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Abstract: Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with
high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common
causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysi-
ological mechanisms of HCC make it a challenging task and a serious economic burden in health
care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia
to treat many disorders including various types of cancer. Previous in vitro studies revealed the
medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular
mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were
performed to find the molecular mechanism of S. surattense against HCC. In this study, the network
pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were
explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were
figured out. Furthermore, the molecular docking technique was employed for the validation of
the successful activity of bioactive constituents against potential genes of HCC. The present study
investigated the active “constituent–target–pathway” networks and determined the tumor necrosis
factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR),
Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha
(HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT
Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of
S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense
on human liver cells. The result showed that S. surattense appeared to act on HCC via modulat-
ing different molecular functions, many biological processes, and potential targets implicated in
11 different pathways. Furthermore, molecular docking was employed to validate the successful
activity of the active compounds against potential targets. The results showed that quercetin was suc-
cessfully docked to inhibit the potential targets of HCC. This study indicates that active constituents
of S. surattense and their therapeutic targets are responsible for their pharmacological activities and
possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of
S. surattense act on potential genes along with their influencing pathways to give a network analysis
in system pharmacology, which has a vital role in the development and utilization of drugs. The
current study lays a framework for further experimental research and widens the clinical usage of
S. surattense.
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1. Introduction of Hepatocellular Carcinoma

HCC, a complex malignant tumor, is lethal and ranks sixth in mortality worldwide.
The prevalence of HCC is still increasing broadly and poses a significant threat to hu-
mans [1]. This intricate condition of lethal disease is followed by multiple factors, including
persistent viral infections, toxin carcinogenesis, cirrhosis due to fatty liver disease, and
numerous genetic factors. HCC is linked with cirrhosis and typically results in the devel-
opment of primary liver illnesses such as hepatitis B virus (HBV) and hepatitis C virus
(HCV) infections [2,3]. The available therapeutic interventions against HCC are surgical
excision, local ablation, trans-arterial chemoembolization (TACE), liver transplantation,
and medical therapy with sorafenib [4]. In addition, other treatment paradigms include
novel medications such as Lenvatinib, Regorafenib, and Ramucirumab, all proving sig-
nificant ameliorative effects in advanced HCC patients. Despite these potent therapeutic
interventions, the survival rate of HCC patients is still compromised [2,5]. For this reason,
more effective alternative medicines with minimal toxicity should be developed to augment
the overall survival of HCC patients. In this situation, exploring the preventive effects of
herbal medicines against HCC seems a favorable option.

Herbal medicine has its origin in ancient traditions and cultures. Herbal medicine
involves plants’ involvement to enhance general health and cure disease. These herbal
medicines are a rich source of potent ingredients and can be taken as pharmaceutical medi-
cations. Even now, many pharmaceutical drugs can be derived from naturally occurring
compounds found in plants. Traditional Chinese medicines (TCM) have been practiced in
China for thousands of years and are the most prominent complementary and alternative
therapy [6,7]. TCM positively modifies the state of human health from the diseased con-
dition [8]. Many clinical studies on TCM have been shown to have an anti-cancer impact
by causing cancer cell death, boosting the immune system, initiating cell differentiation,
and preventing tumor development and metastasis [9]. According to the WHO, traditional
medicine is used by 80% of the world’s population.

Consequently, there is increased attention to the usage of herbal medications around
the globe [10]. S. surattense, family Solanaceae, genus Solanum, is a perennial herb, and it is
widely considered the most valuable traditional remedy [11]. After extensive research on
phytochemical ingredients, the alkaloid and steroidal compounds solanine, solamargine,
campesterol, and diosgenin were isolated. Plant-derived secondary metabolites possess
a wide range of biological properties beneficial for humans, such as anti-cancer, anti-
inflammatory, antioxidant, and antiallergic activities. Due to the presence of phytochemicals
such as apigenin, lupeol, solamargine, and diosgenin, the medicinal plant S. surattense
possesses anti-cancer properties [12]. Bioactive chemicals derived from plants have always
been important in developing therapeutic medications. However, the mechanism of the
anti-cancer effect of S. surattense against HCC is still unknown.

Network pharmacology, the next paradigm in drug discovery, is a critical technique
for evaluating in silico therapeutic interventions [13]. This integrated technique helps to
identify the molecular mechanism, synergistic actions, and therapeutic target between tra-
ditional medicines and diseases. Network pharmacology analysis is a holistic strategy that
focuses on different compounds/targets/one disease. Because of its multiple-dimension
paradigm, approaches can narrate the underlying complexities among biological systems,
diseases, and drugs from a network perspective. This powerful method has shifted the
paradigm from a “one-disease/one-drug/one-target” mode to a “network-target, multiple-
component-therapeutics” mode [14,15]. With this, a single ligand can bind multi-targets,
and the benefits of the therapeutic medicinal herb would be the cheapest, most selective,
and relatively non-toxic multi-target drug. Network pharmacology has effectively been
used to screen active components and disclose the pharmacodynamic processes of CHM as
an emerging subject in modern CHM pharmacological research.

Interestingly, network pharmacology has been recognized as a potent and promising
approach for developing herbal medicine against HCC. Compared to the western medicine
approach based on a one-disease/one-drug methodology, drug discovery still faces various
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issues including efficacy, safety, and sustainability [16]. This study applies bioinformat-
ics data mining and a network pharmacology approach to find active constituents of
S. surattense and their therapeutic targets responsible for their pharmacological activities
and potential molecular mechanisms for the treatment of HCC.

2. Results
2.1. In Vitro Toxicological Analysis Hepatocellular Carcinoma and Normal Cells

The toxicological activity of S. surattense fruit extract at different concentrations (30 to
100 µg/mL) was explored in both liver hepatoma cells (HepG2 cells) and Vero cell lines
(African green monkey’s kidney cells) in a dose-dependent manner. Among all of these
concentrations of S. surattense fruit extract, including 60, 70, 80, 90, and 100 µg/mL, the
results showed a less than 50% cell viability as compared to positive control doxorubicin.
S. surattense fruit extract exhibited a non-toxic effect in Vero cells (Figure 1A,B). Our results
showed that S. surattense fruit extract (from 60 to 100 µg/mL concentration) is highly
effective against liver cancer as analyzed in in vitro analysis with a resultant IC50 value of
62.70 ± 1.14 µg/mL.
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Figure 1. Cell viability % of S. surattense fruit extract and Doxorubicin as a positive control.
(A) Anti-cancer activity of S. surattense fruit extract on HepG2 cell viability. HepG2 cells treated with
different concentrations (30, 40, 50, 60, 70, 80, 90, and 100 µg/mL) of S. surattense fruit extract (x-axis)
and cell viability % relative to control (y-axis). The extract concentrations (40, 50, 60, 70, 80, 90, and
100 µg/mL) were significant with statistical difference (p < 0.00) and STDs 2.1, 3.2, 2.2, 4.2, and 3.85
for respective extracts. (B) Anti-cancer activity of S. surattense fruit extract on Vero cells viability. Vero
cells treated with different concentrations (30, 40, 50, 60, 70, 80, 90, and 100 µg/mL) of S. surattense
fruit extract (x-axis) and cell viability % relative to control (y-axis). The extract concentrations (60, 70,
80, 90, and 100 µg/mL) were significant with statistical difference (p < 0.00) and STDs 8.06, 5.7, 13.2,
8.74, and 12.4 for respective extracts.
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2.2. Active Compounds and Target Screening

Out of 73 extracted active ingredients of S. surattense, 20 ingredients were selected as
they fulfilled the drug-likeness properties, molecular weight (MW < 500), logarithm of the
partition coefficient (logP < 5.6), number of hydrogen bond acceptors (nHA ≤ 10), number
of hydrogen bond donors (nHD ≤ 5), and the Lipinski rule of five. The three other com-
pounds (solanine, Quercetin 3-Galactoside 7-Rhamnoside, and Quercetin 3-Sophorotrioside
7-Rhamnoside) were included in this study because their anti-cancer activity was checked
in the lab. However, they did not meet the inclusion criteria (Table 1). A total of 756 targets
of active ingredients were screened through the SwissTarget Prediction database. After
searching, filtering, and removing the duplicates, 487 potential targets of hepatocellular
carcinoma were screened from four databases (OMIM, DisGeNET, CTD, and GeneCard).
Furthermore, 79 anti-cancer key targets of S. surattense were selected for further analysis.

Table 1. Properties of active compounds.

Compound Name MW nHBD nHBA LogP Lipinksi Rule

3,3′,4′,5,5′,7,8-Heptahydroxyflavone 390.1 3 9 2.6 Accepted
Leptinidine 413.33 2 3 4.6 Accepted

3′,4′,5,5′,7-Pentahydroxy-3-methoxy flavone 332.05 5 8 2.11 Accepted
Rishitin 222.16 2 2 2.38 Accepted

Spirosolan-3-ol 415.35 2 3 4.9 Accepted
Spirosol-5-en-3-ol 413.33 2 3 5.0 Accepted

Spirost-5-ene-3,25-diol 430.31 2 4 4.4 Accepted
Spirost-5-en-3-ol 414.31 1 3 5.5 Accepted

11-Spirovetivene-2,14-diol 236.18 1 2 2.2 Accepted
Verazine 413.33 2 3 5.1 Accepted

Campesterol 400.37 1 1 5.5 Accepted
Coumarin 146.04 0 1 1.6 Accepted
Diosgenin 414.31 1 3 5.5 Accepted
Esculetin 178.03 2 4 0.9 Accepted
Esculin 340.08 5 9 −0.6 Accepted

Methyl caffeate 194.06 2 4 1.9 Accepted
Solanidine 397.33 1 2 5.6 Accepted

Solanocapsine 430.36 4 4 5.0 Accepted
Solasodine 413.33 2 3 5.2 Accepted

Tomatidinol 413.33 2 3 5.3 Accepted
Solanine 867.5 9 16 2.0 Rejected

Quercetin 3-Galactoside 7-Rhamnoside 610.15 10 16 −0.8 Rejected
Quercetin 3-Sophorotrioside 7-Rhamnoside 934.26 16 26 −2.9 Rejected

2.3. Protein–Protein Network and Hub Genes

The target genes were imported into the STRING database for the PPI network. The
relationship between many targets throughout disease development is depicted in the PPI
network by nodes and their related interactions. Later, the Cytohubba plugin was used to
find the hub genes in the network. Tumor protein 53 (TP53)-, (AKT1), ESR1, EGFR-43, TNF,
HIF1A-, HRAS-, MTOR-41 and apoptosis regulator Bcl-X BCL2L1- showed the highest
degree (Figure 2). The highest degree indicates that the targeted genes are highly connected,
implying that all of them could be important targets. After correlating the outcomes to
those received by KEGG analysis, eight targets AKT1, ESR1, EGFR, TNF, HIF1A, HRAS,
MTOR, and BCL2L1, were chosen for further molecular docking analysis.



Molecules 2022, 27, 6220 5 of 16

Molecules 2022, 27, x FOR PEER REVIEW  5  of  16 
 

 

2.3. Protein–Protein Network and Hub Genes 

The target genes were imported into the STRING database for the PPI network. The 

relationship between many targets throughout disease development is depicted in the PPI 

network by nodes and their related interactions. Later, the Cytohubba plugin was used to 

find the hub genes  in the network. Tumor protein 53 (TP53)‐,  (AKT1), ESR1, EGFR‐43, 

TNF, HIF1A‐, HRAS‐, MTOR‐41 and apoptosis regulator Bcl‐X BCL2L1‐ showed the high‐

est degree (Figure 2). The highest degree indicates that the targeted genes are highly con‐

nected,  implying  that all of them could be  important targets. After correlating the out‐

comes to those received by KEGG analysis, eight targets AKT1, ESR1, EGFR, TNF, HIF1A, 

HRAS, MTOR, and BCL2L1, were chosen for further molecular docking analysis. 

 
Figure 2. (A) PPI network analysis. Central square nodes represent the targets with a higher degree 

(hub genes), the color from red to yellow and node size set according to their degree score; the rest 

of the blue nodes were other key targets. (B) The bar plot drawn based on the degree score repre‐

sents the hub genes. 

2.4. GO Enrichment Analysis 

Potential biological functions of S. surattense targets were discovered using GO an‐

notation and pathway enrichment studies. According to GO enrichment analysis, the key 

targets were associated with oxidoreductase activity, peptidyl–serine modification, nu‐

clear receptor activity, etc. Using KEGG pathway analysis, relevant signaling pathways 
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2.4. GO Enrichment Analysis

Potential biological functions of S. surattense targets were discovered using GO anno-
tation and pathway enrichment studies. According to GO enrichment analysis, the key
targets were associated with oxidoreductase activity, peptidyl–serine modification, nuclear
receptor activity, etc. Using KEGG pathway analysis, relevant signaling pathways related
to S. surattense anti-cancer action were identified. GO enrichment and KEGG analysis reveal
that hub genes were significantly enriched genes (Figure 3).
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2.5. Pathway Network Construction

The network between hub genes, active constituents, and KEGG-enriched pathways
was constructed by Cytoscape (version 9). A network analyzer was used to analyze the
network; 34 nodes and 74 edges were found in the compound target pathway network
(Figure 4). The 74 edges show the interactions between anti-cancer targets of S. surattense
and their pathways.

2.6. Molecular Docking

For molecular docking, from the Protein Data Bank (PDB) database, MTOR (1AUE),
EGFR (1IVO), BCL2L1 (1R2E), ESR1 (1UOM), HRAS (4XVR), HIF1A (5JWP), TNF (5MU8),
and AKT1 were considered as the three-dimensional structures of the eight top targets
to be selected. Auto Dock (V. 4.2) was employed to validate the best possible binding
modes of the interactions. The ligand was supposed to be flexible during docking, whereas
the protein was rigid. All eight active components from S. surattense were docked with
the five potential targets of HCC. The 2D structures of these eight active compounds
are shown in Figure 5. The docking score and binding energy were critical criteria for
screening components (Table 2). Clusters with the most remarkable confirmation and
absolute binding energy value were selected. The docking analysis was validated by other
software: MOE and Pyrx. Docked complexes of potential targets with active constituents
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almost showed the same binding affinity and RMSD value by different sources Figure 6. In
the molecular docking, the active ingredients showed a high binding energy and Rmsd with
the potential targets, which suggested that active ingredients of S. surattense have better
binding interaction with HCC targets. Figure 5 shows the molecular docking complex of
targets and the high binding score.
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Figure 5. 2D structures of active compound.

Figure 6. The docked complex of active constituents of S. surattense.
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Table 2. Binding energies and interaction of potential docked compounds.

Target Proteins Compounds Binding Affinity
(kcal/mol) RMSD Interacting Residues

AKT1

Quercetin −15.833 1.54
SER:1177, ASP:1134, TRP:1135,
SER:1223, LYS:1077, LEU:1267,

ARG:1271

Solanidine −14.353 1.62 SER:1177, VAL:1181, ASP:1229

HeptahydroxyFlavone −13.48 0.81 SER:1177, VAL:1220, THR:1265

BCL2L1

Esculetin −7.054 1.81 GLN:26, GLN:160

HeptahydroxyFlavone −9.353 1.71 GLU:158, GLN:160

Quercetin −7.396 2.79 GLN:26, GLU:158, SER:25, SER:23

EGFR

Solanidine −15.81 2.37 ARG B:285, ARG B:405

Quercetin −15.154 2.09 ARG B:285, SER B:342, ARG B:405

HeptahydroxyFlavone −13.245 1.38 SER B:11, ARG B:285, ARG B:405

ESR

Quercetin −7.167 2.44 ASP 351

HeptahydroxyFlavone −12.73 1.27 ASP:351

Leptinidine −12.532 0.71 ASP:351

H1F1A

Quercetin −22.917 2.68
ASN A:205, ASN A:294, THR A:196,

SER A:240, VAL A:242, GLU A:201, HIS
A:279ASN B:805

Solanidine −17.346 1.31 GLU A:201, GLN A:203, ASN A:205,
TRP A:296, PRO A:274, TRP A:277

HeptahydroxyFlavone −17.46 0.81 LEU A:101, ASN B:803

HRAS

Verazine −13.267 1.07 LYS:16, THR:35, GLN:61, LYS:117

Quercetin −20.618 1.91 ALA:11, VAL:14, GLU:31, LYS:117

HeptahydroxyFlavone −17.543 1.64 VAL:14, GLY:15, LYS:16, SER:17, LYS:117

MTOR

Quercetin −12.382 1.81 LYS B:2046, TYR B:2089, GLY B:2093,
ARG B:2043

Solanidine −8.277 1.15 ARG B:2043, ASN B:2044

HeptahydroxyFlavone −8.719 1.99 ARG B:2043,

TNF
Esculetin −9.637 0.95 GLY B:122, GLY C:121

HeptahydroxyFlavone −5.584 1.94 TYR A:119, TYR B:119, GLY C:121

3. Discussion

HCC is among the most common health disorders that significantly impact the world
population. According to GLOBOCAN, the highest occurrence rate of HCC has been
reported in China, Southeast Asia, Eastern Africa, and Sub-Saharan Western Africa. The
interlinked series of multiple pathological pathways comprehending the HCC further
intensify the disease and make treating it more challenging [17]. Despite the continuous
efforts of medical health care practitioners in drug development to subdue HCC, it still
lacks any effective therapeutic intervention. Thus, exploring any effective therapeutic
compound or drug is crucial. Continuing with the same notion, traditional medicinal
plants have been inclusively practiced for their effective contribution to many diseases,
including HCC, based on their multiple pharmacological properties. Continuing with the
same notion, traditional medicinal plants have been inclusively practiced for their effective
contribution to many diseases, including HCC, based on their multiple pharmacological
properties. For example, Calotropis gigantea (Asclepiadaceae) and Xanthium strumarium
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(Asteraceae) have anti-hepatocellular carcinoma and anti-proliferative (against HepG2
cancer cells) properties, respectively [18].

The medicinal plant may have broad pharmacological actions with multiple targets
and pathways composed of multiple components that play a vital role in treating HCC [19].
Natural products and their derivatives account for approximately half of all clinically
used medicines. They have been a prominent topic in recent years as a research trend
and potential source for targeted therapies due to their structural variety, multi-target
action, and minimal toxicity side effects [20]. High throughput approaches have shown
significant modes in screening the pharmacological effectiveness of herbal remedies in
drug development in the last decade [21,22].

The network pharmacology (NP) approach, which associates biological systems with
in silico technology, might predict potential targets and pathways underlying the anti-
cancer effect of HCC. In this current study, we employed NP to reveal the pharmacological
mechanism of active constituents in S. surattense against HCC. Compounds with a high
degree in the compound–target network may consider most S. surattense therapeutic effects
on HCC.

The NP approach could help us to screen the putative active ingredients and target
ingredients. S. surattense, the identified compound with OB 30% and DL index v0.18,
was regarded as a potentially bioactive compound because it is probably absorbed and
distributed in the human body. In this context, the screening results revealed that gly-
coalkaloid, steroids, triterpenoids, solanine, and flavonoids were the main phytochemical
bioactive compounds of S. surattense that proved potent in the development of HCC by
affecting the TP53, GAPDH, AKT1, ESR1, EGFR, TNF, HIF1A, HRAS MTOR, and BCL2L1
gene targets. The PPI network analysis was performed to identify essential proteins associ-
ated with the anti-HCC effects of S. surattense, which were indicated by the PPI network’s
critical nodes. The interactive nodes showed that S. surattense might interact with represen-
tative gene targets directly or indirectly to perform anti-cancer actions. These key targets
were mainly involved in biological processes such as tumor cell proliferation, apoptosis, cell
cycle control, epithelial–stromal transition, angiogenesis, tumor invasion and metastasis,
tumor signal transmission, immunological modulation, drug resistance, and others [23–25].
Our present study’s predicted outcomes were consistent with certain earlier publications.

This study said that quercetin, followed by solanine, was the vital key ingredient
of S. surattense. Quercetin, a natural flavonoid, was the most potent compound that
could suppress the growth of HCC cells employed in aerobic glycolysis, and suppress
the development of HCC by lowering HK2 protein levels and inhibiting the AKT/mTOR
pathway in HCC cells [26]. The solanine, a class of glycoalkaloids, induces apoptosis by
regulating the expression of TNF, decreasing the expression of anti-apoptotic proteins
(Bcl-2), increasing the expression of apoptotic proteins (Bax), reducing the Bcl-2/Bax ratio,
obstructing mitochondrial and lysosomal membrane proteins, and activating the caspases
cascade. Furthermore, solanine decreases the phosphorylation of ERK1/2, JNK1/2, and
PI3K/Akt signaling pathways [12,27,28].

As shown in GO term and KEGG analysis using enrichment pathways, these findings,
mainly linked with the GO results, suggested that S. surattense may reduce HCC cell growth
and induce cell death via acting on the PI3K-AKT signaling pathway, which represents the
putative mechanism of action of HCC growth. Further studies confirmed that quercetin
significantly reduced the expression of p-PI3K p85 (Tyr467), p-PI3K p55 (Tyr199), and
p-Akt (Ser473) in HepG2. Quercetin, as a potent flavonoid component in S. surattense
associated with an effective anti-cancer drug, may boost the expression of p53 which in
turn downregulates the expression of HIF1A, resulting in the proapoptotic process of
liver cancer [29].

Additionally, activating the PI3K-AKT pathway can modulate HIF1A expression [30].
According to a series of network pharmacology studies, S. surattense may have inhibition in
HCC via directly influencing cancer, metabolic, and immune-related pathways [31]. EGFR,
a transmembrane receptor tyrosine kinase, might activate various signaling pathways that
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control cell proliferation, differentiation, and survival [32]. AKT1 is related to tumor devel-
opment and metastasis in HCC and is activated by the PI3K pathway. AKT2 overexpression
is prevalent in HCC and is associated with a bad prognosis [33,34]. The results indicated
that S. surattense could inhibit the expression of AKT1 and phosphorylation of AKT1. It
was predicted that S. surattense controls several targets and pathways in HCC cells based
on our findings (Figure 7). Molecular docking was employed to validate further, based
on the spatial structure of ligands and receptors for estimating binding energy between
medicinal constituents and targets [35]. In this study, we discovered several target genes
that are involved in various metabolic pathways.

Figure 7. Pathways influenced by targets of S. surattense.

In the context of network pharmacology, the current study elucidates the active com-
pounds, their potential targets, and the related pathways against HCC. Consequently, it
provides a theoretical framework for subsequent experimental investigation. Network
pharmacology has its limitations; therefore, basic pharmacological pathways for treating
HCC can only be determined by data mining. Although we have given some intriguing
facts, further research and clinical trials are necessary to verify the therapeutic uses of
S. surattense.

4. Material and Methods
4.1. Collection and Identification of S. surattense

The S. surattense was collected from the Cholistan Desert, Bahawalpur, Pakistan, and its
identification was confirmed by the Director Botanical Science Division, Pakistan Museum
of Natural History Islamabad, Pakistan (Herbarium Number 043720).
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4.2. Extraction of Plant Material

The S. surattense extract preparation was performed following the maceration method [35].
In brief, the fruit part of S. surattense was shade-dried at room temperature and ground
with an electric grinder to obtain a coarse powder. Then, 50 g of S. surattense powder was
soaked in 500 mL of 70% ethanol (1:10 w/v; plant material/solvent), vigorously agitated
2X/day for seven consecutive days, and filtered using Whitman’s filter paper. The filtrate
was dried in a hot air oven at 40 ◦C to obtain a solid plant extract and stored at −4 ◦C
in amber glass vials until use. There are no reports of such studies on S. surattense to
date. Therefore, we wanted to obtain a non-toxic extract that might contain a maximum
number of phytochemicals of different classes, and which would not lose its biological
activities due to beyond-physiological temperatures. For this purpose, maceration (cold
extraction method) was used, although the quantity of phytochemicals might have been
compromised by said method, but not the quality. Likewise, 70% ethanol (relatively highly
polar and nontoxic solvent) was used instead of methanol (relatively toxic solvent) or a
nonpolar solvent to obtain an extract from plant material, so that number of biologically
active phytochemicals with their relatively nontoxic properties could be extracted [36,37].
The final yield of obtained extract (10.5 mg) was 21%.

4.3. Preparation of Stock Solutions

A stock plant extract solution was prepared in dimethyl sulfoxide (DMSO) with a
50 mg/mL concentration, filtered using a 0.22 µm syringe filter, and stored at −20 ◦C until
further experimentation [38].

4.4. In Vitro Assay and Cell Culture Medium

Human liver cells HepG2 and Vero (ATCC, Manassas, VA, USA) were maintained in a
high-glucose DMEM medium containing 10% fetal bovine serum, 1% penicillin, and 1%
streptomycin, then cultured at 37 ◦C in an atmosphere with 5% CO2 in a carbon dioxide
incubator [39,40]. To subculture, the spent media were removed from the flask, cells were
washed by DPBS, and then they were incubated with trypsin EDTA (1 mL/25 cm2) at
37 ◦C for 2–5 min. Trypsin was inactivated after detaching the cells by adding an FBS-
containing medium [41], and counted by a hemocytometer to determine the concentration
of cell suspension.

4.5. Cell Proliferation Assay/Toxicological Analysis of Plant Extract Using WST-8 Assay

The HepG2 and Vero cell lines were grown in a 96-well cell culture plate up to 70%
confluence in respective media for 24 h. Subsequently, the cells were treated with different
concentrations (30, 40, 50, 60, 70, 80, 90, and 100 µg/mL) of S. surattense fruit extract and
vehicle (DMSO control) for another 24 h. The cells were washed using a phosphate buffer
saline (PBS) following the media aspiration. The WST-8 solution was added (10 µL/well in
100 µL DMEM) [42,43], and the plate was incubated for 4 h at 37 ◦C in the dark. The water-
soluble, orange-colored WST-8 formazan product was analyzed by reading the absorbance
using an ELISA plate reader at a test wavelength of 450 nm [44] and a reference wavelength
of 630 nm. Each experiment was repeated for at least 4X prior to the data plotting a
graph. Meanwhile, the untreated cells were considered the control [45], and Doxorubicin
(1.2 µg/mL)/(2.21 µM) was used as a positive control [46].

Cell viability/proliferation% was evaluated by the following equation:

Cell Proliferation% =
Abs. of Sample−Abs. of Reference (Sample)
Abs. of Control−Abs. of Reference (Control)

× 100

Screening of Active Compounds and Targets

The active components of S. surattense were identified using PubChem, Swiss ADME,
and canonical SMILES of bioactive compounds were collected from ChEMBL. Using the
obtained canonical SMILES, five pharmacokinetic properties of bioactive compounds,
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including molecular weight, hydrogen bond acceptor, hydrogen bond donor, and the
logarithm of partition coefficient, were obtained. The Lipinksi rule of five for drug-likeness
was also analyzed to screen for these bioactive compounds. Following the acute accuracy, a
comprehensive ADMET analysis was performed using ADMETlab. Bioactive compounds
were screened out based on the Lipinksi rule of drug discovery, including the criteria of
drug-likeness, molecular weight (MW < 500), the logarithm of the partition coefficient
(logP < 5.6), number of hydrogen bond acceptor (nHA ≤ 10), and number of hydrogen
bond donor (nHD ≤ 5). Further, SwissTarget Prediction was used to select the potential
target of the selected compounds using canonical SMILES. To predict the target of selected
compounds, the Homo sapiens species was determined.

4.6. Prediction of HCC Targets

Predicting disease-related genes is a first step toward understanding the molecular
mechanisms of medicinal herbs for treating various diseases and syndromes. The four
disease-related databases, GeneCard, OMIM, CTD, and DisGeNET, were searched and
evaluated to predict possible disease-related targets using hepatocellular carcinoma as
a keyword. Furthermore, each database contains brief genomic information and func-
tional annotations for all known human genes. All duplicated genes were removed for
further analysis.

4.7. Screening of Key Targets

The identification of overlapping disease and chemical targets was made using Venn
diagrams. Those are deemed important targets and are subjected to further investigation.
Protein–protein interactions (PPI) are significant because of their flexibility, suppleness, and
selectivity. STRING is a widely used database of protein–protein interactions that includes
information from various sources. The common key targets of active compounds and HCC
disease were uploaded to the STRING database for interaction analysis of the key targets at
a combined score of 0.4. To visualize the protein–protein interaction network, Cytoscape
(version 9) was used [47].

4.8. Analysis of Functional Enrichment

KEGG pathway analysis and GO enrichment analysis was performed using DAVID.
The common key targets of disease and plant were subjected to the DAVID database for the
functional enrichment analysis. Three GO annotations, cellular components (CC), biological
process (BP), and molecular function (MF) were analyzed. KEGG was used for the pathway
analysis of the key targets. The top 10 GO annotations and cancer-related KEGG pathways
were selected with P-value less than 0.05, and these were discussed in the article in the
form of dot plots made by the R ggplot2 package.

4.9. Network Construction

The molecular mechanism of S. surattense in HCC was studied through network anal-
ysis. The active components of S. surattense and the HCC therapeutic target were entered
into Cytoscape to form the compound–target network. The network nodes represent the
chemical ingredients and targets, while the edges represent their interactions. The “network
analyzer” examined the network’s essential parameters.

4.10. Molecular Docking

In drug discovery, molecular docking has become a significant catalyst and the most
applicable technique. Through molecular docking, it is possible to predict the interaction
of ligands to their respective proteins in a crystalline lattice. The crystal structures of
proteins MTOR (1AUE), EGFR (1IVO), BCL2L1 (1R2E), ESR1 (1UOM), HRAS (4XVR),
HIF1A (5JWP), TNF (5MU8), and AKT1 were retrieved from the RCSB PDB database. The
Protein Data Bank (PDB) is a globally interconnected repository for information on the
three-dimensional structures of proteins and nucleic acids. Researchers may use these
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data to better understand various facets of biomedical, from the synthesis of protein to
disease. Chimera was used to refine the structure of the protein. Furthermore, molecular
docking between key targets and active molecules was done using PyRx software. The
docking score between key targets and compounds was used as a primary evaluation factor
to filter out potential constituents and their potential targets. The docking analysis was
also performed with MOE and Autodock software to validate the docked structures. Then
Chimera and Discovery Studio were used to visualize interactions between key targets and
active compounds. By measuring the strong affinity between chemicals and their related
targets, this stage attempted to investigate the binding energy among compounds.

5. Conclusions

According to a retrospective study, we conclude that herbal medicine (HM) therapy
was correlated with a better prognosis in patients with HCC. Furthermore, by predicting
active components and molecular targets of herbs, the network pharmacology approach
may be used to explore the underlying anti-cancer mechanisms of herbs. A potential
research strategy for “precise HM treatment” is the integration of clinical studies with
network pharmacology. This study also concludes that the active constituents of S. surattense
such as quercetin control the disorder by suppressing the potential target of hepatocellular
carcinoma. The anti-cancer effects of S. surattense on HCC were postulated to be associated
with the regulation of tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and
metastasis via multiple signaling pathways, including the AKT1, EGFR signaling pathway,
the ESR1 signaling pathway, and the HIF1A signaling pathway.
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