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BACKGROUND: There are limited data regarding the hypoxia pathway in familial breast cancers. We therefore performed a study of
hypoxic factors in BRCA1, BRCA2 and BRCAX breast cancers.
METHODS: Immunoperoxidase staining for HIF-1a, PHD1, PHD2, PHD3, VEGF and FIH was carried out in 125 (38 BRCA1, 33 BRCA2 and
54 BRCAX) breast carcinomas. These were correlated with clinicopathological parameters and the intrinsic breast cancer phenotypes.
RESULTS: BRCA1 tumours correlated with positivity for HIF-1a (P¼ 0.008) and negativity for PHD3 (P¼ 0.037). HIF-1a positivity
(P¼ 0.001), PHD3 negativity (P¼ 0.037) and nuclear FIH negativity (P¼ 0.011) was associated with basal phenotype. HIF-1a expression
correlated with high tumour grade (P¼ 0.009), negative oestrogen receptor (ER) status (P¼ 0.001) and the absence of lymph node
metastasis (P¼ 0.028). Nuclear FIH expression and PHD3 correlated with positive ER expression (P¼ 0.024 and P¼ 0.035, respectively).
BRCA1 cancers with positive HIF-1a or cytoplasmic FIH had a significantly shorter relapse-free survival (P¼ 0.007 and P¼ 0.049,
respectively).
CONCLUSIONS: The aggressive nature of BRCA1 and basal-type tumours may be partly explained by an enhanced hypoxic drive and
hypoxia driven ER degradation because of suppressed PHD and aberrantly located FIH expression. This may have important implications,
as these tumours may respond to compounds directed against HIF-1a or its downstream targets.
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Carriers of germline mutations in BRCA1 and BRCA2 have a
predisposition for developing breast and/or ovarian cancer. The
cumulative risk of breast carcinoma in carriers of BRCA1/BRCA2
mutations ranges from 45–84% by 70 years of age (Antoniou et al,
2003). There are chromosomal, morphological and immuno-
histochemical differences between spontaneous and BRCA-asso-
ciated tumour (Lakhani et al, 2000; Jonsson et al, 2005; Palacios
et al, 2005). Thus BRCA1 mutation associated breast cancers are
generally poorly differentiated and more frequently display typical
and atypical medullary-like morphology than sporadic tumours
(Lakhani et al, 2000). Furthermore, BRCA1 tumours show a so-
called ‘triple negative’ phenotype being oestrogen receptor (ER),
progesterone receptor (PgR) and HER2 negative (Palacios et al,
2003). BRCA1 tumours also harbour p53 mutations (Sensi et al,
2003) and express basal and myoepithelial markers such as
cytokeratins (CK) 5, CK14, a-actin and p63 in keeping with a basal-
like phenotype (Jacquemier et al, 2005; Laakso et al, 2005; Lakhani
et al, 2005). Although reports suggesting lobular carcinomas are
more frequent in BRCA2 carriers, no similarly defined phenotype
has been described for BRCA2-associated tumours, which usually
show a ductal, no special type morphology and ER positivity
(Armes et al, 1998). These observations suggest specific and

distinct neoplastic pathways in germline BRCA mutation-related
breast cancers compared with sporadic cancer pathways.

Hypoxia is a hallmark of many cancers that has been
associated with diminished therapeutic response and with an
increasing probability of malignant progression (Vaupel, 2004).
Hypoxia-inducible factor-1 (HIF-1) is the key regulator of the
hypoxia response. HIF-1 consists of two subunits, HIF-1a and
HIF-1b. Although HIF-1b is a nuclear protein that is constitutively
expressed and is independent of oxygen tension, the HIF-1a
protein is induced and continuously degraded under normoxia
by the ubiquitin –proteasome pathway in the cytoplasmic cellular
compartment (Salceda and Caro, 1997; Huang et al, 1998).
However, under hypoxic conditions HIF-1a translocates to the
nucleus where it heterodimerizes with HIF-1b (Vaupel, 2004). This
HIF-1 complex then regulates the expression of its target genes
through binding with hypoxia responsive elements in the promoter
regions of target genes (Bos et al, 2003; van der Groep et al, 2008)
including erythropoietin, vascular endothelial growth factor
(VEGF), glycolytic enzymes, transferrin and a variety of other
proteins that enhance tumour survival, invasion and metastasis
(Semenza, 2000; Vaupel, 2004).

The level and activity of HIF-1a subunit is tightly regulated
through a number of post-translational modifications. In the
presence of oxygen, three prolyl hydroxylase enzymes (PHD),
PHD1, PHD2 and PHD3 cause site-specific hydroxylation of two
proline residues, P402 and P564, within the oxygen-dependent
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degradation domain of HIF-1a. This allows for the recognition of
HIF-1a by the tumour suppressor von Hippel-Lindau protein,
which targets HIF-1a for degradation (Boddy et al, 2005). In
addition, hydroxylation of the asparagine residue 803 by factor
inhibiting HIF (FIH) reduces its transcriptional activity through
interfering with cofactor binding (Lando et al, 2002). However,
under hypoxic conditions these hydroxylase enzymes are less
active because of the paucity of molecular oxygen, resulting in
both an increase in the level of nuclear HIF-1a and its activity
(Boddy et al, 2005).

In sporadic breast cancer, previous studies have shown that
HIF-1a overexpression has a role in breast carcinogenesis and is
correlated with a poor prognosis (Generali et al, 2006). However,
little is known about the role of HIF-1a in hereditary breast
carcinogenesis with only one report in a small series (n¼ 30)
suggesting overexpression of HIF-1a present in a higher frequency
in BRCA1-related cancers than sporadic cancers (van der Groep
et al, 2008). Given the importance of all pathway members in the
control of hypoxia-induced gene expression, our aims were to:
(1) determine the level and pattern of expression of HIF-1a, PHDs
and FIH in a large cohort of familial breast cancers, (2) correlate
expression with conventional clinicopathological parameters,
(3) investigate expression in familial breast cancers stratified by
intrinsic breast cancer phenotypes and (4) explore their role in
patient survival.

MATERIALS AND METHODS

Patients and tumour tissue microarrays

Tumour tissue microarray cores (1 mm cores) with fourfold
redundancy for 147 familial invasive breast cancers were collected
from the kConFab biorepository. For the purposes of this study,
classification of BRCA1 and BRCA2 mutations and sequence
variants was according to designations listed for research purposes
on the kConFab website (www.kconfab.org/index.shtml). The
BRCAX breast cancers are defined by familial breast cancer in
families without a known BRCA1 and BRCA2 pathogenic
mutation. General inclusion criteria for the BRCAX subgroup
were families with breast cancer meeting kConFab category 1 and
1B eligibility criteria and with a breast cancer pathology report
held by kConFab.

The flow of patients through the study according to the
REMARK criteria is listed in Table 1 (McShane et al, 2005). Of
the 147 cases, 9 cases were excluded because of the lack of tissue
available for array construction and a further 13 cases were
excluded because of the absence of tumour on the array available
for staining. The final cohort was composed of 125 cases composed
of 38BRCA1, 33BRCA2 and 54 BRCAX cases.

These were compared with a cohort of 186 sporadic cancers
collected from the John Radcliffe Hospital, Oxford, UK, which was
characterised in a previous study (Tan, 2008). All patients had
operable breast carcinomas and were not diagnosed with meta-
static disease at the time of presentation. Information regarding
patient characteristics, including age, tumour size, grade, histo-
logy, nodal status, ER and HER-2 status were collected from the

clinical and pathological records (Table 2). Using stratification of
intrinsic phenotypes based on Nielsen et al (2004) tumours were
placed into luminal (ERa positive, HER2 negative, cytokeratin
(CK) 5/6 and/or EGFR negative or positive), basal (HER2 and ERa
negative; CK5/6 and/or EGFR positive), HER2 (HER2 positive,
ERa, CK5/6 and EGFR negative or positive) and null/negative
(HER2, ERa, CK5/6 and EGFR negative).

Patients less than 50 years of age with node positive, ER-negative
tumours or tumours larger than 3 cm received adjuvant che-
motherapy. Patients with hormone responsive tumours who were
more than 50 years of age received 5 years of endocrine therapy.
Patients were followed up for a median period of 64 months.
During this time, 38 patients relapsed and 31 died (the recorded
deaths were breast cancer related otherwise were censored).

Immunohistochemistry

TMA sections were cut from each block at 4 mm thick intervals,
dewaxed, placed through graded alcohol and placed into water.

Table 1 Flow of familial breast cancer patients through the study,
according to REMARK criteria (McShane et al, 2005)

BRCA1 BRCA2 BRCAX Total

Female patients collected for study 45 36 66 147
Patients with tissue available 42 33 63 138
Tumours present on array 38 33 54 125
Tumours with tissue on array and
survival data

34 30 52 116

Table 2 Clinical and tumour characteristics (n¼ 125)

BRCA1,
n (%)

BRCA2,
n (%)

BRCAX,
n (%)

All familial,
n (%)

Age
Median (range), years
o 40 years 16 (42%) 9 (27%) 8 (15%) 33 (26%)
40–55 years 20 (53%) 13 (40%) 29 (54%) 62 (50%)
55–69 years 2 (5%) 9 (27%) 14 (26%) 25 (20%)
470 years 0 2 (6%) 3 (5%) 5 (4%)

Tumour size
o 20 mm 29 (76%) 16 (52%) 25 (53%) 68 (60%)
4 20 mm 9 (24%) 15 (48%) 22 (47%) 46 (40%)
Unknown 0 2 7 9

Nodal status
Negative 35 (92%) 23 (74%) 30 (63%) 88 (76%)
Positive 3 (8%) 8 (26%) 17 (37%) 28 (24%)
Unknown 0 2 7 9

Grade
I 0 1 (4%) 6 (13%) 7 (7%)
II 2 (6%) 14 (48%) 14 (31%) 30 (29%)
III 30 (94%) 14 (48%) 25 (56%) 67 (64%)
Unknown 6 4 9 19

ER-a
Negative 29 (85%) 5 (17%) 15 (31%) 49 (44%)
Positive 5 (15%) 24 (83%) 33 (69%) 62 (56%)
Unknown 4 4 6 14

PgR
Negative 27 (84%) 10 (35%) 23 (48%) 60 (55%)
Positive 5 (16%) 19 (65%) 25 (52%) 49 (45%)
Unknown 6 4 6 16

HER2 status
Negative 29 (100%) 25 (100%) 38 (87%) 92 (93%)
Positive 0 0 7 (13%) 7 (7%)
Unknown 9 8 8 25

Endocrine therapy
Not given 28 (90%) 19 (70%) 28 (61%) 75 (72%)
Given 3 (10%) 8 (30%) 18 (39%) 29 (28%)
Unknown 7 6 8 21

Chemotherapy
Not given 14 (38%) 17 (52%) 20 (43%) 51 (45%)
Given 23 (62%) 14 (48%) 26 (57%) 63 (55%)
Unknown 1 2 8 11
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Antigen retrieval was performed in PT Link (Dako, Glostrup,
Denmark) using low pH for PHD1, PHD2 and PHD3 and high pH
for HIF-1a, EnVision FLEX Target Retrieval Solution (Dako) for
20 min at 1001C. VEGF required antigen retrieval in pH 8 buffer
(20 mM Tris/1 mM EDTA/10 mM sodium citrate) for 2 min in a
pressure cooker. Endogenous peroxidase was blocked with
EnVision FLEX Peroxidase-Blocking Reagent (Dako) before
incubating the sections with respective monoclonal antibodies.
PHD1 (112), PHD2 (366G/76), PHD3 (EG188e) and FIH (162c)
antibodies were kindly donated by Professor Kevin Gatter, the
Nuffield Department, Clinical Laboratory Sciences, John Radcliffe
Hospital, Soilleux et al, 2005. Antibodies for VEGF and HIF-1a
were purchased from NeoMarkers (Fremont, CA, USA) and BD
Transduction Laboratories (Lexington, KY, USA). Antibodies were
used at the following concentrations: Neat supernatant for
overnight at room temperature for PHD1, PHD2 and PHD3,
1 : 50 for 30 min at room temperature for FIH, 1 : 200 for 30 min
at room temperature for VEGF and 1 : 50 overnight at 41C for
HIF-1a. Antigen– antibody complex was detected using Envision
FLEX system (EnVision FLEX/HRP and EnVision FLEX DABþ
Chromogen, Dako). All the slides were counterstained with
hematoxylin subsequently; they were dehydrated, cleared and
mounted for the assessment.

Scoring criteria and cutoffs

Scoring was done according to a previously used semi-quantitative
system (Boddy et al, 2005; Soilleux et al, 2005; Tan et al, 2007;
Couvelard et al, 2008). HIF-1a was scored only according to the
presence (1þ ) or absence (0) of nuclear expression. For FIH, and
all PHDs (both nuclear and cytoplasmic) and VEGF (cytoplasmic
only), the intensity was scored as follows: 0, negative; 1, weak; 2,
moderate and 3, strong staining. Using a previous defined cutoff
which separates the cohort into approximately two groups of equal
numbers (Tan et al, 2007, 2008), tumours were considered positive
if 410% of tumour cells showed staining at equal or more than
moderate staining. The same cutoff was used for VEGF, as
previously defined (Martin et al, 2007; Noike et al, 2008).

Statistical analysis

Comparisons were made using either the one-way ANOVA, log
rank or w2-test where appropriate. Kaplan–Meier survival curves
were calculated using tumour recurrence (defined as the first
re-appearance of tumour at any site following definitive treatment)
and cancer-related death as the end points and compared using a
log-rank test. Binary logistic regression was used for multivariate
analyses and the Cox proportional hazard regression model was
used to identify independent prognostic factors for disease-free
and overall survival. Analyses were performed with SPSS 16.0
(SPSS Inc., Chicago, IL, USA). A two-tailed P-value test was used in
all analyses and a P-value of less than 0.05 was considered
statistically significant.

RESULTS

Expression of hypoxia pathway members in familial breast
cancers

HIF-1a showed predominantly nuclear expression in tumour cells,
whereas PHDs and FIH showed both nuclear and cytoplasmic
staining as previously reported (Boddy et al, 2005; Soilleux et al,
2005). Staining for VEGF occurred exclusively in the cytoplasm.
The range of expression was variable with HIF-1a ranging from
heterogeneous weak to strong nuclear staining, whereas all the
PHDs, VEGF and FIH generally displayed more homogenous
staining although this was of variable intensity (Supplementary
Figure 1).

When stratified by BRCA mutation status, HIF-1a positivity was
significantly correlated with BRCA1 (23/32, 72%) compared with
BRCA2 (12/32, 38%) and BRCAX (20/49, 41%) associated tumours
(P¼ 0.008) (Table 3). Cytoplasmic PHD3 positivity was signifi-
cantly associated with BRCA2 (23/33, 70%) and BRCAX (39/54,
72%) compared with BRCA1 (18/38, 47%) (P¼ 0.037) tumours,
but there was no significant difference in expression of cyto-
plasmic PHD1 and PHD2 within the familial breast cancer groups
(P¼ 0.105 and P¼ 0.615, respectively) (Table 3). BRCA1 tumours
were more likely to be negative for nuclear FIH, although this did
not reach statistical significance (P¼ 0.062). VEGF, nuclear PHDs
and cytoplasmic FIH showed no significant difference between the
familial groups (P40.05).

When familial tumours were stratified by intrinsic pheno-
types based on Nielsen et al (2004), cytoplasmic PHD3 negativity
was significantly associated with a basal phenotype (19/37, 51%)
compared with luminal phenotype (39/49, 80%) (P¼ 0.037)
(Table 4a). Similarly, nuclear FIH negativity was also associated
with basal phenotype (30/36, 83%) compared with luminal
phenotype (25/46, 59%) (P¼ 0.011) (Table 4b). In contrast, HIF-1a
positivity was significantly associated with basal (27/36, 75%)
compared with luminal phenotype (14/47, 30%) (P¼ 0.001)
(Table 4c). Other hypoxia pathway members examined showed
no significant differences in expression between the phenotypes
(P40.05).

Table 3 Expression of hypoxia markers stratified by familial subtype

BRCA1
n (%)

BRCA2
n (%)

BRCAX
n (%)

Total
n(%) P-value

HIF-1a
Negative 9 (28) 20 (63) 29 (59) 58 (51) 0.008
Positive 23 (72) 12 (38) 20 (41) 55 (49)

PHD1 cytoplasmic
Negative 19 (68) 9 (39) 14 (48) 42 (53) 0.105
Positive 9 (32) 14 (61) 15 (52) 38 (47)

PHD2 cytoplasmic
Negative 6 (17) 3 (9) 6 (12) 15 (12) 0.615
Positive 30 (83) 30 (91) 46 (88) 106 (88)

PHD3 cytoplasmic
Negative 20 (53) 10 (30) 15 (28) 45 (36) 0.037
Positive 18 (47) 23 (70) 39 (72) 80 (64)

PHD1 nuclear
Negative 28 (100) 23 (100) 29 (100) 80 (100) NA
Positive 0 0 0 0

PHD2 nuclear
Negative 34 (94) 27 (81) 44(84) 105 (88) 0.309
Positive 2 (6) 6 (19) 8 (16) 16 (12)

PHD3 nuclear
Negative 32 (85) 25 (77) 36 (67) 93 (74) 0.179
Positive 6 (15 8 (23) 18 (33) 32 (26)

VEGF
Negative 4 (12) 3 (9) 11 (22) 18 (16) 0.228
Positive 31 (88) 30 (91) 40 (78) 101 (84)

FIH cytoplasmic
Negative 19 (53) 10 (32) 27 (53) 56 (47) 0.143
Positive 17 (47) 21 (68) 24 (47) 62 (53)

FIH nuclear
Negative 24 (75) 15 (50) 37 (73) 76 (67) 0.062
Positive 8 (25) 15 (50) 14 (28) 37 (33)

Abbreviation: NA¼ not applicable.

Hypoxia in familial breast cancers

M Yan et al

1170

British Journal of Cancer (2009) 101(7), 1168 – 1174 & 2009 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



Expression of hypoxia factors between familial and
sporadic breast cancers

The expression of cytoplasmic PHD2 (106/121, 88%), cytoplasmic
PHD3 (80/125, 64%) and VEGF (101/119, 84%) was significantly
associated with familial breast cancers as a combined group
compared with sporadic cancers (cytoplasmic PHD2 (65/165,
39%), cytoplasmic PHD3 (65/165, 39%), VEGF (92/182, 51%)) (all
Po0.001). In contrast both nuclear and cytoplasmic FIH expres-
sion were significantly correlated with sporadic (133/179, 74 and
114/179, 64%) compared with familial cancers (62/118, 53 and
39/118, 33%) (both Po0.001). There was no significant difference
in HIF-1a, cytoplasmic PHD1 and nuclear PHD1-3 expression
between familial and sporadic cancers (both P40.05).

Correlation of hypoxia factors with clinicopathological
parameters in familial breast cancers

HIF-1a expression correlated with high tumour grade (P¼ 0.009),
negative oestrogen receptor-a (ER) status (P¼ 0.001) and
the absence of lymph node metastasis (P¼ 0.028) (Table 5).
On multivariate analysis using binary logistic regression,
including grade, size, lymph node, HER2 and ER status,
only negative ER significantly correlated with HIF-1a expression
(P¼ 0.039, Hazard ratio¼ 0.289, 95% CI for hazard ratio
0.089–0.941).

Cytoplasmic FIH expression correlated with positive ER
(P¼ 0.029) and lower tumour grade (P¼ 0.036) (Table 5). The
correlation between cytoplasmic FIH expression and lower grade
was confirmed on multivariate analysis including size, lymph
node, HER2 and ER status (P¼ 0.024, Hazard ratio¼ 0.273 and
95% CI for hazard ratio 0.089 –0.840). Nuclear FIH also correlated
with positive ER (P¼ 0.024).

Cytoplasmic PHD1 correlated with tumour size (P¼ 0.008),
whereas cytoplasmic PHD3 correlated with tumour size (P¼ 0.037)
and ER expression (P¼ 0.035). Cytoplasmic PHD2, nuclear
PHD1-3 and VEGF did not show any significant association with
any of the clinicopathological parameters.

Survival analysis in familial breast cancers

When familial cancers were assessed as a combined group,
there was no significant correlation in relapse-free or overall
survival with hypoxia factors HIF-1a, FIH, VEGF and all PHDs
(P40.05).

However, when BRCA1 cancers were assessed as a separate group,
cytoplasmic FIH correlated with shorter relapse-free (P¼ 0.007)
(Figure 1A) and overall survival (P¼ 0.026) (Figure 1B). No such
differences in disease-free or overall survival were seen for nuclear
FIH (P40.05). BRCA1 tumours with HIF-1a expression was
associated with a shorter relapse-free (P¼ 0.049) (Figure 1C) but
not overall survival (P¼ 0.764). There was a trend for cytoplasmic
PHD1-positive tumours with BRCAX mutation to be associated
with a shorter relapse-free survival, although this did not reach

Table 4 (A) Cytoplasmic PHD3 expression stratified by intrinsic
phenotypes in familial breast cancer (P¼ 0.037). (B) Nuclear FIH
expression stratified by intrinsic phenotypes in familial breast cancer
(P¼ 0.011). (C) HIF-1a expression stratified by intrinsic phenotypes in
familial breast cancer (P¼ 0.001)

Luminal
n (%)

Basal
n (%)

HER2
n (%)

Null
n (%)

Total
(%)

(A)
Negative 10 (20) 18 (49) 1 (17) 2 (29) 31 (31)
Positive 39 (80) 19 (51) 5 (83) 5 (71) 68 (69)
Total 49 37 6 7 99

(B)
Negative 25 (54) 30 (83) 6 (100) 4 (57) 65 (68)
Positive 21 (46) 6 (17) (0) 3 (43) 46 (30)
Total 46 36 6 6 95

(C)
Negative 33 (70) 9 (25) 4 (67) 3 (50) 49 (52)
Positive 14 (30) 27 (75) 2 (33) 3 (50) 46 (48)
Total 47 36 6 6 95

Table 5 Contingency table of hypoxia-induced factors and clinicopathological parameters in familial breast cancer

HIF-1a
Cytoplasmic

PHD1

Cytoplasmic

PHD2

Cytoplasmic

PHD3 VEGF

Cytoplasmic

FIH

Nuclear

FIH

Neg (%) Pos (%) Neg (%) Pos (%) Neg (%) Pos (%) Neg (%) Pos (%) Neg (%) Pos (%) Neg (%) Pos (%) Neg (%) Pos (%)

Size (mm)

o20 31 (61%) 33 (61%) 26 (67%) 13 (36%) 9(60%) 57 (59%) 30 (73%) 40 (53%) 13 (81%) 56 (59%) 34 (67%) 29 (50) 43 (59%) 21 (61%)

X20 20 (39%) 21 (39%) 13 (33%) 23 (64%) 6 (40%) 40 (41%) 11 (27%) 35 (47%) 3 (19%) 26 (39%) 17 (33%) 29 (50) 30 (41%) 11 (34%)

P-value 0.973 0.008 0.928 0.037 0.089 0.079 0.516

Grade

1/2 23 (48%) 11 (22%) 9 (25%) 13 (41%) 4 (31%) 32 (36%) 9 (24%) 28 (41%) 3 (25%) 32 (36%) 10 (22%) 22 (41.5) 20 (31%) 13 (42%)

3 25 (52%) 38 (78%) 27 (75%) 19 (59%) 9 (69%) 58 (64%) 28 (76%) 41 (595) 9 (75%) 57 (64%) 36 (78%) 31 (58.5) 45 (69%) 18 (58%)

P-value 0.009 0.169 0.735 0.094 0.454 0.036 0.281

ER

Neg 14 (26%) 31 (62%) 20 (54%) 12 (35%) 6 (55%) 40 (41%) 22 (58%) 27 (37%) 6 (38%) 38 (43%) 27 (55%) 19 (33.9) 36 (53%) 10 (29%)

Pos 39 (74%) 19 (38%) 17 (46%) 22 (65%) 5 (45%) 57 (59%) 16 (42%) 46 (63%) 10 (62%) 51 (57%) 22 (45%) 37 (66.1) 32 (47%) 24 (71%)

P-value 0.001 0.112 0.398 0.035 0.698 0.029 0.024

Lymph nodes

Neg 38 (66%) 46 (84%) 35 (83%) 25 (66%) 10 (67%) 81 (76%) 37 (82%) 55 (69%) 44 (80%) 16 (89%) 73 (72%) 44 (71.0) 55 (72%) 30 (82%)

Pos 20 (35%) 9 (16%) 7 (17%) 13 (34%) 5 (33%) 25 (24%) 8 (18%) 25 (31%) 11 (20%) 2 (11%) 28 (28%) 18 (29.0) 21 (28%) 7 (19%)

P-value 0.028 0.070 0.413 0.101 0.135 0.344 0.314

Abbreviations: ER¼ estrogen receptor; Neg¼ negative; Pos¼ positive.
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statistical significance (P¼ 0.058). For BRCA2 tumours there was no
significant correlation present between survival and expression of
hypoxia-induced factors (P40.05).

DISCUSSION

Hypoxia is the result of an imbalance between oxygen delivery and
oxygen consumption resulting in the reduction of oxygen tension
below the normal level for a specific tissue (Lundgren et al, 2007).
Hypoxia occurs in many disease processes, and it is widespread in
solid tumours because of the tumour outgrowing the existing
vasculature. Hypoxia is associated with aggressive behaviour,
metastasis and lower survival (Harris, 2002). Central to the
hypoxic response is the transcription factor HIF. We have
therefore examined the role of the key pathway members
regulating HIF-mediated transcription including HIF-1a, PHD1,
PHD2, PHD3, VEGF and FIH in a series of familial breast cancers
stratified by BRCA status and intrinsic phenotypes.

In this study, we have shown frequent expression of HIF-1a in
the neoplastic cells of BRCA1-related breast cancer and basal-like
cancers (72 and 75%, respectively) of tumours being positive.
This is in accordance with 90% positivity in a small series of
30 patients with BRCA1 mutation (van der Groep et al, 2008) and
our previous findings where basal-like breast cancers have
an enhanced hypoxic drive and aggressive behaviour (Tan,
2008). The observation in this study of a positive association of
HIF-1a with high tumour grade and relapse-free survival supports
a similarly upregulated hypoxic response in BRCA1/basal like
cancers. Furthermore, it may also partly account for the increased
genomic instability described in BRCA1-associated tumours
(Cheng and Loeb, 1993; Sutherland, 1998; Semenza, 2000;
Chan et al, 2008).

Our findings also support the role of hypoxia and HIF-1a in the
downregulation of ERa expression in familial cancers. In a
multivariate analysis, HIF-1a was the only independent variable,
which predicted ERa negativity. This is consistent with cell culture
studies where intermittent hypoxia induces proteasome-dependent
downregulation of ERa (Kurebayashi et al, 2001; Cooper et al,
2004; Yi et al, 2009). This is also supported by immunohisto-
chemical studies on ERa-positive tumours where the geographic
distribution of CAIX, a surrogate marker of hypoxia, corresponds
to areas of tumour negative for ERa (Cooper et al, 2004).
This sequence may enhance the proposed role of BRCA1
in regulating ERa expression in BRCA1 and basal like cancers
(Gorski et al, 2009).

One potential mechanism of retaining elevated HIF-1a in both
BRCA1 and basal-like may be the relative paucity of PHD3, which
showed significantly lower expression in BRCA1 tumours. Under
normal conditions, BRCA1 interacts with STAT1 to activate the
transcription of IFN-g target genes (Ouchi et al, 2000). In the
hypoxic state, this pathway selectively induces PHD3, but not
PHD1 or PHD2 mRNA and protein expression (Gerber et al, 2009).
Thus, the loss of PHD3 expression induced by the BRCA1/STAT
dysfunction may be a mechanism specific to BRCA1 tumours.
Furthermore, hypoxia in basal type/BRCA1 tumours may lead to
the preferential degradation of PHD3. The lack of an N-terminal
extension in PHD3, which is found in PHD1 and PHD2, renders it
more susceptible to degradation by RING finger E3 ligase Siah2 in
low oxygen tensions (Nakayama et al, 2007). The absence of a
prolyl hyrdoxylase may allow the escape of HIF degradation even
in the presence of molecular oxygen. This is because significant
effects on HIF occur even when the impact of suppression of a
single PHD on the total level of PHD protein is only modest
(Appelhoff et al, 2004). Indeed, PHD3 has been shown to have
major effects on HIF, with its loss substantially prolonging the
half-life of HIF-1a (Appelhoff et al, 2004).

In the normoxic state PHD2 is the main cellular oxygen sensor
(Berra et al, 2003; Berchner-Pfannschmidt et al, 2008). Berra et al
(2003) showed that under normoxic conditions, siRNA inhibition
of PHD2, but not PHD1 or PHD3 resulted in the stabilisation of
HIF-1a. Interestingly, the same author found PHD2 was upregu-
lated by hypoxia, suggesting changes in PHD2 levels were not
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Figure 1 (A) Kaplan–Meier curve of relapse-free survival of BRCA1
tumours stratified by cytoplasmic FIH (P¼ 0.007, n¼ 35). (B) Kaplan–
Meier curve of overall survival of BRCA1 tumours stratified by cytoplasmic
FIH (P¼ 0.026, n¼ 35). (C) Kaplan–Meier curve of relapse-free survival of
BRCA1 tumours stratified by HIF-1a (P¼ 0.049, n¼ 31).
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responsible for HIF-1a stabilisation under low oxygen tensions.
This is supported by our study of BRCA1 tumours, where
upregulation of HIF-1a was not associated with changes in PHD2
expression.

In the present study, the intracellular location of FIH appears to
have an important role in HIF-1a regulation and prognosis, with
BRCA1 and familial basal type cancers being negative for nuclear
FIH and positive for HIF-1a. In addition, cytoplasmic FIH appears
as a prognostic marker in BRCA1 breast tumours conferring a
shorter relapse-free and overall survival, despite its association
with a lower grade, whereas no such differences are seen for
nuclear FIH. This is in keeping with our previous studies where
cytoplasmic FIH expression correlated with a poorer prognosis
(Tan et al, 2007). These findings do not appear to be due to nuclear
staining being more difficult to appreciate in the presence of
strong cytoplasmic staining, as there was a positive correlation
between nuclear and cytoplasmic FIH (Spearman r¼ 0.318,
Po0.001). FIH inhibits HIF-1a activity by hydroxylating the
asparagine residue 803, thereby preventing HIF-1a from interact-
ing with co-factor p300 (Lando et al, 2002). This effect may be
exclusively mediated by FIH located in the nucleus. Translocation
of FIH into the cytoplasm may be a mechanism by which BRCA1
and basal-type tumours escape inhibition of HIF-1a activity.

Our findings suggest the aggressive nature of BRCA1, basal-type
tumours may be partly explained by an enhanced hypoxic drive
and hypoxia-driven ER degradation, due to suppressed PHD and
aberrantly located FIH expression. This may have important
treatment implications, as these aggressive tumours may respond
to compounds directed against HIF-1a or its downstream targets
(Lundgren et al, 2007; Milani and Harris, 2008). Of particular
interest include agents targeting FIH because, unlike the prolyl

hydroxlases, it retains its activity across a wide range of oxygen
tensions (Stolze et al, 2004; Dayan et al, 2006). This is supported by
studies suggesting hypoxic tumours may respond to Bortezomib
(Shin et al, 2008) and Amphotericin B (Yeo et al, 2006), which
suppress HIF-1a activity by re-enforcing FIH-mediated inhibition
of p300 recruitment.
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