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ABSTRACT
Viruses of microbes impact all ecosystems where microbes drive key energy and
substrate transformations including the oceans, humans and industrial fermenters.
However, despite this recognized importance, our understanding of viral diversity
and impacts remains limited by too few model systems and reference genomes. One
way to fill these gaps in our knowledge of viral diversity is through the detection
of viral signal in microbial genomic data. While multiple approaches have been
developed and applied for the detection of prophages (viral genomes integrated in
a microbial genome), new types of microbial genomic data are emerging that are
more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs)
of uncultivated organisms or genomic fragments assembled from metagenomic
sequencing. Here, we present VirSorter, a tool designed to detect viral signal in
these different types of microbial sequence data in both a reference-dependent
and reference-independent manner, leveraging probabilistic models and extensive
virome data to maximize detection of novel viruses. Performance testing shows that
VirSorter’s prophage prediction capability compares to that of available prophage
predictors for complete genomes, but is superior in predicting viral sequences
outside of a host genome (i.e., from extrachromosomal prophages, lytic infections,
or partially assembled prophages). Furthermore, VirSorter outperforms existing
tools for fragmented genomic and metagenomic datasets, and can identify viral
signal in assembled sequence (contigs) as short as 3kb, while providing near-perfect
identification (>95% Recall and 100% Precision) on contigs of at least 10kb. Because
VirSorter scales to large datasets, it can also be used in “reverse” to more confidently
identify viral sequence in viral metagenomes by sorting away cellular DNA whether
derived from gene transfer agents, generalized transduction or contamination.
Finally, VirSorter is made available through the iPlant Cyberinfrastructure that
provides a web-based user interface interconnected with the required computing
resources. VirSorter thus complements existing prophage prediction softwares to
better leverage fragmented, SAG and metagenomic datasets in a way that will scale
to modern sequencing. Given these features, VirSorter should enable the discovery
of new viruses in microbial datasets, and further our understanding of uncultivated
viral communities across diverse ecosystems.
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INTRODUCTION
Viruses of microbes, mainly infecting bacteria and archaea, are ubiquitous and abundant

in every type of biome sampled thus far, where virus-host interactions alter ecosystem

function ranging from geochemical cycling to human health (Fuhrman, 1999; Wommack

& Colwell, 2000; Weinbauer, 2004; Breitbart & Rohwer, 2005; Edwards & Rohwer, 2005;

Suttle, 2007; Rohwer & Thurber, 2009; Letarov & Kulikov, 2009; Rodriguez-Valera et al.,

2009; Reyes et al., 2012; Brum & Sullivan, 2015). In the oceans, for example, viruses

infecting cyanobacteria kill approximately 3% of their hosts per day (Suttle, 2002), while

also impacting cyanobacterial photosynthesis locally and globally through the expression

and transfer of virus-encoded photosystem core genes (Lindell et al., 2005; Sullivan et al.,

2006). Such modulation of host microbial metabolisms during infection appears to be a

generalized strategy wherein oceanic viral communities encode genes with the potential to

modulate key microbial carbon, nitrogen, phosphate and sulfur metabolisms (Breitbart et

al., 2007; Sharon et al., 2009; Sharon et al., 2011; Thompson et al., 2011; Hurwitz, Hallam

& Sullivan, 2013; Anantharaman et al., 2014; Roux et al., 2014b; Hurwitz, Brum & Sullivan,

2015). In humans, viruses of microbes appear dynamic (Reyes et al., 2010; Pride et al.,

2011; Minot et al., 2013), and again likely play key ecosystem roles, particularly affecting

virulence of facultative pathogens (Boyd, 2012; Busby, Kristensen & Koonin, 2013) with

a striking example being the requirement of a phage infection for the full virulence

of Vibrio cholerae (Waldor & Mekalanos, 1996). Microbial viruses may also help fight

antibiotic-resistant pathogens, leading to a recent resurgence in research exploring the use

of viruses for “phage therapy” in humans (Bush et al., 2011; Nobrega et al., 2015).

In spite of this importance, our understanding of viral diversity remains limited to a tiny

fraction of that occurring in nature. This is because most microbes known to exist from

barcode surveys are not yet in culture (Rappé & Giovannoni, 2003), and even if microbial

hosts were cultivated, not all viruses are amenable to cultivation (Edwards & Rohwer, 2005).

In the oceans alone, the lack of reference genomes leads to surveys of viral communities

returning mostly (63–93%) unknown sequences (Brum & Sullivan, 2015), and most (99%)

of 5,476 surface ocean viral populations remaining taxonomically unidentifiable beyond

the “order” level (Brum et al., 2015). This is not surprising, given that 86% of the 1,531

genomes of viruses that infect bacteria and archaea available at RefSeq are associated with

only 3 of 61 known host phyla (based on the viral genomes available in NCBI RefseqVirus

v69, January 2015).

One way forward is to better detect and catalog viral sequence data from rapidly

expanding microbial genomic datasets. First, prophages, which result from the integration

of a temperate virus genome into a microbial host genome, are present in ∼60% of

sequenced bacteria (Casjens, 2003; Canchaya, Fournous & Brüssow, 2004). Second,

Single-cell Amplified Genome (SAG) datasets are now routinely generated to provide
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genome sequence data and inferences about metabolic capacity for novel microbes

(Swan et al., 2011; Kamke, Sczyrba & Ivanova, 2013; Rinke et al., 2013; Kashtan et al.,

2014), and offer a rich source of novel viral sequences. These data will include prophage

sequences, as well as viruses from actively lytic infections. Such SAG-based viral signal

has already provided insights into marine viral diversity and virus-host interactions in

uncultivated protists, bacteria and archea (Yoon et al., 2011; Roux et al., 2014b; Labonté et

al., 2015). Third, large genome fragments of uncultivated microbes and associated viruses

can now be assembled from microbial metagenomes (Sharon et al., 2009; Sharon et al.,

2011; Narasingarao et al., 2012; Albertsen et al., 2013; Anantharaman et al., 2014). Finally,

viral metagenomics (viromics) can be used to survey the sequence data associated with

purified viral particles and can also result in assembly of large viral genome fragments

(Emerson et al., 2012; Minot et al., 2013; Roux et al., 2013; Brum et al., 2015).

Numerous approaches are available to identify prophages in complete microbial

genomes including Phage Finder (Fouts, 2006), Prophinder (Lima-Mendez et al., 2008),

PHAST (Zhou et al., 2011), and PhiSpy (Akhter, Aziz & Edwards, 2012). Overall, prophage

predictors rely on the detection of sequence similarities between regions of the microbial

genome and known viral genes. In addition, PhiSpy also identifies “viral-like” genomic

features (AT and GC skew, protein length and transcription strand directionality) to

enable the detection of viruses absent from databases (Akhter, Aziz & Edwards, 2012).

Prophage predictors also look for prophage “ends” by identifying the attachment sites in

the microbial genome for each predicted prophage. These tools are either designed for a

user to download and run locally (PhiSpy, Phage Finder) or to access through a web-server

(PHAST).

However, new tools are needed that (i) advance viral detection beyond prophages and

instances where new viruses closely match those available in databases, and (ii) can handle

fragmented and larger-scale microbial genomic datasets. Here, we present VirSorter, an

automated tool designed to detect viral signal in genomic datasets, and make this new tool

and the associated databases freely available in the Discovery Environment of the iPlant

Cyberinfrastructure (Goff et al., 2011). Overall, we demonstrate that VirSorter detects

prophages in complete microbial genomes as well as current prophage tools, but also offers

capabilities to detect viral sequences in fragmented genomic datasets including incomplete

genomes, SAGs or metagenomic assemblies, and can be used to flag potential cellular

contamination in viromes for removal.

MATERIALS & METHODS
Building reference databases for bacterial and archaeal viruses
Two reference databases of viral protein sequences were built for VirSorter and are available

in the iPlant Discovery Environment (Data/Community Data/iVirus/VirSorter/Database).

The first includes 114,297 proteins from viruses infecting bacteria or archaea in RefSe-

qVirus genomes (as of January 2014), hereafter named “RefSeqABVir.” Protein clusters

(PCs) were defined using MCL clustering (Enright, Van Dongen & Ouzounis, 2002) of

these proteins (inflation 2.0) based on their reciprocal blastp comparisons (threshold of
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50 on bit score and 10−03 on E-value). The 9,735 PCs with at least 3 sequences were used

to define a profile database searchable with HMMER3 tools (Eddy, 2011). The remaining

34,668 unclustered sequences were formatted for a blastp search. All PCs that did not

contain any sequences from Caudovirales and unclustered sequences from viruses other

than Caudovirales were marked as “Non-Caudovirales.”

The RefSeqABVir database was then augmented by virome sequences sampled from

freshwater, seawater, and human gut, lung and saliva, resulting in an extended version

of the reference database (hereafter named “Viromes”) which includes both virome and

RefSeqABVir sequences. This combined reference dataset should help to detect new viruses

for which no cultivated reference sequence is available. When only raw reads were available,

viromes were assembled using Newbler (threshold of 98% identity on 35bp). The resulting

contigs were then checked for the presence of cellular genome sequences, and only the 68

viromes for which no 16S rRNA genes were retained (see Table S1 for a complete list of

these viromes). Contigs assembled from these 68 viromes were then manually inspected

(through annotations generated by Metavir; Roux et al., 2014a) and revealed no identifiable

cellular genome sequences (i.e., no sequence contained more than 2 genes that matched

a cellular genome and were not found in any known virus). A total of 146,521 complete

predicted proteins from this quality-controlled dataset were then clustered with the

114,297 proteins from RefSeqABVir, leading to 15,673 clusters with 3 sequences or more,

and 88,052 unclustered sequences. PCs from the combined Viromes database were used to

create a profile database searchable with HMMER3, and the 34,338 unclustered sequences

from RefseqABVir were formatted for BLAST search (unclustered sequences from viromes

were not added to the database to prevent the inclusion of contaminating sequences).

Within these databases, viral “hallmark” genes were defined though a text-searching

script looking for “major capsid protein,” “portal,” “terminase large subunit,” “spike,”

“tail,” “virion formation” or “coat” annotations. After a manual curation step removing

genes with more general annotation such as “protease” or “chaperone,” 826 PCs or single

genes were identified as “viral hallmark genes.” This latter point meant removing domains

also matching “protease” or “chaperone” domains and was conducted to minimize false

positives for our viral hallmark genes category by extra-cautiously avoiding PCs that might

include domains that could derive from either both viruses or microbes.

VirSorter sequence pre-processing
VirSorter was inspired by previous algorithms and tools developed to detect prophages

(viral sequences integrated in cellular genomes), especially Prophinder (Lima-Mendez et

al., 2008). For each (set of) genome(s) and/or contig(s) (for draft genomes) provided as

raw nucleotide sequences, the initial stages of VirSorter include a detection of circular

sequences (i.e., sequences with matching ends likely representing circular templates;

Roux et al., 2014a), gene prediction on each sequence with MetageneAnnotator (Noguchi,

Taniguchi & Itoh, 2008), and selection of all sequences with more than 2 genes predicted.

VirSorter also removes all poor-quality predicted protein sequences (predicted protein

sequences with more than 50 consecutive X, F, A, K or P residues) likely originating from
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gene prediction across low-complexity or poorly defined genome regions (e.g., “bridges”

between contigs generated during scaffolding) and yielding false-positive matches when

compared to protein domain databases.

Predicted protein sequences are then compared to PFAM (v27) and to the viral database

selected by the user (either RefSeqABVir or Viromes) with hmmsearch (Eddy, 2011) and

blastp (Altschul et al., 1997) and each gene is affiliated to its most significant hit based on

alignment score. Thresholds for significant hits are as follows: minimum score of 40 and

maximum E-value of 10−05 for hmmsearch, and minimum score of 50 and maximum

E-value of 10−03 for blastp.

VirSorter metrics computation
Following the sequence pre-processing, viral regions are detected through computation of

multiple metrics using sliding windows. The metrics used are (i) presence of viral hallmark

genes (Koonin, Senkevich & Dolja, 2006; Roux et al., 2014b), (ii) enrichment in viral-like

genes (i.e., genes with best hit against the viral reference database, either RefSeqABVir or

Viromes), (iii) depletion in PFAM affiliated genes, (iv) enrichment in uncharacterized

genes (i.e., predicted genes with no hits either in PFAM or the viral reference database),

(v) enrichment in short genes (genes with a size within the 10% shorter genes of the

genome), and (vi) depletion in strand switching (i.e., change of coding strand between two

consecutive genes).

For all the enrichment and depletion metrics, a score comparable to the one of

Prophinder was used (Lima-Mendez et al., 2008). First, a global value for each metric

is estimated for the whole genome set (global rate of viral-like genes, global rate of

PFAM-affiliated genes, etc). Then, for each window, the number of observed events

(e.g. number of viral-like genes) is compared to an expected number deduced from the

global value of the metric (modeled with a binomial law). A p-value is computed, reflecting

the probability of observing n events or more (for enrichment) or n events or fewer (for

depletion) at random, thus corresponding to a risk of generating false positives. These

p-values are multiplied by the total number of comparisons (here the total number of

sliding windows observed on a sequence), and a negative logarithmic transformation

(−log10) defines the associated significance score, again as in the Prophinder algorithm

(Lima-Mendez et al., 2008).

For the detection of viral-like genes enrichment, two different values are computed for

each dataset: one based on genes in the entire database (RefSeqABVir or Viromes), and

another based on non-Caudovirales genes only. Indeed, Caudovirales genomes represent

81% of RefSeqABVir, and the remaining viral families usually have only a handful of

reference genomes. The global rate of viral-like genes in cellular genomes is thus usually

one order of magnitude lower when considering only non-Caudovirales genes (viral-like

genes ratio across the bacterial and archaeal class for which complete genomes are available

at NCBI RefSeq and WGS ranges from 4.8 to 16%, with an average of 10.6%, whereas

the ratio of non-Caudovirales genes in these same genomes ranges from 0.01 to 1.4%,

with an average of 0.16%). Hence, the same number of genes in a region would be
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considered as non-significant when matching Caudovirales (compared to the global rate

of Caudovirales-like genes in the whole genomes), but would be significant when only

composed of non-Caudovirales genes.

Sequence metrics summary
Each metric is computed using sliding windows from 10 to 100 genes wide, starting at

every gene along the sequence, and all scores greater than 2 are stored. Local maxima of

significance score are then searched and the associated set of genes is defined as a putative

viral region. These different predictions (based on the metrics above) are then merged

when overlapping (extending the regions to include all predicted windows), leading to a

list of putative viral regions associated with a (set of) metric(s). These regions are classified

into three categories: (i) category 1 (“most confident” predictions) regions have significant

enrichment in viral-like genes or non-Caudovirales genes on the whole region and at least

one hallmark viral gene detected; (ii) category 2 (“likely” predictions) regions have either

enrichment in viral-like or non-Caudovirales genes, or a viral hallmark gene detected,

associated with at least one other metric (depletion in PFAM affiliation, enrichment

in uncharacterized genes, enrichment in short genes, depletions in strand switch); and

(iii) category 3 (“possible” predictions) regions have neither a viral hallmark gene nor

enrichment in viral-like or non-Caudovirales genes, but display at least two of the other

metrics with at least one significance score greater than 4. Finally, if a predicted region

spans more than 80% of predicted genes on a contig, the entire contig is considered viral. A

summary of VirSorter detection types is displayed in Fig. 1B.

Next, higher confidence predictions are used to refine the sequence space search.

Specifically, sequences from all open reading frames from category 1 predictions that

do not match a viral protein cluster are clustered and added to the reference database

(RefSeqABVir or Viromes depending on the initial user choice). This updated database

is then used in another round of search by VirSorter. This iteration where category 1

sequences are used to refine the searches is continued until no new genes are added to

the database. Once no new genes are added, the final VirSorter output is provided to the

user and includes nucleotide sequences of all predicted viral sequences in fasta files, an

automatic annotation of each prediction in genbank file format, and a summary table

displaying for each prediction the associated category and significance scores of all metrics.

By providing the predictions and the underlying significance scoring, users can evaluate

each prediction and apply custom thresholds on significance scores through a simple

text-parsing script, even for large-scale datasets.

VirSorter is available as an application (App) in the iPlant discovery environment

(https://de.iplantcollaborative.org/de/) under Apps/Experimental/iVirus (see Fig. S1 for a

step-by-step guide of VirSorter app on iPlant). This application allows users to search any

set of contigs for viral sequences using either the RefSeqABVir or the Viromes database.

The reference values of VirSorter metrics will be evaluated on the complete set of input

sequences, hence mixed datasets should be sorted (when possible) by type of bacteria or

archaea in order to get the most accurate result possible. In addition to these reference
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Figure 1 VirSorter process: overview (A) and examples of viral sequence detection (B). (A) Overview
of VirSorter process. The top part described the different parts of the sequence analysis pipeline, and
the bottom frame summarizes the classification in three categories of decreasing confidence based on
the different metrics being significant (green dot) or not (black cross). Viral “hallmark” genes or protein
clusters (PCs) were identified by looking for genes typically of viral (continued on next page...)
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Figure 1 (...continued)

origin that are annotated as “major capsid protein,” “portal,” “terminase large subunit,” “spike,” “tail,”
“virion formation” or “coat” and manually removing all protein domains with a potential overlap with
microbial functions. (B) Examples of viral sequence detection by VirSorter. On top is the clearest case,
in which a sequence harbors several viral hallmark genes as well as enrichment in viral-like genes (or
virome-like when the genes are most similar to a viral metagenome sequence, when using the Viromes
database). This type of detection is considered as the most confident. The three examples below are
different cases in which only one of the primary metrics is significant. Notably, these examples display
how VirSorter can detect new viruses based on a significant depletion in characterized genes associated
with a viral hallmark gene (case 3), and how the same number of genes can be a non-significant
enrichment when considering all viruses, yet significant when looking at only the non-Caudovirales (case
4). These detections are still considered confident, although less sure than case 1. Finally, a last example
(case 5) displays a more ambiguous situation, in which a sequence displays only secondary viral metrics
but neither viral gene enrichment nor a viral hallmark gene. For these detections, one of the metrics (at
least) must have an E-value lower than 10−04 (note that significance scores used in VirSorter output files
are computed as negative log10 transformations of E-values, and would here correspond to a score of 4
or more).

databases, the VirSorter App on iPlant allows users to input their own reference viral

genome sequence already assembled or to-be assembled using iPlant Apps prior to analysis

with VirSorter. Assembled sequences are processed as follows: (i) genes are predicted

with MetaGeneAnnotator (Noguchi, Taniguchi & Itoh, 2008), (ii) predicted proteins are

clustered with sequences from the user-selected database (either RefSeqABVir or Viromes),

and (iii) unclustered proteins are added to the “unclustered” pool. VirSorter scripts are also

available through the github repository https://github.com/simroux/VirSorter.git.

Comparison of VirSorter with other prophage predictors
We first evaluated VirSorter results against the manually curated prophages from (Casjens,

2003). Each genome was processed with VirSorter, PhiSpy (Akhter, Aziz & Edwards, 2012),

Phage Finder (Fouts, 2006) and PHAST (Zhou et al., 2011). For each tool, a prophage

was considered as “detected” when a prediction covered more than 75% of the known

prophage. For a more detailed example case of prophage detection in a complete bacterial

genome including both prophages and genomic islands, the same tools were applied to the

manually annotated Pseudomonas aeruginosa LES B58 genome (Winstanley et al., 2009).

VirSorter was then compared with the same prophage detection tools on the set of

simulated SAGs. In that case, a viral sequence was considered as detected if predicted as

completely viral or as a prophage. All the additional detections were manually checked to

verify if the region was indeed viral (originating from a prophage in one of the microbial

genomes rather than from a viral genome) or a false positive. The same approach was used

for the simulated microbial and viral metagenomes results.

For each set of predictions, two metrics are computed. First, the Recall value corre-

sponds to the number of viral sequences correctly predicted divided by the total number of

known viral sequences in the dataset, and reflects the ability of the tool to find every known

viral sequence in the dataset. Second, the Precision value is computed as the total number

of viral sequences correctly predicted divided by the total number of viral sequences

predicted, and indicates how accurate the tool is in its identification of viral signal.
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Simulation of draft genomes and metagenomes
A total of 10 Single-cell amplified genomes, 10 microbial metagenomes and 10 viral

metagenomes were simulated with NeSSM (Jia et al., 2013). Microbial genomes were ran-

domly picked within the bacterial and archaeal genomes available in RefSeq and WGS (as

of January 2014). Viral genomes were picked within the most recently submitted genomes

(since June 2014), thus are not in VirSorter reference database. Simulated inputs for each

genome group (viral and microbial) followed a power-law distribution of abundances

within the microbial and viral communities. The proportion of viral reads varied from 5

to 20% for microbial metagenome, and from 75 to 99% for viral metagenomes (Tables S4

and S5). For each simulated dataset, 100bp paired-end reads similar to those obtained with

HiSeq Illumina were generated (100,000 for SAGs, 1,000,000 for metagenomes), QC’d with

fastq quality trimmer with a threshold of 30 (part of the fastx toolkit, http://hannonlab.

cshl.edu/fastx toolkit/), and assembled with Idba ud (Peng et al., 2012).

To identify viral sequences in the assemblies, the resulting contigs were compared

to the viral genomes with nucmer (Delcher, Salzberg & Phillippy, 2003), and all

sequences matching one of the viral genomes at 97% nucleotide identity or more

were considered as viral. All simulated contigs and composition table (i.e., relative

abundance of each genome in the simulated dataset) are available in the iPlant Dis-

covery Environment alongisde VirSorter results for each of these simulated datasets

(/iplant/home/shared/imicrobe/VirSorter/Benchmark datasets and Benchmark results

respectively).

RESULTS & DISCUSSION
Reference-dependent and general genome features used to detect
viruses
VirSorter is designed to predict viral sequences in complete or fragmented genome

sequence data from bacteria and archaea. Viral sequences are identified through a

combination of “primary metrics” linked to the detection of significant similarities

with known viral sequences and “secondary metrics” associated with viral-like genome

structure (Fig. 1A). VirSorter first builds a probabilistic model for each metric using the

microbial genomic data provided by the user (i.e., the complete genome or the entire

contig dataset for draft genomes or metagenomes) that is then used as reference to

calculate enrichment/depletion statistics. A “statistical enrichment in viral gene content”

for a set of genes thus indicates that the region evaluated displays more viral-like genes than

would be expected by chance alone based on the overall frequency of viral-like genes in the

whole dataset. Viral-like genes are identified through comparison to RefSeq viral genomes

(“RefSeqABVir” database hereafter) or to a custom database built from RefSeqABVir to

which curated virome datasets were added to improve novel virus detection capabilities

(hereafter “Viromes” database, Fig. 1A and Table S1). Through the VirSorter application

(App) on iPlant, users can also add their own viral genome sequence(s) (in fasta format),

which predicted protein will be added to the user-selected database (either RefSeqABVir or

Viromes).
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Viral signal mining process
Viral regions are predicted based on a summary of primary and secondary metrics

evaluated on each genomic sequence. Each prediction is categorized from 1 to 3 in order

of decreased confidence (Figs. 1A and 1B). Sequences for which the predicted viral region

spans more than 80% of the contig length are considered as entirely viral. Biologically, we

interpret these different categories as sequences similar to known viral references (category

1), sequences divergent from references with mostly genes yet to be detected in viral

genomes or partial sequences lacking viral hallmark genes which may include defective

prophages (category 2), and sequences or regions with a genome structure similar to viral

genomes, but lacking any similarity to known viruses or viromes (category 3). These latter,

category 3 predictions are thus essentially “aberrant” cellular genomic regions, and as

such should be carefully examined as this category also routinely includes hypervariable

microbial genomic islands and other mobile genetic elements in addition to novel viral

sequences. However, we include category 3 predictions since when coupled to manual

inspection, researchers can use these predictions to uncover novel biology, particularly

when analyzing the small contigs and highly novel viruses likely to derive from fragmented

draft genomes or SAGs.

Virsorter prophage prediction is comparable to existing tools
To evaluate VirSorter performances, we first examined its prophage prediction capability

as compared to existing tools. Specifically, we used a set of 267 manually annotated

prophages from 54 bacterial genomes (Casjens, 2003) to compare the prophage prediction

performances of VirSorter, PhiSpy, Phage Finder, and PHAST. We evaluate performance

using two metrics: (i) “Recall,” the number of viral regions detected divided by the total

number of viral regions (also known as “Sensitivity”) and (ii) “Precision,” the number of

correct predictions divided by the total number of predictions (also known as “Positive

Predictive Value”).

All of the tested prophage prediction tools perform well on these complete genome

datasets as Recall values range from 64 to 85%, and Precision values range from 74 to

93% (Fig. 2 and Table S2). Two of the tools also associate their predictions with a level of

confidence: PHAST predictions are noted as “intact,” “incomplete,” or “questionable”

based on the number and type of phage genes detected, and VirSorter categorizes

predictions as described above. To see how these confidence categories impacted results, we

computed scores with and without the least confident predictions for both of these tools

(Fig. 2). For PHAST, adding the questionable detections increased detection sensitivity

(Recall increased from 70 to 84%) without altering the Precision (both sets of predictions

display a Precision of 83%). Conversely, including the least confident category 3 predictions

for VirSorter only slightly increased Recall (73 to 79%), but did so at the cost of Precision

(dropping from 93 to 72%). Hence, for VirSorter, prophages predicted as category 3 from

complete microbial genomes are prone to “false-positive” detections—notably because

they can also include other genomic regions with unusual sequence composition features

such as genomic islands or mobile genetic elements (see below).
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Figure 2 Accuracy of viral sequence predictions of VirSorter, PHAST, Phage finder and PhiSpy on (A)
complete microbial genomes, and (B) draft genomes from simulated SAGs including a microbial and
viral genome. For each set of predictions (i.e., each tool and set of option when applicable), the two
metrics used to evaluate the tool performance are Recall (x-axis, proportion of known viral sequences
or regions detected) and Precision (y-axis, proportion of predictions that corresponded to known viral
sequences or regions). Prophages identified in the complete microbial genomes are compared to the list
of manually curated prophages from Casjens (2003).
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Table 1 Comparison of VirSorter predictions with prophage predictors on Pseudomonasaeruginosa LES B58 genome (NC 011770). The coor-
dinates of each prophage known on Pseudomonas aeruginosa LES B58 genome and detection for the different tools are indicated, with absence of
detection highlighted in red. For VirSorter and PHAST, the category of detection (1, 2 or 3 for VirSorter, intact, incomplete or questionable for
PHAST) is also indicated. False-positive detections of genomic islands as putative prophages are highlighted in orange.

Feature Coordinates VirSorter PHAST PhiSpy Phage Finder

Prophage 1 665,272–680,608 Prophage – 2 Prophage – questionable Prophage –

Prophage 2 863,875–906,018 Prophage – 2 Prophage – questionable Prophage Prophage

Prophage 3 1,433,756–1,476,547 Prophage – 2 Prophage – questionable Prophage Prophage

Prophage 4 1,684,045–1,720,850 Prophage – 2 Prophage – questionable Prophage Prophage

Genomic Island 1 2,504,700–2,551,100 Prophage – 3 Prophage – questionable – –

Prophage 5 2,690,450–2,740,350 Prophage – 1 Prophage – intact Prophage Prophage

Genomic Island 2 2,751,800–2,783,500 – – – –

Genomic Island 3 2,796,836–2,907,406 – – Prophage –

Genomic Island 4 3,392,800–3,432,228 – – – –

Prophage 6 4,545,190–4,552,788 Prophage – 2 Prophage – intact – –

Genomic Island 5 4,931,528–4,960,941 Prophage – 3 – – –

Next, we focused on the case of prophages prediction in the manually annotated

Pseudomonas aeruginosa LES B58 genome, which includes both prophages and genomic

islands (Winstanley et al., 2009), to better explore how these tools deal with divergent

prophages and unusual genomic regions (Table 1). All 6 known prophages in this genome

were detected by VirSorter (categories 1 or 2), and PHAST (though 4 were considered

“questionable”), whereas PhiSpy and Phage Finder detected only 5 and 4, respectively.

These missed prophages were the shortest ones (12 and 19 genes compared to >40 genes

for all the other prophages), and one (Prophage 6) also corresponded to an unusual

phage from the Inoviridae familiy, under-represented in viral genome databases. Beyond

prophages, this microbial genome also displayed 5 manually curated genomic islands.

None of these genomic islands were detected as a prophage by Phage Finder, while PhiSpy

and PHAST each wrongly identifies one of these genomic islands as a prophage, and

VirSorter identifies two of them as category 3 predictions (i.e., putative prophage or other

unusual genomic feature, Table 1). This example illustrates that category 3 predictions from

VirSorter help capture even divergent prophages, but also detect hypervariable regions in

microbial genomes, such as genomic islands or plasmids.

VirSorter is more efficient at mining viral signal from single-cell
amplified genomes (SAGs)
To evaluate the capacity of prophage predictors and VirSorter to detect viral sequences

in SAG datasets, we generated 10 simulated datasets of 100,000 reads (100bp) from one

microbial and one viral genome, with 5 to 10% of the reads originating from the viral

genome (Table S3). For each simulated dataset, reads were assembled into contigs (averages

= 556 contigs per SAG ∼3.3 kb in length), from which viral sequences or prophages were

then predicted (the viral genomes used in the simulated datasets being absent from the

VirSorter reference database).
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On these SAGs, VirSorter outperformed all other tools as the only one maintaining

comparable Recall and Precision values to those from complete microbial genomes

(Fig. 2B). VirSorter categories 1 & 2 (higher confidence predictions) displayed a Recall

of 65% and a Precision of 100%, while adding in category 3 predictions increased Recall

(88%) but reduced Precision (81%). Thus, for fragmented genomes, category 3 predictions

help recover more viral sequences, but do so at the cost of increased false-positives.

In comparison, PHAST (with or without the “questionable” predictions) performed

at 40–50% Recall and 38–41% Precision, whereas PhiSpy and Phage Finder had a

lower Recall (36 and 20%, respectively) but high Precision (90 and 83%, respectively).

Considering that the prophage detection tools were optimized for viral sequence detection

in complete microbial genomes, it is not surprising that VirSorter performs better for

fragmented genomes.

We also applied VirSorter and the prophage predictors to a set of 127 SAGs from the

uncultivated bacteria SUP05 for which viral sequences were previously manually identified

and curated (Roux et al., 2014b). Of the 69 known viral contigs in this dataset, 62 were

detected by VirSorter (including 29 as category 3), with the remaining 7 being too short

(5.1kb on average) to provide significant enrichment scores. In contrast, PHAST, PhiSpy

and Phage Finder detected only 15, 1 and none of these sequences, respectively. Beyond

the fragmented nature of these SUP05 SAGs, these data likely represent a worst case

scenario for the prophage prediction tools as these 69 SUP05 viruses represented new

viral genera, and thus no closely related reference sequence were available in databases

(Roux et al., 2014b).

VirSorter alone is able to mine viral signal from bacterial and viral
metagenomes
Next, we evaluated VirSorter’s capability to recover viral sequences in fragmented genomes

assembled from metagenomic datasets. To this end, we created 10 ‘metagenomes’ from 15

microbial and 15 viral genomes at varying representative abundances (Table S4 and see

‘Methods’). These simulated datasets total 192,941 contigs, so the scale is quite large—

none of the prophage predictors were able to even process the data in a reasonable time

(i.e., less than several days). Given that metagenome-derived contigs also represented frag-

mented genomes, we expect that performance would have been poor for prophage predic-

tion tools on these datasets—likely even worse than the SAGs performance testing above.

VirSorter, however, was designed for and is thus able to handle such datasets. For contigs

greater than 500bp, VirSorter predictions displayed good Precision (93–100%) but low

Recall (33%, Fig. 3A and Table S4). However, as the size of the contigs increased, Recall

increased to 79–84% for contigs >3kb and 95–97% for contigs >10kb, with no Precision

loss (Fig. 3B).

Finally, we evaluated the potential of VirSorter to detect viral sequences in viral

metagenomes contaminated with cellular genomes. Such cellular sequence in viral-

fraction metagenomes can derive from co-purified encapsidated DNA (in gene transfer

agents or generalized transducing phages) or contamination, and represents a common

challenge in making inferences from viromes (Roux et al., 2013). We thus simulated 10 viral
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Figure 3 Detection of viral sequences in microbial metagenomes by VirSorter. (A) Average Recall
(x-axis) and Precision (y-axis) of viral sequence detection by VirSorter in 10 simulated microbial
metagenomes for different contig size thresholds. (B) Detection of viral sequences by VirSorter in
simulated microbial metagenomes by contig size fraction.

metagenomes of 1,000,000 reads (100bp) from a mix of 15 microbial and 60 viral genomes.

This time, we simulated metagenomes where viral reads represented a larger proportion

of the dataset, ranging from 75 to 99% (Table S5). Here, all microbial genomes available in

RefSeq and WGS (as of January 2014) were used by VirSorter to model microbial genomic

metrics instead of the whole dataset, since viromes largely lack microbial sequences.

This usage case of VirSorter is implemented in the iPlant application and is available by

checking the box “virome decontamination” in the submission form.
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Table 2 Results of VirSorter viral sequence detection on simulated viral metagenomes with a limited
contamination by cellular genomes (1 to 25% of raw reads). Metrics presented are Recall (proportion
of viral sequences detected) and Precision (proportion of predictions corresponding to viral sequences).

VirSorter—categories 1 & 2 VirSorter—all categories

Recall Precision Recall Precision

All contigs (>500bp) 31.71% 99.89% 32.96% 99.79%

Contigs >3kb 85.64% 99.80% 90.29% 99.62%

Contigs >10kb 97.14% 99.48% 99.82% 98.99%

As found above for prediction of viral sequence data from the microbial metagenome

simulations, VirSorter performance as a ‘virome decontaminator’ improves as contig size

increases (Table 2 and Table S5). When considering all contigs (>500bp), the Recall of

viral sequences is 32% on average, but increases up to 86% for contigs >3kb and 97%

for contigs >10kb. When category 3 predictions are included, these Recall values increase

slightly to 33%, 90% and 99.8% for the increasing contig sizes, respectively. At the same

time, the Precision of viral sequence detection stays high for all contig sizes, even when

including category 3 predictions (99% and more, Table 2).

VirSorter’s strengths and weaknesses
VirSorter represents a novel, scalable, and community-available tool for detecting and

identifying viral genome sequences from diverse microbial datasets. Its performance for

prophage prediction is largely comparable to that of available prophage prediction tools

when applied to complete microbial genomes, but it outperforms available tools when

making predictions from modern microbial datasets which tend to be fragmented and

larger-scale or when searching for viruses beyond those “known” in current databases.

Thus, VirSorter complements existing tools to help elucidate bacterial and archaeal viral

sequences among myriad modern microbial genomic data types.

However, VirSorter does have limitations. First, VirSorter was designed and optimized

for detection of bacterial and archaeal viruses, so it does not detect eukaryotic viruses

well. This is because the database lacks eukaryote viruses, and the viral genome features

were only evaluated on bacterial and archaeal viruses. VirSorter will still detect eukaryote

viruses, often as category 3 because of their singular genome composition (compared to a

typical cellular genome), but its capacity is extremely limited in its current build. Second,

short (<3kb) viral contigs will tend to only be detected by VirSorter when they contain

hallmark genes. Pragmatically, this means that viral signal detection in non-assembled

reads or in contigs assembled from (meta)transcriptome data will usually be inefficient.

Third, prophage prediction tools also look for additional signs of prophages such as

the presence of integrase genes, att sites, or repeat features to demarcate the ‘ends’ of a

prophage genome, none of these features are examined by VirSorter. Thus, prophage

prediction tools likely remain the best means to most accurately annotate prophages in a

complete microbial genome, whereas VirSorter is best used for high-throughput analyses

and for detecting viral signal in fragmented genomes. Finally, category 3 detections repre-
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sent sequences and regions that are unique within the genome(s) being compared, so while

many can be viral, these predictions could also represent other mobile genetic elements or

hypervariable genomic islands and require manual curation. The only case where category

3 predictions may be considered without manual curation are viral metagenome decon-

taminations as these predictions increase Recall while only marginally lowering Precision.
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