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Abstract
The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is
in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to con-
struct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo
assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long non-
coding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of
the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of
Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes
were overrepresented on chromosomal subtelomeric regions andmicrochromosomes, surrounded by extremely high
proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared
by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative gen-
omics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge
about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which
will contribute toward the understanding of avian evolution and the improvement of poultry breeding.
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Introduction
The �10,770 species of birds described (Gill et al. 2020)
show complex and diverse morphology and behavior;
however, the currently available avian genomes present a
reduced rate of evolution and much lower gene numbers
than those of all other tetrapods (Zhang et al. 2014). The
apparent discordance remained a major evolutionary con-
undrum. Some studies have shown that birds tend to have
fewer genes than other tetrapods due to the large segmen-
tal deletions found in their genomes (Lovell et al. 2014;
Zhang et al. 2014), whereas other researchers suggested
that these missing genes may not have been sequenced
(Bornelöv et al. 2017; Botero-Castro et al. 2017; Yin et al.
2019; Zhu et al. 2021). Using more advanced sequencing
technologies and methodologies, the Vertebrate
Genomes Project (VGP) found many genes were missing
in previous genome assemblies, and this was clearly not
a biological difference as some of the previous and VGP as-
semblies were from the same individuals. The missing
genes were biased toward GC-rich and repeat-rich regions
that they proposed were hard to sequence using prior
technologies (Kim et al. 2021; Rhie et al. 2021). It still re-
mains unclear how many genes are within single bird spe-
cies, and the reasons why some genes are missing in the
currently available genomes need to be further explored.

Comprehensive analyses indicate multiple high-quality
de novo genome assemblies possess more power to cap-
ture the complete set of genes, which leads to the appear-
ance and prevalence of “pan-genome” in various species
(Wong et al. 2018, 2020; Duan et al. 2019; Tian et al.
2020). The pan-genome of mammals is typically of the
“closed” pattern with a limited number of variable genes
(Duan et al. 2019; Li et al. 2019; Tian et al. 2020), which
means the number of genes in mammalian species is rela-
tively conserved. Whereas bacteria, fungi, and plants ex-
hibit the characteristic of an “open” pattern, where the
proportion of core genes size is ,80% in many species
(Golicz et al. 2019). Recent research using population rese-
quencing data found that the core genome of chickens is
only 76% of the genome (Wang et al. 2021), which puzzles
us because it seems to be inconsistent with the status of
chickens in evolution. As the most abundant class of tetra-
pod vertebrates, birds have not yet had a de novo pan-
genome established, which is essential to solve many bio-
logical questions.

Chicken (Gallus gallus) as one of the most important
farm animals plays a major role in human food production
and has been widely used as a model organism in studies of
developmental biology, virology, oncogenesis, and immun-
ology (Cooper et al. 1966; Stehelin et al. 1976; Brown et al.
2003; Vogt 2011). In this study, we utilized 20 new high-
quality assemblies of diverse chicken breeds to generate
the first de novo assembled-based chicken pan-genome.
As many as 1,335 genes missing in previous genome assem-
blies were identified, verified, and localized. Importantly,
most of the novel genes actually exist in all of the chicken
genomes but were prone to be missing in the DNA

sequencing leaded by high proportions of tandem repeats
(TRs) and secondary structures. Hence, unwinding com-
plex DNA structures should be one of the most important
advances to improve the sequencing quality for the assem-
bly of complete avian genomes. Our study revealed that
the numbers of chicken genes are comparable to those
of other tetrapod vertebrates and a new pan-genome pat-
tern of birds.

Results
Identification and Validation of Nonredundant
Novel Sequences
Twenty chickens from four continents representing wide-
spread indigenous chicken breeds, commercial broilers,
and layer lines were sampled for de novo genome assembly
(fig. 1a, supplementary table S1, Supplementary Material
online). Ten assemblies were constructed by integrating
both PacBio (53–95×) and Illumina data (45–70×), result-
ing in a contig N50 size ranging from 5.89 to 16.72 Mb
(supplementary table S2, Supplementary Material online).
Six of them were further clustered at the chromosome le-
vel by using high-throughput chromatin conformation
capture (Hi-C) (112–125×) data (see Methods,
supplementary figs. S1–S4 and tables S2 and S3,
Supplementary Material online). The remaining ten sam-
ples were assembled based on Illumina reads from a com-
bination of libraries with multiple insert sizes, ranging from
500 bp to 5 Kb (with a depth of �134× per genome,
supplementary table S2, Supplementary Material online).
These ten samples showed a contig N50 size ranging
from 80.30 to 137.59 Kb (supplementary table S2,
Supplementary Material online), in accordance with high-
quality Illumina genomes (Schatz et al. 2010). The com-
pleteness of the 20 assemblies was evaluated through
the Benchmarking Universal Single-Copy Orthologs
(BUSCO) analysis. Most (from 92.4% to 95.3%) of the
4,915 core genes in the Aves dataset were identified in
the 20 assemblies, which is comparable to the percentage
in the reference chicken genome (GRCg6a: 95.4%) and
thus supports a high-quality genome assembly (fig. 1b,
supplementary fig. S5 and table S4, Supplementary
Material online).

To identify novel sequences, all 20 de novo assemblies
were aligned against GRCg6a (see Methods,
supplementary fig. S6, Supplementary Material online).
For stability, we used GRCg6a from a same red junglefowl
as the reference genome in the past two decades, not the
newly unpublished GRCg7b from a broiler. The genome
length of GRCg6a (1.06 Gb) and GRCg7b (1.05 Gb) are al-
most the same. Unaligned sequences or sequences with
,90% identity and .500 bp in length compared with
GRCg6a were retained and potentially contaminating
non-Chordata sequences were removed. After these
screening, each assembly left 6.10–15.40 Mb of novel se-
quences (fig. 1c). We merged the novel sequences from
all 20 assemblies and built a pan-genome of chicken. The

Li et al. · https://doi.org/10.1093/molbev/msac066 MBE

2

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
https://doi.org/10.1093/molbev/msac066


set of the pan-genome contained GRCg6a and 158.98 Mb
of nonredundant (nr) novel sequences which were ob-
tained from 45,715 contigs with an average length of
3,478 bp (table 1, supplementary fig. S7 and table S5,
Supplementary Material online). The chicken pan-genome
expanded the size of GRCg6a by 14.92% which is the high-
est percentage among the published vertebrate
pan-genomes.

We next validated the reproduced 158.98 Mb novel se-
quences. 71.58% novel sequence can be detected in other
individual genomes, including the other 19 de novo assem-
blies from this study or 922 resequenced chicken genomes
from previous studies. 44.40% are orthologs found in 14

other publicly available Galliformes genomes. 54.36% are
detected from transcriptomes 263 transcriptomes from
multiple tissues from 54 chickens, including 46 transcrip-
tomes obtained from 11 tissues/organs from six individuals
in our study and 217 publicly available chicken RNA se-
quencing (RNA-Seq) datasets from 48 individuals
(Cardoso-Moreira et al. 2019) (see fig. 1d, supplementary
figs. S8–S10, tables S5–S8, Note, and Dataset,
Supplementary Material online). In total, 90.97% of the no-
vel sequences were verified in at least one of the above
data sources.

Distribution of Cryptic Novel Sequences Across
Chicken Individuals
We found that the distribution of the novel sequences is
obviously inconsistent across different verified sources.
The detection rate of novel sequences in one genome is ex-
tremely low, the median is only 0.43% among the 922 re-
sequenced data, and 5% among the 20 assemblies (fig.
2a). Among all 159 Mb novel sequences, the ten Illumina
assemblies independently detected about 60 Mb, contain-
ing only 3.44 Mb intersection with PacBio assemblies.
Due to the higher detection rate of RNA-Seq, we picked
up the transcribed novel sequences according to the 263

Table 1. The Characteristics of Novel Sequences in this Study.

Characteristic

Total novel sequence length (bp) 158,981,245
Total gap length (bp) 1,405,623
Number of novel sequences 45,715
Novel sequence N50 (bp) 6,784
Mean novel sequence length (bp) 3,478
GC ratio 57.20%
G4 motif content 37.08%
Tandem repeat content 79.13%
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FIG. 1. Chicken novel nr sequences identified by 20 de novo assemblies. (a) Geographic locations of the original chicken breeds used for de novo
assembly and their sequencing platforms. The rectangle indicates this breed has two individuals. (b) Genome assembly completeness assessed by
BUSCO. (c) Length of novel sequences initially obtained from 20 de novo assemblies. The polygonal line represents the average length and the
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transcriptomes for further validation. RNA-Seq confirmed
that 60.51% of the transcribed regions of the cryptic novel
sequences were shared among more than half of the chick-
en genomes (supplementary fig. S11, Supplementary
Material online). In the six individuals with both PacBio
genome assembly and transcriptome data, the transcrip-
tomes of the six individuals supported a total number of
16,169 novel sequences, 9,200 (56.90%) of which were de-
tected in all the transcriptomes of six individuals. However,
5,711 (62.08%) of the 9,200 novel sequences were com-
pletely absent in the PacBio assemblies of the six indivi-
duals (fig. 2b). By mapping the PacBio reads to the novel
sequences, 76.35% and 52.81% of the novel sequences
were covered by at least one read across more than half
or all PacBio-sequenced individuals, respectively.
Moreover, although the GRCg6a assembly did not contain
our novel sequences, 6.30% (2,879) of the sequences were
covered by the Illumina sequencing reads of the GRCg6a
individual with at least 7× coverage (corresponding to
25% of the genome-wide depth) (supplementary fig. S12
and Dataset, Supplementary Material online). To explain
the prevalence of ubiquitously transcribed yet missing

novel sequences in the assemblies, we compared the me-
dian sequencing depth of the novel sequences with the
whole-genome depth in the individuals. We found that
the median sequencing depth of the novel sequences
was only one-third of the whole-genome depth in the in-
dividuals in which the novel sequences were successfully
assembled. Furthermore, in the individuals in which a gi-
ven novel sequence was missing from the assembly, the
median sequencing depth of the novel sequences was
only one-twentieth of the whole-genome depth, which is
insufficient for successful assembly (fig. 2c). Collectively,
the results indicated that the novel sequences were most
likely present in most or all the chicken genomes but
were prone to be missing in the assemblies due to their ex-
tremely low DNA sequencing depth.

Cryptic Novel Sequences have a High Content of TRs
We observed a higher GC content in the novel sequences
than in the reference genome (57.2% vs. 42.30%). Notably,
we found the content of TRs in the novel sequences was
79.13%, which is extremely high and significantly higher
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umn) and their corresponding genomes (row). (c) Relative read depth of novel sequences in the specific assembly in which the novel sequence
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than in GRCg6a (2.2%; χ2 test, P-value= 0) (fig. 2d and ta-
ble 1). Other interspersed repeats such as LTR and LINE
were low (0.09% in novel sequence vs. 9.6% in GRCg6a,
supplementary fig. S13, Supplementary Material online).
We predicted the relative importance of TR and GC con-
tent in detection rate in assembly using random forest
classifier and found the TR content had a greater influence
than GC (fig. 2d, supplementary fig. S14, Supplementary
Material online). The TR can form noncanonical DNA
structures, such as G-quadruplexes (four-stranded nonca-
nonical DNA/RNA topologies, hereafter referred to as G4
motifs), Z-DNA, A-phased repeats, and inverted repeats,
which can form cruciforms, triplexes, and slipped struc-
tures, leading to genomic instability (Zhao et al. 2010)
and incapable DNA sequencing (Guiblet et al. 2018). We
found these noncanonical structures are highly intersected
with TR regions (supplementary fig. S15, Supplementary
Material online). Among these structures, the content of
direct repeats (DRs) (37.96%) and G4 motifs (37.08%),
are the highest in novel sequences, whereas their occur-
rence in GRCg6a is only 1.47% and 0.77%. DR and G4
also showed the largest negative correlation with read
depth, the novel sequence with DR and G4 motif had
only 1/3 and 1/2 read depth of all novel sequences (fig.
2e). It is worth noting that as particularly stable noncano-
nical DNA structures, G4 motifs typically form in
guanine-rich regions of genomes, which may be one of
the reasons why GC-rich sequences are difficult to se-
quence. We also found that the transcribed regions of no-
vel sequences showed a lower TR content (supplementary
fig. S16, Supplementary Material online), which might be
the reason why RNA-Seq resulted in a higher observed fre-
quency than DNA sequencing.

Abundantly Expressed Genes are Embedded
in Novel Sequences
Within the novel sequences, the expressed sequences are
the most interesting for potentially discovering novel can-
didate genes. To identify novel chicken genes, we per-
formed gene annotation for all 20 assemblies by de novo
and reference-guided methods using the multi-tissue tran-
scriptomes (see Methods, supplementary table S8,
Supplementary Material online). The median expression
level of these putative novel genes was significantly higher
than the median expression of GRCg6a-annotated genes
(P-value= 2.84× 10−7) (fig. 3a and supplementary figs.
S17 and S18, Supplementary Material online).
Furthermore, the orthologs of the novel genes showed ex-
pression levels that were higher than the median levels ob-
served in other species, such as human and mouse
(supplementary fig. S19, Supplementary Material online),
suggesting plausible functions and active expression of
these genes.

We identified 1,335 novel coding genes with fragments
per kilobase per million mapped reads (FPKM). 1, and
completely missing from GRCg6a (see Methods,
supplementary fig. S20 and table S9, Supplementary

Material online). The novel coding genes were distributed
across 1,100 novel sequences, with an average length of
1,047 bp. By searching against the nr protein database of
NCBI (E-value≤ 1× 10−5), 969 of the novel coding genes
were found to show Chordata protein orthologs, 738 of
which belonged to Aves (supplementary table S9,
Supplementary Material online). In addition to novel cod-
ing genes, we also identified 3,874 confident transcripts
which complemented 1,336 partially missing coding genes
in GRCg6a (supplementary fig. S21 and table S10,
Supplementary Material online).

To validate the novel coding genes, proteomic analysis
of multiple tissues (hypothalamus, spleen, and cecal tonsil)
was performed via an LC–mass spectrometry (MS)/MS
strategy (supplementary table S8, Supplementary
Material online). A total of 255 (19.10%) novel coding
genes were confirmed by the existence of corresponding
proteins (supplementary table S9, Supplementary
Material online), compared with 6,201 (35.48%) of all the
coding genes present in the reference genome. The lower
detection rate of novel genes in proteomics may be af-
fected by the differences in protein length and the quality
of the protein database used for searching. Notably, after
removing novel coding genes ,1 Kb in length, the prote-
omic verification ratio of the remaining novel coding genes
increased to 29.11%.

We found that most of the novel coding genes were
present and expressed in most chicken breeds.
According to the DNA data, 92.47% of the novel sequences
containing novel coding genes were supported by at least
one PacBio read in each sample (supplementary fig. S22,
Supplementary Material online). According to the com-
parison of multi-tissue transcriptomes of six individuals,
55.13% and 80.97% of the novel coding genes were de-
tected in all six or at least three individuals, respectively
(supplementary table S9, Supplementary Material online).
Based on our sequencing platform, assembly strategy, and
annotation pipeline, the modeling of the saturation curve
by iteratively randomly sampling individuals suggested
that the number of novel genes detected by genome as-
sembly did not significantly increase beyond a sample
size of ten (fig. 3b). We also checked if the novel genes
were successfully assembled in the recently VGP chicken
genome assembly, GRCg7b. We found that 331 novel cod-
ing genes were also partially assembled in GRCg7b, includ-
ing 52 of them were assembled with more than 90%
coverage (supplementary table S9, Supplementary
Material online). A previous study (Yin et al. 2019) based
on the de novo assembly of massive chicken transcrip-
tomes increased the number of known chicken coding
genes from 17,477 to 17,967 (fig. 3c, supplementary fig.
S23, Supplementary Material online). According to our
chicken pan-genome, we found that the total number of
chicken coding genes reached at least 19,223 (fig. 3c,
supplementary fig. S23 and table S11, Supplementary
Material online).

In addition to coding genes, we identified 3,011
long noncoding RNAs (lncRNAs) (see Methods,
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supplementary table S12, Supplementary Material online).
Among these novel lncRNAs, 87.85% were supported by at
least one PacBio read in each sample (supplementary fig.
S22, Supplementary Material online). In our multi-tissue
transcriptomes of six individuals, 47.72% and 75.09% of no-
vel lncRNA genes were detected in all six or at least three
individuals, respectively (supplementary table S12,
Supplementary Material online). The increasing saturation
curve of the observed novel lncRNA genes was similar to
that of novel coding genes (fig. 3b). And there are 371 no-
vel lncRNA genes that were partially assembled in GRCg7b,
including 136 of them were assembled with more than
90% coverage (supplementary table S12, Supplementary
Material online). Using the same pipeline as in a previous
study (Sarropoulos et al. 2019), we showed that the total
number of chicken lncRNAs was at least 19,795 (fig. 3d).
Therefore, our study revealed that the numbers of both
the protein-coding and lncRNA genes of chicken are

comparable to those of other tetrapod vertebrates (fig.
3c and d).

Novel Sequences and Genes are Concentrated
in Microchromosomes and Subtelomeric Regions
with Elevated Substitution Rates
We anchored the novel sequences to GRCg6a based on
flanking sequence alignment and chromosome interaction
mapping (see Methods). A total of 27,966 (61.17%) novel
sequences containing 1,043 novel coding genes and 1,567
novel lncRNAs were anchored to GRCg6a by at least
one end (supplementary tables S5, S9, and S12,
Supplementary Material online). Among these sequences,
6,735 novel sequences containing 388 coding genes were
fully anchored by both ends. The fully anchored novel se-
quences were further classified as insertions, alternate
alleles, or multiple alternative alleles (supplementary figs.
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S24b–d, Supplementary Material online) and were dis-
persed on every chromosome of GRCg6a, filling 72 of
946 gaps in GRCg6a (supplementary fig. S24a and e,
Supplementary Material online).

The fully anchored novel sequences and genes were
overrepresented on microchromosomes (GGA11–38)
(,10 Mb) or the terminal 5 Mb ends of macrochromo-
somes (fig. 4a, supplementary fig. S25, Supplementary
Material online), which are termed as subtelomeric re-
gions. By comparison with the random distribution, we es-
timated 2.5- (P-value, 1× 10−6, permutation) and 5-fold
(P-value, 1× 10−6, permutation) increases in fully
anchored novel sequences and gene density within
subtelomeric regions, respectively (supplementary fig. S26,
Supplementary Material online). The novel sequences nearly
doubled the length of the microchromosomes such as chro-
mosomes 16, 25, 30, 31, 32, and 33, adding a total of 421 cod-
ing genes (supplementary fig. S24f and Supplementary Note,
Supplementary Material online). Notably, ten microchromo-
somes of the newly VGP zebra finch genomewere also greatly
expanded by �36–97% (Kim et al. 2021).

It is widely accepted that subtelomeric regions of the
chromosomes and microchromosomes of birds exhibit
high rates of recombination and mutation (International
Chicken Genome Sequencing Consortium 2004; Burt
2005; Linardopoulou et al. 2005; Bell et al. 2020). We inves-
tigated the evolutionary rates of 160 high-quality ortho-
logs of the novel coding genes by comparing chicken
genes with those of human and mouse. The synonymous

substitution rate (dS) and nonsynonymous substitution
rate (dN) of these novel genes were 3.3- and 2.5-fold higher
than that of anchored GRCg6a genes, respectively. And the
dN/dS ratio of these novel genes was lower than that of the
reference genes. Interestingly, the unlocalized genes of
GRCg6a, which may also be located in microchromosomes
or subtelomeric regions, showed a similar mutation pat-
tern as the novel genes (fig. 4b). This suggested that the
novel coding genes in microchromosomes and subtelo-
meric regions showed a higher mutation rate.

We next identified novel gene clusters to investigate
collinearity. Screening according to the existence of
more than three novel coding genes within 1 Mb bin
across the genome revealed 19 regions containing 201
of 388 fully anchored genes. The 19 gene clusters were
all located in microchromosomes or subtelomeric re-
gions (fig. 4a, supplementary fig. S25, Supplementary
Material online). By checking the orthologous sequences
detected in each lineage, we found that almost all 201
novel coding genes had homologs in mammalian and
reptile genomes and showed good collinearity (fig. 4d,
supplementary fig. S25 and table S13, Supplementary
Material online). Some novel gene clusters likely existed
in the microchromosomes or subtelomeric regions be-
fore the divergence of testudines and avian. However,
the significant increase of the TR clusters with high con-
tent of noncanonical DNA structures only happened on
the bird lineage (fig. 4c). Unlike the previous notion that
large segmental deletions occurred in the evolution
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process (Lovell et al. 2014; Zhang et al. 2014), our results
provided a large number of confident new gene clusters
in microchromosomes and subtelomeric regions, filling
gaps in which genes were often missing due to insuffi-
cient sequencing.

Functional Assignment of Novel Regions and Genes
Among the novel coding genes that we identified, 176 of
them were identified as housekeeping genes in human
and mouse (Hounkpe et al. 2021) (supplementary table
S9, Supplementary Material online). Through the annota-
tion and enrichment analyses, we also found that a large
number of them were involved in essential biological
reactions and pathways, such as metabolism, signal trans-
duction, basic biological functions, the immune system,
and disease (fig. 5a, supplementary tables S14–S16,
Supplementary Material online).

In the novel regions, we dissected chromosome 16 and
the subtelomeric part of chromosome 1 as two examples
to reveal their plausible gene arrangement and functions.
Chromosome 16 is a microchromosome that contains
many immune system-related genes (fig. 4d) and spans
only 2.84 Mb of GRCg6a. We assembled 3.76 Mb of novel
sequences and identified 61 novel coding genes and 80
lncRNA genes on chromosome 16. The novel gene clusters
showed good syntenic relationships with other tetrapods
(fig. 4d). One of the novel gene clusters showed that
birds had experienced regional complications in the clus-
ter and lacked a large number of coding genes (fig. 4d).
One novel coding gene, the complement factor B (CFB)
gene, which is an important immune gene involved in
the alternative complement pathway of the immune sys-
tem (supplementary fig. S27, Supplementary Material on-
line) and is regulated by the nuclear factor kappa B
(NF-κB) pathway, was de novo identified on chromosome
16. This gene is highly and uniquely expressed in the liver of
chickens and confirmed based on our MS/MS data
(supplementary fig. S27, Supplementary Material online).
In addition, we identified two novel ribosomal genes, mito-
chondrial ribosomal protein S18B (MRPS18B), and riboso-
mal protein S18 (RPS18) on chromosome 16 (fig. 4d,
supplementary table S13, Supplementary Material online).

Another novel gene cluster, including the leptin gene, is
located on chromosome 1 (supplementary fig. S25,
Supplementary Material online). Based on RNA-Seq, previ-
ous research has shown that the leptin gene does exist in
the chicken genome, yet it was absent from the chicken ref-
erence genome (Seroussi et al. 2017). Interestingly, we found
that two divergent haplotypes of the leptin gene were as-
sembled from two individuals. The entire gene region and
its flanking regions had extremely high TR and G4 motif
contents (supplementary fig. S28, Supplementary Material
online). Based on chromosome interaction data, leptin
was assigned to the distal tip of chromosome 1p, showing
collinearity with SND1 and LRRC4 (supplementary figs.
S25 and S28, Supplementary Material online). We found
that leptin exon 2 was conserved, whereas exon 1 was

variable in chicken. The length of its intron also varied
among different chicken individuals (supplementary fig.
S28, Supplementary Material online). Neither of the two
exons showed good homology with other species. In this re-
gion, we found another novel gene, ovocleidin-17 (OC-17),
which plays a key role in avian eggshell biomineralization
and is not contained in the reference genome
(supplementary table S9, Supplementary Material online).

Application of the Chicken Pan-Genome in Avian
Influenza
The chicken pan-genome identified novel genes related to
avian diseases resistance that had not been discovered pre-
viously. Chickens are susceptible to several diseases that
have far-reaching effects on human society, such as avian in-
fluenza. Here, we reanalyzed the transcriptome data (Smith
et al. 2015) of chicken lung and ileum samples after infec-
tion with low pathogenic (H5N2) and highly pathogenic
(H5N1) avian influenza virus. Compared with the expres-
sion levels observed in the control group, 30 novel coding
genes, 65 novel lncRNAs, and 79 partially missing genes
showed differential expression in these samples (false dis-
covery rate [FDR], 0.05) (supplementary tables S9, S10,
and S12, Supplementary Material online). B-cell-related
genes (CD22, CD79A, PRMT1, and SND1), T cell-related
genes (CD2BP2), immunoglobulin genes (IGLL5), and ribo-
some genes (RPS18) were screened among these differential
expression genes (supplementary tables S9 and S17,
Supplementary Material online). Notably, several signifi-
cantly differentially expressed genes (AXL, HUWE1, IKKγ,
KAT8, and KHSRP) belonged to or were regulated by the
NF-κB signaling pathway, which is the master regulator of
the immune response to infection due to its role in regulat-
ing cytokine and antimicrobial peptide expression (fig. 5b).
RELB, a subunit of NF-κB, associated with the immune re-
sponses to influenza A (Rückle et al. 2012) and severe acute
respiratory syndrome-associated coronavirus (Chen et al.
2006), was identified, anchored, and validated in our study
(supplementary fig. S29, Supplementary Material online).
Another novel gene, IKKγ (supplementary table S9,
Supplementary Material online), a subunit of the IκB kinase
complex, was essential for the activation of NF-κB transcrip-
tional activity. Besides, the newly identified genes AXL
(Schmid et al. 2016), CSNK2B (Marjuki et al. 2008),
DDX39B (Wisskirchen et al. 2011), KHSRP (Liu et al. 2015),
and TP53 (Wang et al. 2018) have also been reported to
play a role in the immune response to influenza A. In total,
there were 21 novel coding genes and 7 partially missing
coding genes that belonged to or were regulated by the
NF-κB signaling pathway (fig. 5b). The NF-κB pathway is es-
sential in defense against viral infections, such as those
caused by influenza viruses.

Discussion
The chicken is the modern descendant of the dinosaurs
being the first fully sequenced genome among
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nonmammalian amniotes (International Chicken Genome
Sequencing Consortium 2004). Despite several major up-
dates, the completeness of the chicken genome still needs
to be improved and the number of genes in the chicken
genome still underestimated. Our study suggests that
the chicken pan-genome exhibits a more complex
mammalian-like “closed” genome pattern. More specifical-
ly, we identified 1,335 and 3,011 novel coding genes and
novel long noncoding genes, respectively, containing
mostly core genes, which appear different from previous
mammalian pan-genome studies that reported fewer no-
vel genes (Golicz et al. 2019; Sherman et al. 2019;
Sherman and Salzberg 2020; Tian et al. 2020). The highly
complex noncanonical DNA structure across the novel
genes might be the main reason to prevent the efficient
genome assembly of identified novel genes in lots of indi-
viduals in the past. The seldomly detection of DNA se-
quencing in the regions of novel sequences due to the
secondary DNA structure might be the reason why there
are still so many genes missing in the recent high-quality
VGP avian assemblies, which may suggest there are still
more challenges to complete the avian reference genome.
Nevertheless, we increased the number of protein-coding
genes in chicken to 19,223 and denied the gene loss hy-
pothesis during avian evolution. Furthermore, some genes
may still hide in some more complex genomic regions and
waiting to be discovered. Our study not only revealed the
gene number in birds is comparable to that found in other
tetrapods but also presented a novel closed pattern of
avian pan-genome. The complete avian genomes will
greatly contribute to studies on comparative genomics
and functional genomics research in birds.

It has been believed that both the evolutionary substi-
tution rate and the rate of chromosomal rearrangement
in the avian lineage are lower compared with mammals
(Burt et al. 1999; Zhang et al. 2014). However, we found
a large number of novel genes that have three times the
substitution rate than the known ones, which can greatly
increase the average substitution rate of the chicken gen-
ome. We find that the novel sequences and genes were
concentrated in the microchromosomes and subtelomeric
regions of the chromosomes, in which the recombination
rates tend to be higher (Linardopoulou et al. 2005; Bell
et al. 2020). This may drive the base composition evolution
via biased gene conversion (Marais 2003) and cause repeat
expansions or contractions (Richard and Paques 2000;
Polleys et al. 2017), and might be the critical factor driving
the development of the special characteristics in micro-
chromosomes and subtelomeric regions. These genes
may have a pivotal role on the formation and development
of some unique phenotypes of the dinosaurs-avian branch.
For instance, some differentially expressed novel genes
were associated with immune response, which may be
an ingenious design of the bird immune system to resist
viruses with high mutation rates. With the high recombin-
ation rate, the novel sequences may represent a large un-
explored part of the chicken genetic map, which will
contribute to the comprehensive understanding of the

genetic variation and pinpoint the causal variations of im-
portant traits and thus promote the development of
chicken breeding.

In conclusion, our chicken pan-genome provides a com-
prehensive resource and a great platform for the research
of avian evolution, functional genomics, and chicken breed-
ing. These results highlight the complexity of species gen-
omes and suggest that many functionally important
regions may be cryptic in reference genomes across the
tree of life.

Materials and Methods
Sample Collection
A total of 20 chicken individuals were collected from
all around the world for genomic sequencing.
Transcriptome sequencing was also performed in 11
tissues of 6 individuals, including breast muscle, bursa
of Fabriclus, cecal tonsil, Harderian gland, hypophysis,
hypothalamus, liver, ovary, spleen, testis, and thymus
tissues. Moreover, tandem MS/MS data were generated
from three tissues (hypothalamus, spleen, and cecal
tonsil) from four of the six individuals by RNA-Seq.
The tissue sources and the institutes in charge of the
collection are listed in supplementary table S1,
Supplementary Material online. All animal specimens
were collected legally in accordance with the policies
for Animal Care and Use Ethics of each institution,
making all efforts to minimize invasiveness.

Library Construction and Genome Sequencing
For PacBio continuous long reads sequencing, genomic DNA
was extracted from chicken liver using a QIAamp DNA Mini
Kit (QIAGEN). The integrity of theDNAwas determinedwith
an Agilent 4200 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). Eight micrograms of genomic DNA were sheared
using g-Tubes (Covaris), and concentrated with AMPure PB
magnetic beads. Each SMRTbell librarywas constructedusing
the Pacific Biosciences SMRTbell template prep kit 2.1. The
constructed libraries were size-selected on a BluePippin sys-
tem for molecules ≥20 kb, followed by primer annealing
and the binding of SMRT bell templates to polymerases
with the DNA/Polymerase Binding Kit. Sequencing was car-
ried out using P6-C4 chemistry on the Pacific Bioscience
Sequel II platform by Annoroad Gene Technology Company.

For short-readDNA sequencing, the genomic DNAof ten
samples used for next-generation sequencing (NGS) assem-
bly was extracted from ethylenediaminetetraacetic
acid-anticoagulated blood randomly fragmented. Two
paired-end libraries and two mate-pair libraries with insert
sizes of 500 bp, 800 bp, 3 Kb, and 5 Kb were constructed.
All libraries were sequenced on the Illumina HiSeq 2000
platform according to themanufacturer’s protocol. After fil-
tering out adapter sequences and low-quality reads, a total
of 1.61 Tb (average 134× coverage of chicken genome) of
data were retained for assembly. In addition, the libraries
of ten samples used for PacBio sequencing were also
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constructed using an amplification-free method with an in-
sert size of 350 bp and sequenced on the Illumina XTen
platform with paired-end 150 bp sequence reads.

Whole-Transcriptome Sequencing
For transcriptome analysis, total RNA was extracted using
TRIzol extraction reagent (Thermo Fisher). The RNA qual-
ity analysis method was the same as DNA quality analysis
method described above. Libraries with 250–350 bp insert
sizes were prepared using the TruSeq RNA Sample Prep Kit
v2 (Illumina, San Diego, CA, USA). To obtain transcrip-
tome profiles, all libraries were sequenced on Illumina
XTen system platform using the manufacturer’s protocol.

Hi-C Sequencing
Hi-C experiments were performed according to a previous-
ly published protocol (Lieberman-Aiden et al. 2009). Hi-C
libraries were created from the breast muscle samples of
six of the above individuals. All libraries were sequenced
on an Illumina HiSeq X Ten sequencer (paired-end sequen-
cing with a 150 bp read length). On average, 127 Gb of
data with �120-fold genomic coverage and 271,268,477
read pairs could be uniquely aligned to GRCg6a
(supplementary tables S2 and S3, Supplementary
Material online).

Tandem Mass Spectrometry Analysis
The samples were ground into a cell powder in liquid ni-
trogen and then sonicated in lysis buffer (8 M urea, 1%
protease inhibitor cocktail) three times on ice using a high-
intensity ultrasonic processor (Scientz). The remaining
debris was removed by centrifugation at 12,000× g at
4 °C for 10 min. Thereafter, the supernatant was collected,
and the protein concentration was determined with a BCA
kit according to the manufacturer’s instructions. Then, the
protein solution was subjected to trypsin digestion. Next,
the tryptic peptides were fractionated by high-pH reverse-
phase HPLC using a Thermo Betasil C18 column (5 μm
particles, 10 mm ID, and 250 mm length).

The tryptic peptides were dissolved in 0.1% formic acid
(solvent A) and directly loaded onto a homemade
reversed-phase analytical column (15-cm length, 75 μm
i.d.). The gradient consisted of an increase from 6% to
23% solvent B (0.1% formic acid in 98% acetonitrile) over
26 min, an increase from 23% to 35% over 8 min and
then to 80% over 3 min, withholding at 80% for the last
3 min, all at a constant flow rate of 400 nl/min in an
EASY-nLC 1000 UPLC system. The peptides were intro-
duced to a nanospray ionization source, followed by MS/
MS in a Q ExactiveTM Plus system (Thermo) coupled on-
line to the UPLC system.

The MS/MS data were processed using the MaxQuant
search engine (v.1.5.2.8) (Cox and Mann 2008). Tandem
mass spectra were searched against the human UniProt
database concatenated with the reverse decoy database.
Trypsin/P was specified as the cleavage enzyme, allowing
up to four missing cleavages. The mass tolerance for

precursor ions was set as 20 ppm in the first search and
5 ppm in the main search, and the mass tolerance for frag-
ment ions was set as 0.02 Da. Carbamidomethyl on Cys
was specified as a fixed modification and acetylation mod-
ifications and oxidation on Met were specified as variable
modifications. The FDR was adjusted to ,1%, and the
minimum score for modified peptides was set as .40.
For protein identification, peptides containing a minimum
of seven amino acids and at least one unique peptide were
required. Only proteins with at least two peptides and at
least one unique peptide were considered to have been
identified and used for further data analysis.

De novo Genome Assembly, Evaluation, and Repeat
Annotation
Assembly Based on PacBio SMRT Sequencing Platform
The raw PacBio SMRT reads were corrected by itself with
Canu v1.7 (Koren et al. 2017), and assembled with
WTDBG v2.2 (Ruan and Li 2019) to generate the contig
layout and edge sequences, and WTPOA-CNS v1.2 was
used to obtain the initial consensus in FASTA format.
Then, we used minimap2 v2.14-r883 (Li 2018) to map
the corrected reads to the consensus, and they were sub-
sequently polished by using WTPOA-CNS v1.2. This pro-
cess was repeated three times. Next, the consensus
sequence obtained in the previous step was mapped by
using the NGS reads from the same individual with
BWA-MEM v0.7.17-r1188 (Li and Durbin 2010) and then
polished with Pilon v1.22 (Walker et al. 2014). This process
was repeated three times to obtain the final contigs.

We performed further scaffolding based on the results
for six individuals with Hi-C data. Using the final contigs
as a reference, we mapped the Hi-C data to the final con-
tigs using Juicer v1.5 (Durand et al. 2016) to obtain the
interaction matrix. Finally, 3d-dna v180419 (Dudchenko
et al. 2017) was used for scaffolding contigs.

Assembly Based on NGS Platform
The genomes sequenced on the NGS platform were de
novo assembled into contigs by using a pipeline that com-
bined the Fermi package (Li 2012) and Phusion assembler
(Mullikin and Ning 2003) for 500/800 bp paired-end librar-
ies. For the 3/5 Kb mate-pair libraries, we used
SOAPdenovo (Li et al. 2010) with 77 kmers to build con-
tigs. Furthermore, SSPACE (Boetzer et al. 2011) was used
to build scaffolds, and the contigs assembled by Fermi
and Phusion were used for the substitution of sequences
and bases and for further rectifying to rectify the local as-
sembly error. After the inspection of the initial scaffolds,
gaps were closed using Gap5 (Bonfield and Whitwham
2010) software.

Genome Evaluation and Annotation
BUSCO v3.0.2 (Simão et al. 2015) was used to assess assem-
bly completeness by estimating the percentage of ex-
pected single-copy conserved orthologs captured in our
assemblies and the reference genome, referring to the
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lineage dataset aves_odb9 (Creation date: 2016-02-13,
number of species: 40, number of BUSCOs: 4,915).
Repeat sequences were annotated using RepeatMasker
v4.0.8 (with the parameters: -engine ncbi -species “Gallus
gallus” -s -no_is -cutoff 255 -frag 20000). Subsequently,
TRs were further annotated using Tandem Repeats
Finder v4.07b (Benson 1999) (with the settings 2 7 7 80
10 50 2000 -d -h). In addition, Quadron software
(Sahakyan et al. 2017) was used to predict G4 motifs,
and only nonoverlapping hits with a score .19 were
used for subsequent analysis.

Chicken Pan-Genome Construction
The de novo assemblies were aligned to the chicken refer-
ence genome (GRCg6a; GCF_000002315.6) using mini-
map2 (Li 2018) (-cx asm10). Based on the pairwise
alignment, unaligned or low-identity sequences (showing
more than 10% sequence divergence relative to GRCg6a)
were extracted. Then, the adjacent sequences within
200 bp were merged. BLASTN 2.6.0+ (Camacho et al.
2009) (with the parameters -word_size 20 -max_hsps 1
-max_target_seqs 1 -dust no -soft_masking false -evalue
0.00001) was further used to align the unaligned sequences
from the previous step to GRCg6a, and the sequences
showing identity .90% to GRCg6a sequences were re-
moved. The remaining sequences were merged according
to the adjacent regions within 200 bp, and sequences of
,500 bp in length were removed. Subsequently, the un-
aligned and low-identity sequences obtained from all of
the assemblies were combined, redundancies were re-
moved with CD-HIT v4.7 (Fu et al. 2012) (parameter: -c
0.9 -aS 0.8 -d 0 -sf 1), and the longest sequence in the clus-
ter was selected as the representative sequence. To further
exclude potential contaminants in the dataset, we used
BLASTN to compare the nr set with the nr database of
NCBI (v20181220). The sequences that were aligned to
non-Chordata species were removed from the final novel
sequence set (supplementary table S5, Supplementary
Material online).

Observed Present or Absent Analysis of Novel
Sequences in Resequenced Individuals
The whole-genome resequencing data of 922 chickens (Li
et al. 2017; Wang et al. 2020) (supplementary table S6,
Supplementary Material online) were downloaded for
the present or absent analysis of novel sequences. To ex-
plore whether the different sequencing platforms affected
the results, the Illumina sequencing reads of the GRCg6a
individual (SRR3954707 [Warren et al. 2017], which were
previously used for single-base error correction) were
also included in this analysis. The presence and absence
of each novel sequence were then determined according
to the sequence coverage and depth. First, to obtain high-
quality reads and minimize false genotyping results due to
low-quality reads supplied by Illumina, we implemented
the following quality control procedures to filter the reads
before read mapping using Trimmomatic v0.36 (Bolger

et al. 2014), and leading or trailing stretches of Ns and
bases with a quality score below 3 were trimmed. Then,
the reads were scanned using a 4-base wide sliding window
and clipped when the average quality per base was below
15, and only reads of 40 nucleotides or longer were finally
retained. Second, high-quality paired reads were aligned to
GRCg6a using BWA-MEM v0.7.17 (Li and Durbin 2010)
with the default parameters, except that “-M”was enabled.
The BWA-aligned BAM files were then processed using
Picard v2.1 (http://broadinstitute.github.io/picard/), in-
cluding reads sorted and merged read groups belonging
to the same sample and marked duplicates at the sample
level. Finally, we estimated the coverage distribution at
each called site for each sample using QualiMap v2.2
(Okonechnikov et al. 2016).

Poorly aligned or unaligned reads were extracted as fol-
lows: Samblaster v0.1.24 (Faust and Hall 2014) was used to
extract clipped reads and unaligned reads, whereas sam-
bamba v0.6.8 (Tarasov et al. 2015) and SAMTools v1.9 (Li
et al. 2009) were used to collect other poorly aligned reads.
The paired reads with unaligned/poorly aligned read pairs
were extracted using seqtk v1.3-r106 (https://github.com/
lh3/seqtk) and were then aligned to the novel sequence set
using a previously described process. Novel sequences with
a coverage above 0.8 and a depth greater than one-
quartered of the whole-genome depth were identified as
present.

Feature Importance Analysis
To estimate the influence of GC, G4 motif, and TR con-
tents on the observed frequency of novel sequences,
9,200 novel sequences shared by all individuals were
used to construct a random forest model. The sklearn
package in Python was used to build the final model and
perform classification.

Transcribed Region Annotation and Coding
Potential Assessment
The raw RNA-Seq reads were processed to remove adap-
ters, low-quality sequences, and sequences with poly A/T
tails using Trimmomatic v0.36 (Bolger et al. 2014). The
cleaned reads were de novo assembled using SPAdes
v3.14.1 (Bushmanova et al. 2019). The expression levels
of the de novo assembled transcripts were quantified by
using Kallisto v0.46.2 (Bray et al. 2016). Additionally, the
cleaned reads were assembled using a reference-guided
method by alignment to the de novo genome assemblies
using HISAT2 v2.0.3-beta (Kim et al. 2019) with the default
parameters, except that “–dta” was enabled. Transcripts
including novel splice variants were assembled using
StringTie v1.2.2 (Pertea et al. 2015) with the default para-
meters. Then, StringTie (–merge) was used to merge all the
transcript GTFs obtained from the samples mapped to this
assembly to obtain a reference annotation. Finally, all sam-
ples were reassembled and quantified using StringTie with
the reference annotation to obtain the expression level of
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each transcript. Notably, the transcripts with FPKM≥ 1
were considered robustly expressed.

Redundancy among genes that were annotated based
on the de novo and reference-guided methods and inter-
sected with novel sequences was removed with CD-HIT
(parameter: -c 0.9 -aS 0.8 -d 0 -sf 1). Then, the remaining
genes were searched against the nr database and the genes
of GRCg6a using BLASTN 2.6.0+. Genes with no hits to ei-
ther non-Chordata species or GRCg6a were retained as
“novel genes” that were completely absent in the chicken
reference genome. Genes showing hits to GRCg6a genes
with more than 95% identity were classified as partially
missing in the chicken reference genome.

Next, the coding potential of these novel genes was as-
sessed by using CPAT v1.2.3 (Wang et al. 2013) with the de-
fault parameters. CPAT uses an alignment-independent
logistic regression model to detect coding potential based
on sequence features. To select a cut-off for classification,
we built hexamer tables and logit models for chicken using
chicken CDSs and ncRNA sequences downloaded from
Ensembl (release 98) as training data. Then, a two-graph re-
ceiver operating characteristic curvewas used to determine
the optimum cut-off value through ten random sample va-
lidations (supplementary fig. S20, Supplementary Material
online). A cut-off of 0.69 was selected to classify the novel
genes as potential protein-coding or noncoding genes.
Then, the ORFs were searched by using TransDecoder
v5.5.0 (http://transdecoder.github.io) and ORFfinder
v0.4.3 (https://www.ncbi.nlm.nih.gov/orffinder/) with the
default parameters. Genes showing values above the cut-
off of the CPAT with a minimumORF of at least 100 amino
acids were classified as novel coding genes. For the remain-
ing novel genes, RNAcode (Washietl et al. 2011)was used to
further estimate the coding potential. To prevent the diver-
gent homologous haplotypes that can caused false gene
duplications (Ko et al. 2021), wemerged novel coding genes
that have high similarity (identify≥95%)with each other or
can be annotated to the same gene, and then performed
the manual check. We generated customized whole-
genome alignments for each de novo assembly against
Japanese quail (GCF_001577835.1), turkey (GCF_
000146605.3), and helmeted guineafowl (GCF_
002078875.1), which we used to estimate coding potential.
We used BLASTX 2.6.0+ (with the parameters “-evalue
0.00001”) to translate each novel genes from all six pos-
sible reading frames, and the results were compared
with known proteins in the nr database. Genes with
an E-value≤ 10−5, alignment length of ≥10 amino acids,
and identity ≥95% were removed from the final poten-
tial long noncoding gene set. Only multiple exon genes
with more than 200 nucleotides and without any de-
tectable protein-coding potential were classified as novel
long noncoding genes.

We compared the DNA sequence of the novel coding
genes with the genome of GRCg7b (GCF_016699485.2)
by BLASTN with an E-value≤ 10−5, identity ≥95%, and
coverage ≥10% to check whether GRCg7b assembled the
gene.

Protein-Coding Gene Annotation
Using the human (Homo sapiens) dataset as the back-
ground, the novel coding genes were annotated with the
annotate module of online KOBAS 3.0 (Xie et al. 2011)
(http://kobas.cbi.pku.edu.cn/). The Gene Ontology terms,
KEGG pathways, and Reactome pathways of these genes
were characterized by using the enrichment module of on-
line KOBAS 3.0. P, 0.05 was set as the cut-off threshold.

InterProScan v5.36-75.0 (Jones et al. 2014) (parameter: -f
tsv -dp) was used to classify the protein-coding gene frag-
ments within the novel sequences and the protein-coding
genes influenced by the location of novel sequences into
protein families. The analysis results of Pfam 32.0 (http://
pfam.xfam.org/) were selected to determine the families
to which the proteins belonged.

Differential Expression Analysis
The expression levels of each gene obtained from the previ-
ous step were used for differential expression analysis. The
R language was used to identify differentially expressed genes
with the edgeR package (v3.28.1) (Robinson et al. 2010). The
fold changes between the two groups were calculated as
logFC= log2 (experimental/control group). Benjamini–
Hochberg correction was used to correct for multiple com-
parisons (with a false discovery cut-off of, 0.05). Genes in
the two groupswith |logFC|. 2 and q-value, 0.05were de-
fined as differentially expressed genes.

Anchoring Novel Sequences onto the Reference
Genome
Flanking Sequences
The novel sequences were anchored to GRCg6a based on
alignment information between all de novo assemblies
and GRCg6a. First, the scaffolds of the de novo assemblies
that contained novel sequences were extracted and an-
chored on the chromosome/scaffold of GRCg6a which
showed the most alignment hits with them. Then, the adja-
cent flanking sequences (more than 100 bp) of the novel se-
quences aligned to the same chromosome/scaffold were
retained for further positioning. If the flanking sequences
were perfectly aligned to GRCg6a with no gaps, an identity
≥90%, and a breakpoint shift of≤5 bp, we recorded the se-
quences as “placed.” The other alignments were recorded as
“ambiguously placed.” The novel sequences with two placed
flanking sequences were reported as “localized.” The novel
sequences with one or two ambiguously placed flanking se-
quences were reported as “unlocalized.” The final remaining
sequences were reported as “unplaced.” Based on the gen-
ome placement information, the localized sequences could
be further classified as insertions, alternate alleles, or am-
biguous sequences. The insertions introduced only one se-
quence fragment to the reference genome and were no
more than 10 bp in length. For alternate alleles, the novel
sequences had to share ,90% (or 0%) identity with their
counterparts in the reference. Furthermore, the novel
sequences and their counterparts had to have
comparable lengths, with a length ratio between 1/3 and

De Novo Assembly of 20 Chicken Genomes · https://doi.org/10.1093/molbev/msac066 MBE

13

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac066#supplementary-data
http://transdecoder.github.io
https://www.ncbi.nlm.nih.gov/orffinder/
http://kobas.cbi.pku.edu.cn/
http://pfam.xfam.org/
http://pfam.xfam.org/
https://doi.org/10.1093/molbev/msac066


3. The remaining sequences that did notmeet the above cri-
teria for insertions and alternate alleles were classified as
ambiguous sequences.

Chromosome Interaction Mapping
The preprocessing of paired-end sequencing data, map-
ping of reads, and filtering of mapped di-tags were per-
formed using the Juicer pipeline (version 1.5) (Durand
et al. 2016). Briefly, short reads were mapped to the chick-
en pan-genome using BWA-MEM (version 0.7.17-r1188)
(Li and Durbin 2010). Reads with low mapping quality
were filtered using Juicer with the default parameters, dis-
carding invalid self-ligated and unligated fragments as well
as PCR artifacts. Filtered di-tags were further processed
with Juicer command line tools to bin ditags (10 kb bins)
and to normalize matrices with KR normalization
(Knight and Ruiz 2013). We normalized all Hi-C matrices
on the same scale by KR normalization, ensuring that
any differences between Hi-C data were not attributable
to variation in sequence length. The maximum 100-kb
bin of each novel sequence interaction (interaction inten-
sity ≥5) was collected as a potential location of novel se-
quences. Novel sequences that were validated in at least
two individuals with Hi-C data and anchored to the
same location were kept for further analysis.

Gene Orthology and dN/dS Analysis
The integrated toolkit TBtools v1.0 (Chen et al. 2020) was
used for collinearity analysis between species. First, the pro-
tein sequence of each gene was obtained, and pairwise se-
quence similarities were calculated using BLASTP with a
cut-off of E-value≤ 10−10. Then, syntenic blocks were de-
tected using MCScanX v1.0 (Wang et al. 2012) with the de-
fault parameters. OrthoFinder v2.4.0 (Emms and Kelly
2019) was used to identify orthologous genes with the de-
fault parameters. Among these genes, 1:1 orthologous
genes between different species were used for downstream
analysis. Using 1:1 orthologous genes as the input, Codeml
in PAML version 4.9d (Yang 2007) was used for dN/dS ana-
lysis with the default parameters. The genome assemblies
and corresponding annotations used in this analysis were:
gray short-tailed opossum (GCF_000002295.2), greater
horseshoe bat (GCF_004115265.1), human (GCF_00000
1405.39), western terrestrial garter snake (GCF_
009769535.1), common lizard (GCF_011800845.1), Red-
eared slider turtle (GCF_013100865.1), Goodes thornscrub
tortoise (GCF_007399415.2), green sea turtle (GCF_
015237465.1), American alligator (GCF_000281125.3),
Chinese alligator (GCF_000455745.1), Australian saltwater
crocodile (GCF_001723895.1), Okarito brown kiwi (GCF
_003343035.1), African ostrich (GCF_000698965.1), emu
(GCA_016128335.1), golden eagle (GCF_900496995.1), ka-
kapo (GCF_004027225.2), New Caledonian crow (GCF
_009650955.1), Swainson’s thrush (GCF_009819885.1), ze-
bra finch (GCF_008822105.2), mallard (GCF_015476345.1),
helmeted guineafowl (GCF_002078875.1), turkey (GCF

_000146605.3), Japanese quail (GCF_001577835.2), and
chicken (GCF_000002315.6).

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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