
of Ca®* channels and reduces Ca®* influx [17]. Although
the mechanism(s) and the end effector(s) of EDHF-
induced vasorelaxation remain controversial [18], activa-
tions of Ca**-activated K* channels by arachidonic acid
metabolites synthesized by endothelial lipoxygenases
(LOXs) and cytochrome P450s are known to be involved
in EDHF-mediated vascular responses [18, 19].

In our previous study, we found that 5-HT-induced
coronary flow increases in isolated rat hearts have a L-
NAME-resistant component [9], and the 5-HT-induced
coronary flow increases in L-NAME-treated hearts are
blocked by 5-HT receptor antagonists [9]; however, the
role of 5-HT, receptor activation in the NO-dependent
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component of 5-HT-induced coronary flow increases
was left unevaluated, and the mechanism(s) of the L-
NAME-resistant component of the coronary flow-
increasing effect was not studied. In the present study,
we investigated the role of 5-HT, receptor in 5-HT-
induced coronary flow increases in the absence of L-
NAME in isolated rat hearts by using selective 5-HT
receptor agonist and antagonist, and we also evaluated
the role of EDHF in 5-HT-induced coronary flow in-
creases by testing effects of blockers of arachidonic acid
metabolism [18, 20] and Ca**-activated K* channels [16]
on 5-HT-induced coronary flow increases in L-NAME-
treated hearts.

Methods

Animals

Adult male Sprague Dawley rats aged 2—3 months (weight-
ing 250-350 g) were purchased from BioLasco Co. (Yilan,
Taiwan). Animals were kept in the Laboratory Animal
Center of National Taiwan University (Taipei, Taiwan) until
the day of experiment. Rats were given ad libitum access
to water and food. All animal procedures were performed
according to the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health, and followed
the guidelines of the Animal Welfare Act. The animal stud-
ies were approved with a certificate number 20110073 by
the Institutional Animal Care and Use Committee of the
College of Medicine, National Taiwan University (Taipei,
Taiwan).

Chemicals and solution

5-HT, adenosine, histamine, indomethacin, tetraethylam-
monium chloride (TEA), L-NAME, and dimethyl sulf-
oxide (DMSO) were purchased form Sigma-Aldrich (St.
Louis, Missouri, USA). SB269970, R96544, 5-carbo-
xamindotryptamine (5-CT), TRAM-34, and UCL1684
were purchased from Tocris Bioscience (Bristol, United
Kingdom). Quinacrine, penitrem A, paxilline, and SKF525A
were purchased from Cayman Chemical Co. (Ann Arbor,
Michigan, USA).

The perfusion solution used in the present study was
modified Tyrode’s solution (in mM): 119.7 NaCl, 23.8
NaHCOs3, 5.6 Glucose, 1.2 CaCl,, 1.1 MgCl,, 0.3 NaH,PO,,
and 5.0 KCL In the experiments testing the effects of the
inhibitors of arachidonic acid metabolism and the blockers
of Ca®"-activated K* channels on 5-HT-induced coronary
flow increases, L-NAME 10 uM was added to the perfu-
sion solution and existed throughout the experiments.

Preparation of isolated perfused rat hearts

Rats were intraperitoneally injected with pentobarbital
50 mg/kg and heparin 800 IU/kg. 15 min later, rats were
killed by cervical dislocation and hearts were quickly
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removed and mounted on the Langendorff apparatus
(ADInstruments, Castle Hill, Australia).

Hearts were perfused with modified Tyrode’s solution at
constant pressure (70 mmHg). The perfusion solution was
kept at 37 °C and well gassed with carbogen (O, 95 % and
CO5 5 % mixture).

Tissue around the sinoatrial node was trimmed to
slow down the spontaneous heart rate. Stimulating elec-
trodes were placed on the left atrium, and recording
electrodes were attached to the apex to record electric
cardiogram (EKG). Hearts were constantly paced at 250
b.p.m throughout experiment with stimulations generated
by a stimulator with stimulation length of 2 ms and an
interval of 240 ms. Hearts were then left to stabilize for
30 min before subjected to experiment. The perfusion
pressure, coronary flow, and EKG were demonstrated and
recorded continuously on computer using PowerLab pro-
gram (ADInstruments, Castle Hill, Australia).

Effects of the 5-HT receptor antagonists on 5-HT-induced
coronary flow responses in isolated perfused hearts
Hearts were prepared as described above. After 30 min
stabilization, hearts were treated with vehicle, SB269970
0.3 uM (a selective 5-HT; receptor antagonist [21]), or
SB269970 0.3 uM + R96544 0.3 uM (a selective 5-HT,5
receptor antagonist [22]) for 4 min; 5-HT 0.3 and 1 pM
were then added into perfusion solution cumulatively to
test effects of these antagonist(s) on 5-HT-induced coron-
ary responses. These concentrations of 5-HT were chosen
on the basis of our preliminary observations, in which 5-
HT-induced coronary flow responses are not stable at
concentrations higher than 1 pM (data not shown).

5-HT-induced coronary flow increases have been re-
ported as NO-dependent [12], so in the antagonist(s)-
treated groups we added adenosine 0.1 uM, which is also
an NO/endothelium-dependent [23] vasodilator of rat
coronary arteries, to test the viability of endothelium
and the activity of NOS at the end of experiments. The
protocol is summarized in Fig. 1a.

Effect of SB269970 on 5-CT-induced coronary flow responses
in isolated perfused hearts

Hearts were prepared as described above. After stabili-
zation, hearts were treated with vehicle (DMSO 1 ul/dl) or
SB269970 0.3 uM for 4 min, and then 10 nM and 30 nM
of 5-CT, a selective and potent 5-HT g/, receptor agonist
[24], were added into the perfusion solution in a dose-
accumulative manner in the presence of vehicle or
SB269970 to test the effect of the 5-HT receptor antagon-
ist on 5-CT-induced coronary flow increases. Adenosine
0.1 uM was added into the perfusion solution at the end
of experiment to test the viability of endothelium and the
activity of NOS if 5-CT failed to elicit coronary flow
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increase in the presence of SB269970. The protocol is
summarized in Fig. 1b.

Effects of the inhibitors of arachidonic acid metabolism
on 5-HT-induced coronary flow increases in L-NAME-
treated rat hearts

Isolated perfused hearts were prepared and the experi-
ments were performed with L-NAME-containing perfu-
sion solution as mentioned above.

After 30 min stabilization, hearts were treated with ve-
hicle (DMSO 10 pl/dl) for 10 min, and coronary flow re-
sponses to 5-HT 0.3 and 1 uM were tested in the presence
of vehicle. After the tests of coronary flow responses to 5-
HT were established, each heart was perfused with fresh L-
NAME-containing solution for 20 min to remove the effect
of 5-HT and re-stabilize. Hearts were treated with 1 uM
quinacrine (phospholipase A, (PLA,) inhibitor [15]), 3 uM
SKF525A (cytochrome P450s inhibitor [25]), or 10 pM
indomethacin (cyclooxygenase (COX) inhibitor [26]) for
10 min, respectively, and then coronary flow responses to
5-HT were tested again in the presence of these treat-
ments. Histamine is an endothelium-dependent vasodilator
of rat coronary arteries [27, 28], which relaxes smooth
muscle in a NO-independent manner [29], so we added
histamine 10 pM to test the viability of the coronary arter-
ies at the end of experiments if 5-HT failed to elicit coron-
ary flow responses. The protocol is summarized in Fig. 1c.

Effects of the Ca®*-activated K* channel blockers on
5-HT-induced coronary flow responses in L-NAME-treated
hearts

Hearts were prepared and perfused with L-NAME 10 uM
as described above. After 30 min equilibration, each
heart was perfused with vehicle for 15 min, and then
coronary flow responses to 5-HT, at concentrations of
0.3 and 1 puM, were tested in the presence of vehicle. In
the TRAM-34- and UCL1684-treated groups, DMSO
100 ul/dl was used as vehicle control in the control
tests; in the penitrem A- and paxilline-treated groups,
DMSO 10 pl/dl was used as vehicle control in the con-
trol tests. The vehicle of TEA was the perfusion solution,
so we just perfused the hearts for 15 min as vehicle treat-
ment. After the first serial of 5-HT tests, hearts were then
perfused with fresh L-NAME-containing perfusion solu-
tion for 20 min to re-equilibrate. After re-equilibration,
hearts were perfused with TRAM-34 10 pM (selective
blocker of intermediate-conductance Ca**-activated K*
channel [30]), UCL1684 3 uM (selective blocker of small-
conductance Ca**-activated K* channel [31]), penitrem A
1 uM [32], paxilline 2 pM [33] (both selective blockers of
large-conductance Ca**-activated K* channel), or TEA
300 uM for 15 min, and then coronary flow responses
to 5-HT 0.3 and 1 pM were tested again in the presence
of these treatments. At the end of each experiment,
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histamine 10 uM was added into the perfusion solution to
test the viability of coronary vasculature if 5-HT failed
to elicit coronary flow increases in the presence of the
treatments.

To validate the design of the experiments, we tested the
effect of DMSO 100 pl/dl, which was the vehicle we used
in the UCL1684-treated and TRAM-34-treated groups
and also the largest quantity of DMSO we used in this art-
icle, on 5-HT-elicited coronary flow responses by the same
protocol used in testing the effects of Ca®-activated K*
channel blockers. The protocols are summarized in Fig. 1d
and e.

Statistic analysis

Data were expressed as mean + SD. Intra-group analyses
were performed with one-way ANOVA followed with
Bonferroni post-tests. Inter-groups differences were
analyzed by 2-ways ANOVA followed by Bonferroni
post-tests. Variables from the adenosine tests and the
histamine tests were not used when performing ANOVA
and Bonferroni post-tests. P < 0.05 was considered to be
statistically significant.

Results
Effects of the 5-HT receptor antagonists on 5-HT receptor
agonist-induced coronary flow responses
Figure 2a shows the typical tracings of 5-HT-induced
coronary flow responses in the presence of vehicle,
SB269970, and combination of SB269970 and R96544.

As shown in Fig. 2b, 5-HT elicited coronary flow in-
creases in the presence of vehicle in the control group
(P<0.0001 and F=19.11, one-way ANOVA). Vehicle
(DMSO 1 pl/dl) did not significantly alter coronary flow in
the control group (basal value 10.52 +1.22 ml/min and
after DMSO treatment 10.60 + 1.37 ml/min); 5-HT signifi-
cantly increased coronary flow to 1648 £2.18 (P<0.01
compared to treatment of vehicle) and 17.45 + 1.87 ml/
min (P < 0.005 compared to treatment of vehicle) at con-
centrations of 0.3 pM and 1 uM, respectively.

5-HT 0.3 and 1 pM induced coronary flow decreases
in the presence of SB269970 0.3 uM (Fig. 2b) (n=5; P <
0.0001 and F = 14.33, one-way ANOVA), which were sig-
nificantly different from the responses in the control
group (P =0.0007 and F=33.71, 2-ways ANOVA ana-
lyzed with the control group). Treatment with SB269970
0.3 uM did not significantly alter coronary flow (10.60 +
1.37 ml/min compared to basal value 10.50 + 1.22 ml/
min); in the presence of SB269970 0.3 puM, coronary flow
decreased to 8.59+1.01 ml/min (P<0.05 compared to
treatment) and 7.82 + 0.68 ml/min (P < 0.005 compared to
treatment) after treatments of 5-HT 0.3 and 1 pM, re-
spectively. At the end of experiment, addition of adenosine
0.1 uM caused an increase of coronary flow to 17.79 +
2.74 ml/min in the presence of SB269970 and 5-HT.
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As shown in Fig. 2a and b, 5-HT failed to elicit coron-
ary flow response at doses of 0.3 and 1 uM in hearts
treated with the combination of SB269970 0.3 uM and
R96544 0.3 uM (n=4; P=0.345 and F =1.22, one-way
ANOVA). Treatment of SB269970 0.3 puM + R96544
0.3 uM slightly increased coronary flow to 11.15+
0.83 ml/min from the basal value of 10.38 £+ 0.61 ml/
min. In the presence of SB269970 and R96544, coronary
flow was not significantly altered by 5-HT at concentra-
tions of 0.3 and 1 pM (11.07 £ 0.58 ml/min and 11.07 +
0.54 ml/min, respectively). At the end of experiment,
addition of adenosine 0.1 pM increased coronary flow to
15.96 + 1.94 ml/min. The 5-HT-induced coronary flow
responses in SB269970 + R96544-treated group were
significantly different from the SB269970-treated group
(P =0.0056 and F =15.54, analyzed by 2-ways ANOVA
with the SB269970 treated group) and the control group
(P=0.0138 and F=11.82, 2-ways ANOVA analyzed with
the control group).

5-CT is a potent 5-HT;p/; receptor agonist with low
affinity to the 5-HT,, receptor (Ki value 633-2700 nM)
[24]. As shown in Fig. 2¢, 5-CT elicited coronary flow
increases in the control group (n=4; P <0.0001 and F =
18, one-way ANOVA), and 5-CT-elicited coronary flow
increases were blocked by SB269970 0.3 uM (P = 0.0169
and F =124, 2-ways ANOVA). Treatment with vehicle
did not elicit significant coronary flow response in the
control group (10.83 +£1.09 ml/min compared to basal
value 10.67 £+ 1.29 ml/min); in the presence of vehicle, 5-
CT 10 nM induced a coronary flow increase to 16.54 +
2.74 ml/min, and 5-CT 30 nM increased the coronary
flow to 18.74 + 2.11 ml/min (P < 0.01 and P < 0.005 com-
pared to the vehicle treatment point, respectively). In the
SB269970-treated group, 5-CT failed to elicit coronary
flow response at 10 and 30 nM (n=3; P=0.9573 and F =
0.1008, one-way ANOVA). Treatment of SB269970
0.3 uM did not significantly alter coronary flow (11.13 +
0.63 ml/min compared to the basal value 10.99 + 0.37 ml/
min); however, it blocked the coronary flow-increasing ef-
fect of 5-CT. In the presence of SB269970 0.3 uM, 5-CT
at 10 nM or 30 nM did not elicited significant coronary
flow alteration (11.15 +0.63 ml/min and 10.94 + 0.59 ml/
min, respectively). In the precence of SB269970 0.3 uM
and 5-CT 30 nM, addition of adenosine 0.1 pM in-
creased coronary flow to 19.01 + 5.03 ml/min at the end of
experiment.

Effects of the inhibitors of arachidonic acid metabolism
on 5-HT-induced coronary flow increases in L-NAME-
treated hearts

Quinacrine (Fig. 3a) significantly suppressed the 5-HT-
induced coronary flow increases in L-NAME-treated rat
hearts (n=5; P =0.0032 and F = 16.73, 2-ways ANOVA).
In the control test, 5-HT significantly increased coronary
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flow (P<0.0001 and F=37.1, one-way ANOVA); the
basal coronary flow value in the control test was 5.58 +
0.41 ml/min after perfusion with L-NAME 10 puM for
30 min. After 10 min treatment with vehicle, coronary
flow did not significantly change (5.45 +0.37 ml/min).
Perfusion of 5-HT at concentrations of 0.3 and 1 uM sig-
nificantly increased coronary flow to 14.63 +3.16 ml/
min and 14.58 +2.13 ml/min (both P <0.001 compared
to the vehicle treatment), respectively. Treatment with
quinacrine 1 puM slightly increased coronary flow to
6.16 £ 0.74 ml/min from 5.07 + 0.68 ml/min; and after
the treatment with quinacrine, 5-HT induced slight coron-
ary flow increases at 0.3 pM (7.82+1.62 ml/min) and
1 uM (7.98 £ 1.77 ml/min). The values of coronary flow at
5-HT 0.3 and 1 pM in the presence of quinacrine were
significantly lower than those in the control test (both P <
0.001 compared to the corresponding doses in the control
test). Histamine 10 pM increased the coronary flow to
10.31 £ 1.61 ml/min at the end of the experiment.

As shown in Fig. 3b, 5-HT-induced coronary flow in-
creases were significantly suppressed in the presence of

SKF525A 3 uM (n=7; P=0.008 and F=9.738, 2-ways
ANOVA). 5-HT induced significant coronary flow in-
creases in the control test (P <0.0001 and F =50.89,
one-way ANOVA); basal value of the control test was
6.16 £ 1.10 ml/min, and treatment with vehicle did not
significantly alter coronary flow (6.25 + 1.26 ml/min). 5-
HT at concentrations 0.3 and 1 puM increased coronary
flow to 11.74 +1.28 (P < 0.01) and 12.68 + 1.50 (P < 0.005)
ml/min, respectively. Coronary flow was significantly al-
tered after treatment of SKF525A 3 puM and 5-HT (P <
0.0001 and F =19.77, one-way ANOVA). SKF525A 3 uM
increased coronary flow from the basal value of 5.60 +
1.02 ml/min to 8.37 +0.54 ml/min (P <0.005), which
was proposed to be mediated by the release of PGI,
from endothelium [34]. In the presence of SKF525A, 5-
HT did not significantly alter coronary flow at concen-
trations 0.3 and 1 pM (8.41 +0.70 and 8.33 + 0.95 ml/
min, respectively), and coronary flow after treatments
of 5-HT 0.3 and 1 pM were significantly lower than the
corresponding values in the control test (both P<
0.005). Histamine 10 pM increased coronary flow to
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11.13 + 1.85 ml/min in the histamine test at the end of
experiment.

Treatment with indomethacin 10 pM (Fig. 3c) did not
significantly affect 5-HT-induced coronary flow increases
in L-NAME-treated hearts (n=4; P=0.3299 and F=
0.09741, 2-ways ANOVA). 5-HT elicited significant in-
creases of coronary flow in the control test (n=4; P<
0.0001 and F =39.81, one-way ANOVA). Treatment with
vehicle did not significantly increase the coronary flow
(basal value 6.11 + 0.57 ml/min and the value after vehicle
treatment 5.94 + 0.37 ml/min) in the control test. 5-HT in-
creased coronary flow to 14.85 + 2.67 and 16.08 + 1.19 ml/

min at concentrations 0.3 pM and 1 pM (both P <0.001
compared to the vehicle treatment point), respectively. 5-
HT elicited coronary flow increases in the presence of
indomethacin 10 pM (P <0.0001 and F = 64.01, one-way
ANOVA). Treatment with indomethacin slightly increased
coronary flow to 7.78 + 1.32 min/ml from the basal value
of 5.84 + 0.52 ml/min. In the presence of indomethacin, 5-
HT 0.3 puM and 1 uM increased the coronary flow to
15.65 + 0.79 ml/min and 16.56 + 0.73 ml/min (both P <
0.001 compared to corresponding points in the control
test), respectively. Since the 5-HT-induced coronary
flow responses were not significantly altered, we did
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not perform histamine test in this group at the end of
the experiment.

Effects of the Ca®*-activated K* channel blockers on
5-HT-induced L-NAME-resistant coronary flow increases
As shown in Fig. 4a, treatment of TRAM-34 10 pM signifi-
cantly suppressed 5-HT-induced coronary flow increases
in L-NAME treated hearts (n=5; P =0.0047 and F = 15.03,
2-ways ANOVA). 5-HT elicited coronary flow increases
in the control test (P <0.0001 and F=21.42, one-way
ANOVA); treatment with vehicle (DMSO 100 pl/dl) did
not significantly alter coronary flow (6.88 + 0.61 ml/min
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compared to the basal value 6.84 + 0.59 ml/min) in the
control test, and 5-HT 0.3 and 1 pM increased coron-
ary flow to 12.49 + 3.04 ml/min (P < 0.001 compared to
vehicle treatment) and 14.47 +2.05 ml/min (P < 0.001
compared to vehicle treatment), respectively. 5-HT
failed to elicit coronary flow increases after treatment
of TRAM-34 10 puM (P =0.5857 and F =0.6649, one-
way ANOVA). Treatment of TRAM-34 10 uM slightly
decreased coronary flow to 5.20 + 1.59 ml/min from the
basal value (6.86+0.59 ml/min). In the presence of
TRAM-34, 5-HT did not significantly alter coronary
flow at 0.3 uM (6.99 + 3.09 ml/min) or 1 pM (6.38 £
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2.63 ml/min). Coronary flow increased to 9.28 + 1.90 ml/
min in the histamine test at the end of experiment.

5-HT-induced coronary flow increases were signifi-
cantly suppressed by UCL1684 3 uM (n=4; P =0.0036
and F =21.33, 2-ways ANOVA) (Fig. 4b). In the control
test, 5-HT induced significant coronary flow increases
(P <0.0001 and F =35.55, one-way ANOVA). Treatment
of vehicle (DMSO 30 pl/dl) did not cause significant al-
teration of coronary flow (5.66 + 1.74 ml/min compared
to the basal value 5.41 + 1.82 ml/min). Coronary flow in-
creased to 10.32 + 1.82 ml/min and 10.84 + 2.75 ml/min
after perfusion with 5-HT at concentrations of 0.3 and
1 uM (both P < 0.001 compared to the vehicle treatment
point), respectively. In the presence of UCL1684, 5-HT
elicited slight increases of coronary flow (P =0.0189 and
F=4.899, one-way ANOVA). Treatment of UCL1684
3 uM slightly reduced the coronary flow from the basal
value of 4.28 + 0.70 ml/min to 3.20 + 0.32 ml/min. In the
presence of UCL1684 treatment, 5-HT slightly increased
coronary flow to 4.46 + 1.08 ml/min at 0.3 uM, and 5-
HT increased coronary flow to 5.37 £0.92 ml/min at
1 pM (P<0.05 compared to the ULC1684 treatment
point). The values of coronary flow at 5-HT 0.3 and
1 pM in the presence of UCL1684 are lower than the
corresponding values in the control test (both P < 0.001).
At the end of the experiment, addition of histamine
10 puM increased coronary flow to 6.07 + 0.77 ml/min in
the presence of UCL1684 and 5-HT.

As shown in Fig. 4c, repeated treatments of DMSO
100 pl/dl did not significantly alter 5-HT-induced cor-
onary flow responses (n=5; P=0.6122 and F =0.2782,
2-ways ANOVA). In the control test, 5-HT elicited cor-
onary flow increases in the presence of DMSO 100 pl/
dl (P=0.0006 and F=9.938, one-way ANOVA). The
basal value of coronary flow was 5.41 +1.82 ml/min,
and perfusion with DMSO 100 ul/dl for 15 min did not
significantly alter coronary flow (5.66 + 1.74 ml/min) in
the control test. In the presence of DMSO 100 pl/dl, per-
fusion with 5-HT at concentrations of 0.3 and 1 puM in-
creased coronary flow to 10.32 +1.82 ml/min (P <0.05
compared to the vehicle treatment point) and 10.84 +
2.75 ml/min (P <0.01 compared to the vehicle treatment
point), respectively. In the second test, 5-HT still elicited
coronary flow increases (P =0.0005 and F=10.28, one-
way ANOVA). Perfusion with DMSO 100 pl/dl, as in the
control test, did not significantly alter coronary flow
(5.06 + 1.28 ml/min compared to basal value 4.93 + 1.57 ml/
min); 5-HT increased coronary flow to 948 +2.57 at
0.3 uM and to 10.30 +2.24 ml/min at 1 pM (P <0.05 and
P <0.01 compared to DMSO 100 pl/dl treatment, respect-
ively) in the presence of DMSO 100 pl/ml.

Treatment of penitrem A 1 pM did not significantly
altered 5-HT-induced coronary flow increases in L-
NAME treated hearts (n=7; P=0.5661 and F =0.3481,
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2-ways ANOVA) (Fig. 5a). 5-HT elicited coronary flow
increases in the control test (P <0.0001 and F =31.79,
one-way ANOVA). Perfusion with vehicle (DMSO 10 pl/
dl) for 15 min did not significantly alter coronary flow
(5.39 £0.62 ml/min compared to basal value 5.40 +
0.43 ml/min); in the presence of vehicle, 5-HT increased
coronary flow to 9.84+2.11 ml/min at 0.3 pM and
10.09 £ 1.05 ml/min at 1 pM (both P <0.005 compared
to the vehicle treatment). 5-HT could still elicit coronary
flow increases after treatment of penitrem A 1 pM (P <
0.0001 and F =13.48, one-way ANOVA). The basal cor-
onary flow after 20 min re-equilibration was 5.36 +
0.72 ml/min, and perfusion with penitrem A 1 pM for
15 min did not significantly alter coronary flow (6.16 +
1.26 ml/min). In the presence of penitrem A, 5-HT at
concentrations of 0.3 and 1 pM increased coronary flow
to 10.25+270 and 1049 +2.35 ml/min, respectively
(both P <0.01 compared to penitrem A treatment). Since
coronary flow responses to 5-HT were not significantly
diminished by penitrem A, we did not perform hista-
mine test at the end of experiment.

5-HT-induced coronary flow responses in L-NAME
treated hearts did not significantly alter in the presence of
paxilline 2 pM (Fig. 5b). In the control test, 5-HT induced
significant coronary flow increases in the presence of ve-
hicle (n=5; P <0.0001 and F =45.88, one-way ANOVA).
Treatment of vehicle (DMSO 10 pl/dl) did not significant
alter coronary flow (6.79 +0.82 ml/min compared to the
basal value 6.84 +1.14 ml/min); coronary flow increased
to 1529 +1.06 and 13.39 + 2.32 ml/min after treatments
of 5-HT 0.3 uM and 1 pM, respectively (both P <0.001
compared to the vehicle treatment). Treatment of paxil-
line 2 uM slightly increased coronary flow to 845+
1.75 ml/min from the basal value 7.13 + 1.03 ml/min; in
the presence of paxilline 2 uM, 5-HT induced coronary
flow increases to 14.94 +3.16 ml/min at 0.3 uM and
13.60+2.79 ml/min at 1 uM (P<0.01 and P<0.05
compared to treatment of paxilline 2 puM, respectively).

As shown in Fig. 5c¢, treatment of TEA 300 pM signifi-
cantly suppressed 5-HT-induced coronary flow increases
(n=5; P=0.0014 and F =22.67, 2-ways ANOVA). In the
control test, 5-HT induced significant coronary flow in-
creases (P <0.0001 and F = 24.79, one-way ANOVA); the
basal value of coronary flow was 5.03 £ 0.48 ml/min, and
coronary flow after 15 min of prolonged perfusion was
478 £0.51 ml/min. 5-HT induced coronary flow in-
creases to 9.32+1.59 ml/min at 0.3 pM and 9.01+
1.37 ml/min at 1 pM (both P <0.001 compared to the
vehicle treatment point). 5-HT-induced coronary flow
increase responses at 0.3 and 1 M were suppressed in
the presence of TEA 300 puM (P =0.0632 and F =2.970,
one-way ANOVA). The basal coronary flow after re-
equilibration was 4.28 + 0.46 ml/min. After perfusion
with TEA 300 uM for 15 min, coronary flow was 4.29 +
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0.68 ml/min. In the presence of TEA, 5-HT failed to
cause significant coronary flow increases at 0.3 (5.24 +
0.83 ml/min) and 1 pM (5.20 £ 0.78 ml/min). Histamine
increased coronary flow to 11.76 + 3.01 ml/min in the
histamine test at the end of the experiment.

Discussion

The vasorelaxation effect of 5-HT on human coronary
arteries has been identified for more than 20 years [1, 2],
but this property of 5-HT has not been addressed as
much as the vasoconstrictive effect. 5-HT-induced coron-
ary artery dilation has been reported to be NO-dependent
in many species [13, 35, 36]; however, the 5-HT-induced
coronary flow increases are, at least partially, resistant to

L-NAME in rats [9]. In the present study, we investigated
the role of 5-HT receptor in 5-HT-induced coronary flow
increases in isolated rat hearts in the absence of L-NAME.
As shown in Fig. 2b and ¢, both 5-HT and the selective 5-
HT, receptor agonist 5-CT [24] induced coronary flow
increases in the absence of L-NAME, and both of these ef-
fects were blocked by 0.3 pM SB269970, which is a potent
and selective 5-HT, receptor antagonist (Ki value 1.26 nM
[21]); furthermore, 5-HT turned to decrease coronary flow
in the presence of SB269970, and this effect was blocked by
the selective 5-HT,, receptor antagonist R96544 0.3 uM
(Fig. 2b). It is noteworthy that SB269970 blocked 5-CT-
induced coronary flow increases, but 5-CT, which has very
low affinity to 5-HT,, receptor (Ki value 633-2700 nM)



Chang Chien and Su Journal of Biomedical Science (2015) 22:42

[24], did not cause coronary flow decrease in the presence of
SB269970 (Fig. 2c). These results indicate that the coronary
flow-decreasing component of 5-HT-induced coronary flow
responses is mediated by 5-HT 5 receptor, which is in consen-
sus with previous reports [37, 38], and both NO-dependent
[11, 12, 38] and L-NAME-resistant [9] components of coron-
ary flow increases induced by 5-HT at doses of 0.3 and 1 uM
are mediated by the activation of 5-HT, receptor.

Endothelium is an important apparatus in vascular tis-
sues, and damage or malfunction of endothelium causes
poor regulation of vascular responses. Endothelium
helps regulate vessel tone by releasing vasoconstrictive
agents [39] and vasodilating factors. NO [13], PGI, [26],
and EDHF [17] are the main dilating factors released
from endothelium. NO induces an increase of cGMP in
smooth muscle cells and then causes smooth muscle re-
laxation [40, 41]. PGI, is a metabolite of COX [42]; it ac-
tivates PGI, receptors on smooth muscle cells, and then
causes vasodilation by increasing intracellular cAMP
[43]. PGI, has been reported to mediate 5-HT-induced
coronary vascular resistance reduce in rat hearts [14],
but in the present study we did not find role of COX
metabolites in 5-HT-induced coronary flow increases in
L-NAME-treated hearts (Fig. 3b).

EDHF elicits vasodilation by inducing hyperpolariza-
tion of membrane potentials, which consequently pre-
vents the opening of Ca** channels and hence reduces
Ca®" influx [17]. So far, there is no consensus on what
the entity of EDHF is, and the exact mechanism(s) of
how EDHF induces vasodilation remains controversial
[18]; but the involvements of K* ion and Ca**-activated
K" channels in EDHF-induced vasorelaxation are com-
monly recognized [16]. Several models describing how
Ca**-activated K* channels and K* ion induce smooth
muscle relaxation have been proposed [16-18]: One
model suggests that the activation of Ca®*-activated K*
channel(s) on endothelium leads to K" ion efflux, and
the efflux of K' ion causes membrane potential hyperpo-
larization of the endothelial cells, which then results in
the membrane potential hyperpolarization of smooth
muscle cells via gap junctions connecting the endothe-
lium cells and the smooth muscle cells [44, 45]. In evi-
dences for a second model, the released K" ion from
endothelium cells via Ca®*-activated K* channel(s) increases
local concentration of K* ion in the intercellular space be-
tween the endothelium and the smooth muscle [46]; the el-
evated concentration of extracellular K" in the loci causes
the activation of inward rectified K* channels or/and Na*/K
" pump on the smooth muscle cells [17] and hence induces
the hyperpolarization of membrane potentials, which conse-
quently prevents the vessels from constriction.

All 3 types of Ca®*-activated K* channels have been
reported involved in the EDHF-mediated vasorelaxation.
For example, H,O,, one of the supposed EDHFs [47], is
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released from the endothelium in response to shear
force and then causes dilation of human coronary arteri-
oles by activating large-conductance Ca®*-activated K*
channel on the smooth muscle cells [48]. Small- and
intermediate-conductance Ca**-activated K* channels,
both of which can be activated by the arachidonic acid
metabolites synthesized by cytochrome P450s and 15-
LOX [18], have been reported mediating acetylcholine-
induced vasodilation on coronary arterioles derived from
normal rats [49], while large-conductance Ca**-activated
K" channel plays no role in this response; this finding
also implies that all these 3 types of Ca**-activated K*
channels are not necessarily involved in an EDHEF-
mediated vasorelaxation at the same time.

Arachidonic acid metabolites-induced activation of
Ca**-activated K* channels has been reported involved
in EDHF-mediated vasorelaxation [15, 25]. In the
present study, we investigated the role of EDHF in 5-
HT-induced coronary flow increases by using pharmaco-
logical tools that interfere with the PLA, - cytochrome
P450 - Ca**-activated K* channel axis [18]. As shown in
Fig. 3a-c, the inhibitions of PLA, by quinacrine [15, 25]
and cytochrome P450s by SKF525A [25] significantly sup-
pressed 5-HT-induced coronary flow increases while the
inhibition of COX by indomethacin [26] failed to influence
the 5-HT-induced responses; these results indicate
the involvement of the cytochrome P450s-synthesized
arachidonic acid metabolites rather than PGI, [14] in
5-HT-induced coronary flow increases in L-NAME-
treated hearts. And as shown in Fig. 4a and b, blocking
intermediate- and small-conductance Ca**-activated K*
channels with TRAM-34 [30] and UCL1684 [31] signifi-
cantly inhibited 5-HT-induced coronary flow increases in
L-NAME-treated hearts. These results are in consensus
with previous reports that epoxyeicosatrienoic acid
isomers activate intermediate- and small-conductance
Ca®*-activated K* channels in EDHF-induced relax-
ation of the vascular tissues [18, 50, 51].

Activation of large-conductance Ca**-activated K* chan-
nel mediates vasorelaxation in various vascular tissues. For
example, applications of BMS191011 and NS1619, both of
which are openers of large-conductance Ca**-activated K*
channel [52, 53], elicit vasodilation of isolated perfused
sheep coronary arteries with pD2 (the negative logarithm
to base 10 of the ECsy) of 5.76 £ 0.4 and 5.86 + 0.5, re-
spectively [54]; in mice, large-conductance Ca*-acti-
vated K" channel is involved in acetylcholine-elicited
NO-independent vasorelaxation on isolated skeletal muscle
arterioles from diet-induced obese mice, although large-
conductance Ca®*-activation K* channel blocker does not
affect the acetylcholine-induced response on the skeletal
muscle arterioles from normal mice [49].

In the present study, the results are diverse in the ex-
periments using the blockers to verify the role of large-
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conductance Ca**-activated K* channel in 5-HT-induced
coronary flow increases in L-NAME-treated hearts (Fig. 5).
Paxilline [33] and penitrem A [32] are both selective and
potent large-conductance Ca®*-activated K* channel
blockers; TEA, the other blocker of large-conductance
Ca**-activated K* channel we used, is generally used as
non-selective K™ channels blocker [55], but at doses
lower than 1 mM it is selective to large-conductance
Ca**-activated K* channel [55]. As shown in Fig. 5a-c,
paxilline 2 uM and penitrem A 1 puM failed to inhibit 5-
HT-induced coronary flow increases in L-NAME treated
hearts; however, 5-HT-induced coronary flow increases
were blocked by TEA 300 uM. It is an interesting finding
because in previous reports paxilline 0.2 uM is as potent
as TEA 1 mM in blocking iberiotoxin-sensitive K" current
in isolated rat aorta smooth muscle cells [56], and in the
smooth muscle cells isolated from rat vas deferens, paxil-
line 1 uM completely blocks large-conductance Ca®*-acti-
vated K* channel current, which effect is similar to TEA
0.3 mM [57].

Penitrem A is a potent and selective large-conductance
Ca’*-activated K* channel blocker with ICs, of 6.40 nM
[32], and it has been used to investigate the role of large-
conductance Ca**-activated K* channel in vasorelaxation
in several studies [32, 58, 59]. In porcine coronary endo-
thelial cells, penitrem A 10 nM completely blocks the hy-
perpolarization elicited by 10 uM 1-EB10, a selective
opener of large-conductance Ca®*-activated K* channel
[60], and partially inhibits the membrane potential hyper-
polarization elicited by the adenosine receptor agonist 5'-
ethylcarboxamidoadenosine 10 pM [61]; in portal vein
smooth muscle cells from rats, treatment of penitrem 100
nM completely blocks the hyperpolarization elicited by
NS1619 33 uM [53]. Paxilline is a potent and selective
blocker of large-conductance Ca**-activated K* channel
with Ki value 1.9 nM [33]. In rat isolated aortic smooth
muscle cells, paxilline 1 uM almost completely blocks
iberiotoxin-sensitive current with ICs, of 97 nM, while
TEA blocks the iberiotoxin-sensitive current with ICg, of
273 uM [56]; in rat mesenteric arterial cells, paxilline com-
pletely blocks iberiotoxin-sensitive current at 300 nM
[62]; in the isolated human coronary arterioles, paxilline
0.1 pM significantly inhibits H,O,-elicited vasodilation
[48]. Judging from these studies, the failures of paxilline
and penitrem A in inhibiting 5-HT-induced coronary flow
increases in L-NAME treated hearts do not come from
that the concentrations we used are not high enough since
the doses we used in the present study (paxilline 2 uM
and penitrem A 1 uM) are much higher than those in
the aforementioned studies. Besides, according to our
unpublished observation, the opener of large-conductance
Ca**-activated K* channel BMS191610 does not elicit cor-
onary flow increase at 3 and 10 uM in L-NAME-treated
hearts (data not shown), both of which doses are higher
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than the EC5o of BMS191610 in inducing vasorelaxation
of isolated normal fetal sheep coronary arteries in previous
study [54].

Although evidences from paxilline and penitrem A do
not support the involvement of large-conductance Ca**-ac-
tivated K" channel in 5-HT-induced coronary flow
increases in L-NAME treated hearts, coronary flow-
increasing effect of 5-HT was suppressed by TEA
(Fig. 5). As mentioned above, TEA is a widely used
non-selective antagonist of various K* channels, including
3 types of Ca®*-activated K* channels, voltage-dependent
K" channel, ATP-sensitive K" channel, and inward rectified
K" channels [55]. The suppressing effect of TEA on 5-HT-
induced coronary flow increases in L-NAME-treated
hearts did not likely come from blocking small- and/or
intermediate-conductance Ca®*-activated K* channels, be-
cause at doses lower than 1 mM TEA is selective to large-
conductance Ca**-activated K* channel [63], and in our
preliminary tests TEA 0.3 mM does not have significant ef-
fect on the coronary flow increases induced by SKA-31, a
selective opener of small- and intermediate-conductance
Ca?*-activated K* channels [30], in L-NAME treated hearts
(data not shown).

The evidences we mentioned above suggest that the dif-
ference between effects of TEA and the other two blockers
on 5-HT-induced coronary flow increases does not likely
come from failures of paxilline and peintrem A in blocking
large-conductance Ca®*-activated K* channel, but unfor-
tunately we do not know what is the origin of the differ-
ence so far. The role of large-conductance Ca**-activated
K" channel and/or the TEA-sensitive component in 5-
HT-induced coronary flow increases in L-NAME treated
hearts need further investigation.

Conclusion
In conclusion, the activation of 5-HT; receptor medi-
ates 5-HT-induced coronary flow increases in isolated
hearts in the absence of L-NAME as in L-NAME-
treated hearts as previously reported [9]. The coronary
flow-increasing effect of 5-HT in L-NAME-treated
hearts resemble the characters of EDHF-induced vasore-
laxation: the inhibitors of PLA, and cytochrome P450s,
but not the inhibitor of COX, block 5-HT-induced coron-
ary flow increases in L-NAME treated hearts, and small-
and intermediate-conductance Ca®*-activated K* channels
are also involved in the 5-HT-induced coronary flow
responses in L-NAME treated hearts. However, the
role of large-conductance Ca®*-activated K* channel in
5-HT-induced coronary flow increases needs further
investigation.

To the best of our knowledge, the present study is the
first to investigate the role of EDHF in 5-HT-induced va-
sorelaxation on the coronary arteries.
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