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Simple Summary: The golden takin is an endemic ruminant that has been listed as an endangered
and vulnerable species by the International Union for Conservation of Nature. Because it lacks a
reference genome, little is known about its molecular genetic information. Therefore, this study used
RNA sequencing followed by de novo assembly, annotation and microsatellites prediction to assess
the transcriptome of golden takin muscles. These results provide valuable information for genetic
and genomic studies on takin, which will be helpful for protecting the wild takin.

Abstract: The takin (Budorcas taxicolor) is an endemic ruminant species belonging to the bovine
family. The International Union for Conservation of Nature (IUCN) has listed it as an endangered
and vulnerable species. However, little is known about its molecular characterization since it lacks
a reference genome. This study used RNA sequencing followed by de novo assembly, annotation
and simple sequence repeats (SSRs) prediction to assess the transcriptome of Qinling takin (Budorcas
taxicolor bedfordi) muscles. In total, 21,648 unigenes with an N50 and mean length of 1388 bp and
817 bp, respectively, were successfully detected and annotated against the public databases (NR,
GO, KEGG, and EggNOG). Furthermore, 6222 SSRs were identified using the MIcroSAtellite (MISA)
identification tool software. Taken together, these findings will provide valuable information for
genetic, genomic, and evolutionary studies on takin.

Keywords: takin; Budorcas taxicolor bedfordi; transcriptome; SSR; RNA-Seq

1. Introduction

The takin (Budorcas taxicolor) is an endangered and endemic species distributed across
Asia and is mainly distributed in southwest and northwest China, Nepal, Myanmar, India,
and Bhutan [1]. Generally, it is classified into four subspecies based on distinct differences in
physical characteristics and geographic location. These include Qinling takin (B. t. bedfordi),
also known as golden takin, Sichuan takin (B. t. tibetana), Bhutan takin (B. t. whieti), and
Mishmi takin (B. t. taxicolor). The average divergence among B. t. bedfordi, B. t. tibetana,
and B. t. taxicolor was 1.66% from the D-Loop of mitochondrial DNA (mtDNA) [2]. Among
them, the Qinling and Sichuan subspecies are only found in China [3]. Some of the most
protected animals in China and the International Union for Conservation of Nature (IUCN)
have listed them as endangered and vulnerable species [4].

Based on the comparative morphology, previous studies have reported that takin was
closely related to the Musk-Oxen (Ovibos moschatus) [5]. However, based on Cytochrome b
(Cytb) or mtDNA sequences, different molecular analyses have suggested that it is closely
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related to Caprinae [6–12]. So far, apart from it belonging to the bovine family, its other
taxonomic status is still unclear.

In recent years, poaching of takins has occurred frequently. However, it is difficult to
distinguish the carcasses of takins from those of oxen and sheep. Therefore, it is necessary
to explore the simple sequence repeats (SSRs) markers identifying the carcass of takin
at the molecular level so as to help prevent poaching. However, the underlying studies
on molecular markers and functional genes have remained largely unknown due to the
lack of a reference genome. Because of the deep coverage and single base-pair resolution,
RNA sequencing (RNA-Seq) is an efficient method to analyze large-scale transcriptome
sequence investigations and obtain molecular markers, even in species lacking a reference
genome [13,14]. This next-generation sequencing (NGS)-based technique has recently been
widely used for de novo transcriptome sequencing assembly, novel gene and molecular
marker discovery, and investigating gene expression in various species [15–19]. Therefore,
this study used RNA-Seq and de novo assembly to characterize and annotate the transcrip-
tome of takin muscle, and several unigenes and microsatellite markers were identified.
This information will be helpful to protect the takin through genomic and genetic studies.

2. Materials and Methods
2.1. Sample Collection and Preparation for Transcriptome Sequencing

The leg muscle was isolated from a male takin (about 16 years old) that died of natural
causes at the Rare Wildlife Rescue and Breeding Research Center, and then it was frozen
in liquid nitrogen. TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract
total RNA following the specific instructions from the manufacturer. Briefly, mRNA was
purified from 5 µg total RNA using poly-T oligo-attached magnetic beads. A total of
300 ± 50 bp cleaved mRNA fragments paired-end were sequenced using the Illumina
Novaseq™ 6000 (LC Sciences, Houston, TX, USA) and cloned into paired-end libraries. All
other subsequent steps were performed as described previously [20].

2.2. De Novo Assembly

Cutadapt 1.9.1 [21] and Perl scripts with default parameters were used to filter high-
quality curated data. Firstly, the adapter sequences and poly-A/T were removed. Then,
the low-quality and short reads were cleaned out, including reads with “N” more than 5%
or reads less than 100 bp in length. FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/, accessed on 21 June 2020) was used to verify the quality with the Q20, Q30
and GC-content of the clean data. Trinity 2.4.0 was used to reconstruct the transcriptome
using default parameters to generate contigs [22].

2.3. Functional Annotation

All assembled unigenes were aligned against the non-redundant (NR) (http://www.
ncbi.nlm.nih.gov/, accessed on 29 June 2020), SwissProt (http://www.expasy.ch/sprot/,
accessed on 29 June 2020), and Kyoto Encyclopedia of Genes and Genomes (KEGG) (http:
//www.genome.jp/kegg/, accessed on 29 June 2020) databases. Blast2GO was performed
to analyze the gene ontology (GO) functional classification (http://www.geneontology.
org/, accessed on 29 June 2020). To predict possible functions, all assembled unigenes
were aligned against the EggNOG (http://eggnogdb.embl.de/, accessed on 29 June 2020)
databases. DIAMOND software was used to generate alignments [23]. All other remaining
steps were performed as described previously [24].

2.4. Identification of SSR

The MIcroSAtellite program (MISA, http://pgrc.ipk-gatersleben.de/misa/, accessed
on 30 June 2020) [25] was utilized to identify and localize SSR motifs that were screened
from mono-nucleotides to hexa-nucleotides with a minimum of five repeats.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.expasy.ch/sprot/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.geneontology.org/
http://eggnogdb.embl.de/
http://pgrc.ipk-gatersleben.de/misa/
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2.5. Phylogenetic Analysis

The unigene sequences of MYOZ2, MYOZ3, MYL1, TNNC2, RXRG and FAM213A were
selected to align with other homologs using BLASTx search program (http://blast.ncbi.nlm.
nih.gov/Blast.cgi/, accessed on 14 July 2021). The phylogenetic tree was constructed by a
neighbor-joining method with 1000 bootstrap replicates using the MEGA6 program [26].

3. Results and Discussion
3.1. Sequencing and De Novo Assembly of Takin Transcriptome

In total, 56,745,076 raw reads were generated from the Illumina Novaseq™ 6000
platform. After trimming the adapters and filtering out the low-quality and short reads,
55,417,300 clean and high-quality reads were produced. This sequence quality analysis had
a Q30 and GC percentage of 94.43% and 53.13%, respectively (Table 1). Validation studies
suggested that a high Q30 value correlates with high-quality sequencing data and could be
used for transcriptome assembly. These clean reads were assembled into 25,677 transcripts that
had an N50 of 1596 bp and average length of 925 bp, respectively. Moreover, 21,648 unigenes
had an N50 and mean length of 1388 bp and 817 bp, respectively (Table 1).

Table 1. Summary of sequencing data.

Category Number/Length

Raw reads 56,745,076
Raw bases (Gb) 8.51

Clean reads 55,417,300
Clean bases (Gb) 7.76

Q20 percentage (%) 98.39
Q30 percentage (%) 94.43
GC percentage (%) 53.13

Transcripts 25,677
N50 length (bp) 1596

Mean length (bp) 925
Unigenes 21,648

N50 length (bp) 1388
Mean length (bp) 817

The length and distribution analysis of assembled transcripts and unigenes revealed
that most of them were longer than 300 bp. Among these transcripts, 27.34% of the
assembled sequences were shorter than 300 bp, 22.71% ranged from 301 to 500 bp, 20.95%
varied from 501 to 1000 bp, 17.89% scaled from 1001 to 2000 bp, and 11.10% were longer
than 2000 bp (Figure 1). Among the unigenes, 30.21% of the assembled sequences were
less than 300 bp, 24.26% varied from 301 to 500 bp, 20.55% ranged from 501 to 1000 bp, 16%
scaled from 1001 to 2000 bp and the remaining 8.97% were more than 2000 bp (Figure 1).
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Compared to a mean length of 863 bp and a Q20 of 97.6% from sheep muscle [27], the
average length was longer and the value of Q20 is larger in this study. Compared to an
average length of 972.41 bp, an N50 of 1,505 bp and 55.72% with longer than 500 bp in
length from Chinese Swamp Buffalo [19], the value was slightly lower in this study.

3.2. Functional Annotation

Table 2 summarizes the assembled unigenes sequences aligned against public protein
and nucleotide databases, which are based on sequence similarities to the published protein
and nucleotide databases, respectively. Among the 21,648 unigenes, 13,214 (61.04%), 12,071
(55.76%), 10,329 (47.71%), 12,157 (56.16%), 11,606 (53.61%) and 8890 (41.07%) could be
matched in the NR, GO, KEGG, EggNOG, SwissProt and Pfam databases, respectively.

Table 2. Functional annotation.

Database Number of Unigenes Ratio (%)

All 21,648 100.00
NR 13,214 61.04
GO 12,071 55.76

KEGG 10,329 47.71
EggNOG 12,157 56.16
Swissprot 11,606 53.61

Pfam 8890 41.07

3.2.1. NR Annotation

Based on BLASTx similarity analysis results on the unigenes, species distribution
showed that the unigenes of Budorcas taxicolor had the highest homology to Ovis aries
(29.85%). It was followed by Capra hircus (12.27%), Bos taurus (10.47%), Pantholops hodgsonii
(8.07%), Bos mutus (5.77%) and then Homo sapiens (3.56%) (Figure 2), which was consistent
with the findings from previous studies [8,9,28].
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Figure 2. Similarity analysis of unigenes based on the best hit.

3.2.2. GO Annotation

Based on the NR annotation, we used the Blast2GO software to classify 12,071 unigenes
into three main Gene Ontology (GO) categories and 50 subcategories (Figure 3). In the
biological processes, the top ten GO terms were “positive regulation of transcription by
RNA polymerase II”, “transcription, DNA template”, “regulation of transcription, DNA
templated”, “negative regulation of transcription by RNA polymerase II”, “oxidation-
reduction process”, “protein phosphorylation”, “positive regulation of GTPase activity”,
“biological process”, “signal transduction” and “intracellular protein transport”. On the
other hand, in the cellular components, the top five GO terms were “cytoplasm”, “nucleus”,
“integral component of membrane”, “extracellular exosome” and “nucleoplasm”. Lastly,
the top five GO terms in molecular functions were “ATP binding”, “metal ion binding”,
“zinc ion binding”, “DNA binding” and “protein binding” (Figure 3).
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3.2.3. KEGG Pathway

After the assembled 21,648 unigenes were searched against the KEGG database,
10,329 unigenes were assigned to six main ontologies and classified into 40 pathways
(Figure 4). Based on environmental information processing, the top ten enriched pathways
were classified into the following categories: signal transduction (1263), followed by human
infectious diseases (957), cancers (861) from human diseases, transport and catabolism
(753) from cellular processes, endocrine system (688) from organismal systems, translation
(656) from genetic information processing, immune system (595) from organismal sys-
tems, folding, sorting, and degradation (584) from genetic information processing, cellular
community-eukaryotes (493) from cellular processes, and cell growth and death (485) from
cellular processes (Figure 4).
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3.2.4. EggNOG Classification

In total, 12,157 unigenes were annotated in the EggNOG database via domain-based
alignments and classified into 23 functional categories (Figure 5). The largest annotated
group was “function unknown”, followed by “posttranslational modification, protein
turnover, chaperones”, “intracellular trafficking, secretion, and vesicular transport”, “tran-
scription”, “signal transduction mechanisms”, etc.
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3.3. Identification of SSR Markers

Simple sequence repeats (SSRs), also known as microsatellites, are useful molecular
markers for population genetics [29]. This study identified 6222 SSRs in 5729 unigenes
using the MISA software. Figure 6 shows the distribution and frequencies of SSRs with a
minimum of five repeats. The largest proportion was monomers (3867, 62.2%), followed by
dimers (1178, 18.9%), trimers (1093, 17.6%), quadmers (59, 0.9%), pentamers (17, 0.3%) and
hexamers (8, 0.1%) (Figure 6). Recent studies have reported that SSRs are useful during
genetic assessment of various wild animals [30–33]. To the best of our knowledge, this is
the first report that has identified microsatellites in takin. We intend to carry out the de
novo genome sequencing of takin in the future to identify new SSRs markers that will help
evaluate the genetic diversity of takin.
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3.4. Phylogenetic Analysis

We selected six unigenes with complete CDS to construct the phylogenetic tree. The
homologs of takin were most closely related to sheep, and less so to mouse and human
for MYOZ2 (Figure 7A) and TNNC2 (Figure 7B). However, the goat MYOZ2 and TNNC2
homologs were not identified because they were not found in the BLASTx search results.
MYOZ3 (Figure 7C) and MYL1 (Figure 7D) homologs of takin were most closely related to
goat, followed by sheep, and less so to human and pig, respectively. Further, the RXRG
homolog of takin were most closely related to goat and oryx, and less so to pig and cat
(Figure 7E). The FAM213A (Figure 7F) homolog of takin was most closely related to oryx,
followed by goat and sheep, and less so to human and golden monkey. For the Cytb gene
sequence, it was found that the homolog of takin was the most closely related to sheep,
followed by goat [8,9]. However, the homolog of takin was the most closely related to goat,
followed by sheep for the mitochondrial genome sequence [10–12]. To reveal the taxonomic
status of takins, further research, particularly genome-wide analysis, will be necessary.
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4. Conclusions

In summary, the high quality of Qinling takin (Budorcas taxicolor bedfordi) muscle
transcriptome was de novo assembled for the first time. A total of 21,648 unigenes were
successfully detected and annotated. In addition, 6222 SSRs were identified as putative
molecular markers that can help assess genetic diversity. In brief, these results provide
valuable information for genetic and genomic studies to protect takins.

Author Contributions: Conceptualization, A.L.; Methodology, J.Q., R.G., Y.L. (Yidan Li); Validation,
J.Q., R.G. and Y.Z.; Formal Analysis, A.L.; Resources, K.J., Y.L. (Yinghu Lei) and L.Z.; Writing—
Original Draft Preparation, A.L.; Writing—Review and Editing, J.Q., R.G. and Y.L. (Yidan Li); Su-
pervision, A.L.; Project Administration, A.L.; Funding Acquisition, A.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Shaanxi Province Forestry Science and Technology Inno-
vation Special Project (No. SXLK2021-0102, No. SXLK2020-0301); 2019 Science and Technology
Special Project of Shaanxi Academy of Forestry Sciences “Evaluation, Protection and Utilization of
Germplasm Resources of Qinling Takin”.

Institutional Review Board Statement: All the animal handling experimental procedures were
carried out according to the guidelines laid by the China Council on Animal Care, and this research
was approved and reviewed by the Experimental Animal Management Committee (EAMC) of
Northwest A&F University.

Data Availability Statement: The data presented in this study are available in the Sequence Read
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