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Abstract

Heterogeneity in strategies for survival and proliferation among the cells which constitute a 

tumour is a driving force behind the evolution of resistance to cancer therapy. The rules mapping 

the tumour’s strategy distribution to the fitness of individual strategies can be represented as an 

evolutionary game. We develop a game assay to measure effective evolutionary games in co-

cultures of non-small cell lung cancer cells which are sensitive and resistant to the anaplastic 

lymphoma kinase inhibitor Alectinib. The games are not only quantitatively different between 

different environments, but targeted therapy and cancer associated fibroblasts qualitatively switch 

the type of game being played by the in-vitro population from Leader to Deadlock. This 

observation provides empirical confirmation of a central theoretical postulate of evolutionary game 

theory in oncology: we can treat not only the player, but also the game. Although we concentrate 

on measuring games played by cancer cells, the measurement methodology we develop can be 

used to advance the study of games in other microscopic systems by providing a quantitative 

description of non-cell-autonomous effects.
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Tumours are heterogeneous, evolving ecosystems [cancerEvoEco, heppner1984tumor], 

comprised of sub-populations of neoplastic cells that follow distinct strategies for survival 

and propagation [ibrahim2017defini The success of a strategy employed by any single 

neoplastic sub-population is dependent on the distribution of other strategies, and on various 

components of the tumour microenvironment, like cancer associated fibroblasts (CAFs) 

[SM17]. The EML4-ALK fusion, found in approximately 5% of non-small cell lung cancer 

(NSCLC) patients, leads to constitutive activation of oncogenic tyrosine kinase activity of 

ALK, thereby “driving” the disease. Inhibitors of tyrosine kinase activity of ALK (ALK 

TKI) have proven to be highly clinically efficacious, inducing tumour regression and 

prolonging patient survival [shaw2013crizotinib, peters2017alectinib]. Unfortunately, 

virtually all of the tumours that respond to ALK TKIs eventually relapse [shaw2013alk] – 

an outcome typical of inhibitors of other oncogenic tyrosine kinases 

[gillies2012evolutionary]. Resistance to ALK TKI, like most targeted therapies, remains a 

major unresolved clinical challenge. Despite significant advances in deciphering the 

resultant molecular mechanisms of resistance [katayama2015therapeutic], the evolutionary 

dynamics of ALK TKI resistance remains poorly understood. The inability of TKI therapies 

to completely eliminate tumour cells has been shown to be at least partially attributable to 

protection by aspects of the tumour microenvironment [marusyk2016spatial]. CAFs are 

one of the main non-malignant components of tumour microenvironment and the interplay 

between them and tumour cells is a major contributor to microenvironmental resistance, 

including cytokine mediated protection against ALK inhibitors [YTN+12].

To study the eco-evolutionary dynamics of these various factors, we interrogated the 

competition between treatment naive cells of ALK mutant NSCLC cell line H3122 – a 

“workhorse” for studies of ALK+ lung cancer – and a derivative cell line in which we 

developed resistance to Alectinib – a highly effective clinical ALK TKI [ou2015alectinib] – 

by selection in progressively increasing concentrations of the drug [DNKAMHS17]. We 

aimed to come to a quantitative understanding of how these dynamics were affected by 

clinically relevant concentrations of Alectinib (0.5μM; see [seto2013ch5424802]) in the 

presence or absence of CAFs isolated from a lung cancer. To achieve this, we developed an 

assay for quantifying effective games [effectiveGames, spaceConfusion] that is of 

independent interest to the general study of microscopic systems.

Results

Monotypic vs mixed cultures

To establish baseline characteristics, we performed assays in monotypic cultures of parental 

(Alectinib-sensitive) and resistant cell lines with and without Alectinib and CAFs. To gather 

temporally-resolved data for inferring growth rates, we used time lapse microscopy to follow 

the expansion of therapy resistant and parental cells, differentially labeled with stable 

expression of selectively neutral GFP and mCherry fluorescent proteins, respectively. From 

the time series data, we inferred the growth rate with confidence intervals for each one of 6 

experimental replicates in four different experimental conditions (total of 24 data points, 

each with confidence intervals), as seen in Figure 1. As expected, alectinib inhibited growth 

rates of parental cells (DMSO vs Alectinib: p < .005; DMSO + CAF vs Alectinib + CAF: p 
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< .005), whereas the growth rate of the resistant cells was not affected. And, as previously 

reported [YTN+12], CAFs partially rescued growth inhibition of parental cells by Alectinib 

(Alectinib vs Alectinib + CAF: p < .005; Alectinib + CAF vs DMSO: p < .005), without 

impacting growth rates of resistant cells.

But we did not limit ourselves to monotypic assays. Our experience observing non-cell-

autonomous biological interactions [nonCA] and modeling eco-evolutionary interactions 

[basanta2012investigating, edge, doubleGoods] in cancer led us to suspect that the 

heterotypic growth rates would differ from monotypic culture. Cell-autonomous fitness 

effects are ones where the benefits/costs to growth rate are inherent to the cell: the presence 

of other cells are an irrelevant feature of the micro-environment and the growth rates from 

monotypic cultures provide all the necessary information. Non-cell-autonomous effects 

[nonCA] allow fitness to depend on a cell’s micro-environmental context, including the 

frequency of other cell types: growth rates need to be measured in competitive fitness assays 

over a range of seeding frequencies. Other microscopic experimental systems in which 

frequency dependent fitness effects have been considered include, but are not limited to: 

Escherichia coli [kerr2002local, freqDepEcoli], yeast [yeastPG, gore2009snowdrift], 
bacterial symbionts of hydra [bacteriaGames], breast cancer [nonCA] and pancreatic 

cancer [A15]. Hence, we continued our experiments over a range of initial proportions of 

resistant and parental cells in mixed cultures for each of the four experimental conditions.

Figure 2 shows the resulting growth rates of each cell type in the co-culture experiments for 

all experimental (color, shape) and initial conditions (opacity is parental cell proportion). In 

the heterotypic culture – unlike monotypic – CAFs slightly improved the growth rates of the 

parental cells, even in DMSO. More strikingly, even in the absence of drug, resistant cells 

tend to have a higher growth rate than parental cells in the same environment (i.e. proportion 

of parental cells in the co-culture). This is evident from most DMSO points being above the 

dotted diagonal line (y = x) corresponding to equal growth rate of the two types (this is 

quantified in Figure 4b and is further discussed in section ‘Leader and Deadlock games in 

NSCLC’).

Frequency dependence in fitness functions

Although not common in cancer biology, competitive fitness assays are a gold standard for 

studying bacteria. But they are typically conducted with a single initial ratio of the two 

competing cell types. However, in Figure 2, if we view the initial proportion of parental to 

resistant cells as a variable parameter represented by opacity then we can see a hint of 

frequency dependence in both parental and resistant growth rates. This is shown more 

clearly as a plot of fitness versus proportion of parental cells in Figure 3. In all four 

conditions, we see that the growth rate of the resistant and parental cell lines depends on the 

initial proportion of parental cells. To capture the principle first-order part of this 

dependence, we consider a line of best fit between initial proportion of parental cells and the 

growth rates. See equations 1-8 in Supplementary Information Section C (or the matrix 

entries in Figure 4b) for these lines of best fit. Interpretable versions of these lines of best fit 

(see Supplementary Information Section D) can be expressed as a regularized fitness 

function wS
C where S ∈ {P, R} indexes the parental or resistant strategy and C ∈ {DMSO, 
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DMSO + CAF, Alectinib, Alectinib + CAF} indexes the experimental condition. For a 

description of regularization see Supplementary Information Section D. Finally, for a 

discussion of higher-order fitness functions, see Supplementary Information Section F.

In three of the conditions, resistant cell growth rates increase with increased seeding 

proportion of parental cells, while parental growth rates remain relatively constant (in the 

case of no CAFs) or slightly increase (for Alectinib + CAFs). In DMSO, this suggests that 

parental cells’ fitness is independent of resistant cells: wP
DMSO = 0.025. Parental fitness in 

DMSO could be well characterized as cell-autonomous. However, resistant cells in 

monotypic culture have approximately the same fitness as parental cells (Figure 2a), but they 

benefit from the parental cells in co-culture: wR
DMSO = 0.025 + 0.015p (where p is the 

proportion of parental cells). Their fitness has a non-cell autonomous component. The 

positive coefficient in front of p suggests commensalism between resistant and parental 

cells, i.e. resistant cells benefit from the interaction with the parental cells, without exerting 

positive or negative impact on them.

The DMSO + CAF case differs from the other three in that we see a constant – although 

elevated wR
DMSO + CAF = 0.03 – growth rate in resistant cells; but a linearly decreasing (in p) 

growth rate of parental cells: wP
DMSO + CAF = 0.025 + 0.01(1 – p) (or, equivalently: 

wP
DMSO + CAF = 0.03 – 0.01(1

2  – p)). This could be interpreted as CAFs switching the 

direction of commensalism between parental and resistant cells.

Leader and Deadlock games in NSCLC

The tools of evolutionary game theory (EGT) are well suited for making sense of frequency-

dependent fitness [firstEGT, firstOncoEGTl, firstOncoEGT2, basanta2012investigating, 

A13, edge, A15, doubleGoods]. In EGT, a game is the rule mapping the population’s 

strategy distribution to the fitness of individual strategies. Previous work has considered 

games like snowdrift [gore2009snowdrift], stag hunt [bacteriaGames], rock-paper-scissors 

[kerr2002local], and public goods [yeastPG, A15] alongside experiments. Instead, we 

experimentally operationalize the effective game (see [effectiveGames, spaceConfusion]) 

as an assayable hidden variable of a population and its environment. We define the effective 

game as the game played by an idealized population that shows the same frequency 

dynamics as the experimental population under consideration. As such, we are not aiming to 

test EGT as an explanation. Instead, we are defining a game assay to quantitatively describe 

our system in the language of EGT. In future work, it would be interesting to ask about the 

best language for describing cancer evolution by testing the game assay against several 

clearly and well operationalized alternatives to EGT.

To measure the effective game that describes the non-cell-autonomous interactions in 

NSCLC, we focus on the gain function (see [gainSigns, doubleGoods] for a theoretical 

perspective): the difference in growth rate between resistant and parental cells as a function 

of proportion of parental cells. The relatively good fit of a linear dependence of growth rates 

on parental seeding proportion allows us to describe the interaction as a matrix game – a 
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well-studied class of evolutionary games (see a description in Figure 4a). Note that this 

linearity is not guaranteed to be a good description for arbitrary experimental systems. For 

example, the game between the two Betaproteobacteria Curvibacter sp. AEP1.3 and 

Duganella sp. C1.2 was described by a quadratic gain function [bacteriaGames]. If one 

views our work from the perspective of model selection then in the main text we proceed 

from the assumption of linearity. Supplementary Information Section F relaxes this 

assumption, extends our game assay to non-linear games, and compares linear and non-

linear models with information criteria. Our qualitative results are unchanged, although the 

exact quantitative results for non-linear models differ slightly.

Two strategy matrix games have a convenient representation in a two dimensional game-

space (see the model in Figure 4a and Supplementary Information Section C for details). 

This is the output of our game assay. We plot the inferred games in a game-space spanned by 

the theoretical fitness advantage a single resistant invader would have if introduced into a 

parental monotypic culture versus the fitness advantage of a parental invader in a resistant 

monotypic culture; as shown in Figure 4b. In this representation, there are four qualitatively 

different types of games corresponding to the four quadrants, each of which we illustrative 

with a dynamic flow. We can see that the game corresponding to DMSO + CAF – although 

quantitatively similar to DMSO – is of a qualitatively different type compared to all three of 

the other combinations.

We can also convert our inferred fitness functions from Figure 3 into a payoff matrix. We do 

this by having each row correspond to a strategy’s fitness function with the column entries 

as the p =1 and p = 0 intersects of this line of best fit. These payoff matrix entries are 

abstract phenomenological quantities that could be implemented by various biological or 

physical processes [effectiveGames]. If we look at our empirical measurements for DMSO 

+ CAF (upper-right quadrant Figure 4b) we see the Leader game, and Deadlock in the other 

three cases (we will use DMSO to illustrate the Deadlock game).

The Deadlock game observed in DMSO is in some ways the opposite of the popular 

Prisoner’s Dilemma (PD) game (in fact, RG05 call it the anti-PD). If we interpret parental as 

cooperate and resistant as defect then, similar to PD, each player wants to defect regardless 

of what the other player does (because 4.0 > 2.5 and 2.7 > 2.4; payoff numbers used in these 

examples are from the matrix entries we measured in Figure 4) but hopes that the other 

player will cooperate (because 4.0 > 2.7). However, unlike PD, mutual cooperation does not 

Pareto dominate mutual defection (because 2.5 < 2.7) but is instead strictly dominated by it. 

Thus, the players are locked into defection. In our system, this corresponds to resistant cells 

having an advantage over parental in DMSO.

The Leader game observed in DMSO + CAF is one of R67’s four archetypal 2 × 2 games 

and a social dilemma related to the popular game known as Hawk-Dove, Chicken, or 

Snowdrift (in fact, RG05 call it Benevolent Chicken). If we interpret parental as ‘lead’ (for 

Snowdrift: wait) and resistant as ‘work’ (for Snowdrift: shovel) then similar to Snowdrift, 

mutual work is better than both leading (because 3.0 > 2.6) and thus no work being done (for 

Snowdrift: both waiting and thus not getting out of the snowdrift) but each player would 

want to lead while the other works (because 3.5 > 3.0). However, unlike Snowdrift, mutual 
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work is not better than the “sucker’s payoff” of working while the other player leads 

(because 3.1 > 3.0). R67 sees this as a tension with a player switching from a “natural” point 

of mutual work to lead and thus benefit both players (3.5 > 3.0,3.1 > 3.0), but if the second 

player also does the same and becomes a leader then all benefit disappears (because 2.6 is 

the smallest payoff). In our system, this corresponds to cells in the tumour experiencing 

selective pressure to lose some but not all of its resistance in DMSO + CAF.

Note that the above intuitive stories are meant as heuristics, and the effective games that we 

measure are summaries of population level properties [effectiveGames, spaceConfusion]: 

the population is the player and the two types of cancer cells are the strategies. This means 

that the matrix entries should not be interpreted as direct interactions between cells, but as 

general couplings between subpopulations corresponding to different strategies. The 

coupling term includes not only direct interactions, but also indirect effects due to spatial 

structure, diffusible goods, contact inhibition, etc.. But this does not mean that an effective 

game is not interpretable. For example, the Deadlock game captures the phenomenon of the 

resistant population always being fitter than parental (for example, in DMSO). We noted this 

effect intuitively in Figure 2 (also see section Cost of resistance) from replicates being above 

the y = x diagonal. Measuring a Deadlock game for DMSO with confidence intervals that do 

not extend outside the bottom right quadrant of the game space in figure 4b allows us to 

show the statistical significance of our prior intuitive understanding. In other words, 

effective games allow us to quantify frequency-dependent differences in growth rates.

Discussion

Cost of resistance

The classic model of resistance posits that the resistant phenotype receives a benefit in drug 

(in our case: Alectinib or Alectinib + CAF) but is neutral, or even carries an inherent cost, in 

the absence of treatment (DMSO or DMSO + CAF). For example, experimentalists 

frequently regard resistance granting mutations as selectively neutral in the absence of drug, 

and the modeling community often goes further by considering explicit costs like up-

regulating drug efflux pumps, investing in other defensive strategies, or lowering growth rate 

by switching to sub-optimal growth pathways [anderson2006tumor, 

ibrahim2017defining]. If we limited ourselves to the monotypic assays of Figure 1, then 

our observations would be consistent with this classic model of resistance. But in co-culture, 

we observed that resistant cells have higher fitness than parental cells in the same 

environment, even in the absence of drug. This is not consistent with the classic model of 

resistance. This higher fitness of resistant cells might not surprise clinicians as much as the 

biologists: in clinical experience, tumours that have acquired resistance are often more 

aggressive than before they were treated, even in the absence of drug. See Supplementary 

Information Section A.3 for a contrast of the biologist and clinician’s view of resistance in 

this context.

Treating the game

Measuring a linear gain function has enabled us to develop an assay that represents the inter-

dependence between parental and resistant cells as a matrix game. Experimentally 
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cataloging these games allows us to support existing theoretical work in mathematical 

oncology that considers treatment (or other environmental differences) as changes between 

qualitatively different game regimes [A13, basanta2012investigating, edge, doubleGoods]. 

In this framework, treatment has the goal not to directly target cells in the tumour, but 

instead to perturb the parameters of the game they are playing to allow evolution to steer the 

tumour towards a more desirable result (for examples, see [A13, basanta2012investigating, 

edge, doubleGoods, steer, vascTheory]). Empirically, this principle has inspired or built 

support for interventions like buffer therapy [buffer], vascular renormalization therapy 

[vascEmp], and adaptive therapy [zhang2017integrating] that target the micro-environment 

and interactions instead of just attacking the cancer cell population. The success of the 

zhang2017integrating trial suggests that therapeutic strategies based on modulating 

competition dynamics are feasible. This highlights the need for a formal experimental 

method like our game assay that directly measures the games that cancer plays and tracks if 

and how they change due to treatment.

In our system, we can view an untreated tumour as similar to DMSO + CAF and thus 

following the Leader game. Treating with Alectinib (move to Alectinib + CAF) or 

eliminating CAFs through a stromal directed therapy (move to DMSO), moves the game into 

the lower-right quadrant of Figure 4b, and the game becomes a Deadlock game. Not only are 

these games quantitatively different among the four environmental conditions – see Figure 

4b – but they are also of two qualitatively different types. To our knowledge, neither of the 

Leader and Deadlock games are considered in the prior EGT literature in oncology. Given 

that the Deadlock of drug-resistant over drug-sensitive cells is a challenge for classic models 

of resistance we would be particularly interested in theoretical models of resistance that 

produce the Deadlock game. In addition to challenging theorists by adding two new entries 

to the catalogue of games that cancers play, this switch allows us to show that the theoretical 

construct of EGT – that treatment can qualitatively change the type of game – has a direct 

experimental implementation. Unfortunately, neither of our in vitro games would lead to a 

therapeutically desirable outcome if they occurred in a patient.

Heterogeneity and latent resistance

A particularly important difference between Leader and Deadlock dynamics is the existence 

of an internal fixed point in Leader but not in Deadlock. Fixed points are a property of 

equilibrium dynamics: in the most general case, even on very long timescales these fixed 

points might not be realized due to the evolutionary constraints of population size 

[slowRepDyn] or computation [hardESS, compConstEvo]. Thus, it is important to check 

to what extent this qualitative difference can translate to a quantitative difference in finite 

time horizons. In our system, we can see a quantitative difference in the convergence 

towards the fixed point in the DMSO + CAF condition of Figure 4c, and no such 

convergence in the other three cases (Figure 4d for Alectinib + CAF; Supplementary Figure 

1). Since the strength of selection (magnitude of the gain function) is small near a fixed 

point, the change in p also slows in the DMSO + CAF condition. We provide a more robust 

analysis of this in Supplementary Information Sections C and F. It would be of interest for 

future work to study the long-term experimental stability of these fixed points.
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Since the DMSO + CAF condition is our closest to an untreated patient, it might have 

important consequences for latent resistance. Many classical models of resistance assume a 

rare preexistent mutant taking over the population after the introduction of drug. In our 

experimental system, however, if the resistant strategy is preexistent then negative frequency 

dependent selection will push the population towards a stable polyclonal tumour of resistant 

and sensitive cells before the introduction of drug. This allows for much higher levels of 

preexisting heterogeneity in resistance than predicted by the classical picture. As such, we 

urge theorists to reconsider the assumption of the rare pre-existing resistant clone.

Of course, our results are for a single in vitro system. But if similar games occur in vivo 
and/or for other cancers, then such preexisting heterogeneity could be a possible 

evolutionary mechanism behind the speed and robustness of treatment resistance to targeted 

therapies in patients. This could help explain the ubiquity and speed of resistance that 

undermines our abilities to cure patients or control their disease in the long term. We will not 

know this unless we set out to quantify the non-cell autonomous processes in cancer. 

Building a catalogue of the games cancers play – by adopting our game assay in other 

cancers, and other experimental contexts – can help resolve this and other questions.

Methods

Cell lines

H3122 cell line was obtained from Dr. E. Haura (Moffitt Cancer Center). Cell line identity 

was validated by the Moffitt Cancer Center Molecular Genetics core facility using short 

tandem repeats (STR) analysis. Primary lung cancer associated fibroblasts were obtained 

from Dr. S. Antonia lab (Moffitt Cancer Center), following the protocols approved by the 

USF Institutional Review Board. CAFs were isolated as previously described in 

PMID26935219 and expanded for 3-10 passages prior to the experiments. The Alectinib 

resistant derivative cell line was obtained through escalating inhibitor concentration 

protocol, as described in DNKAMHS17. Alectinib sensitive parental H3122 cells were 

cultured in DMSO for the same length of time, as the alectinib resistant derivate.

Stable GFP and mCherry expressing derivative cell H3122 cell lines were obtained through 

lentiviral transduction with pLVX-AcGFP (Clontech) and mCherry (obtained from K. 

Mitsiades, DFCI) vectors, respectively. We cultured both H3122 cells and CAFs in RPMI 

media (Gibco brand from Thermo Scientific), supplemented with 10% FBS (purchased from 

Serum Source, Charlotte, NC). Regular tests for mycoplasma contamination were performed 

with MycoScope PCR based kit from GenLantis, San Diego, CA.

Experimental set-up

The cells were harvested upon reaching 70% confluence and counted using Countess II 

automatic cell counter (Invitrogen). CAFs were counted manually to avoid segmentation 

artifacts. Mixtures of parental and resistant H3122 cells were prepared at 8 different ratios: 

all-resistant, 9:1 resistant to parental, 4:1, 3:2, 2:3, 1:4, 1:9, and all-parental. For the 

determination of competitive growth rates, 2,000 H3122 cells from the 8 mixtures were 

seeded with or without 500 CAF cells in 50 μL RPMI media per well into 384 well plates 
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(Corning, catalogue #7200655), with different ratios of differentially labelled parental and 

alectinib resistant variants: with 6 wells used for each resistant:parental ratio in each of the 4 

conditions. 20 hours after seeding, Alectinib – purchased from ChemieTek (Indianapolis, 

IN) – or DMSO vehicle control, diluted in 20 μL RPMI was added to each well, to achieve 

final Alectinib concentration of 500 nM/L [seto2013ch5424802]. Time lapse microscopy 

measurements were performed every 4 hours in phase-contrast white light, as well as green 

and red fluorescent channels using Incucyte Zoom system from Essen Bioscience.

Game assay

We use the exponential growth rate in the fluorescent area of the two fluorescent channels as 

our measure of fitness. In order to minimise the impact of growth inhibition by confluency, 

we analyzed the competitive dynamics during the first 5 days of culture, when the cell 

population was expanding exponentially. We learned growth rate along with a confidence 

interval from the time-series of population size in each well using the Theil-Sen estimator. 

More detail on and justification of this measure of fitness is available in Supplementary 

Information Section B.2.

Since raw population sizes have different units (GFP Fluorescent Area (GFA) vs mCherry 

Fluorescent Area (RFA)), we converted them to common cell-number-units (CNU) by 

learning the linear transform that scales GFA and RFA into CNU. We defined proportions 

based on this common CNU as p = NP/(Np + NR) where N{P,R} is the CNU size of parental 

and resistant populations. The transform of GFA to RFA into CNU is associated with an 

error that is propagated to measures of p as σρ.

To measure the fitness functions we plotted fitness of each cell-type in each well vs seeding 

proportion (p) of parental cells in Figure 3. The x-axis proportion of parental cells (p) was 

computed from the first time-point. We estimated the line of best-fit and error on parameters 

for this data using least-squares weighted by the inverse of the error on each data point. For 

the exact lines of best-fit, see Supplementary Information Section C.3.

The p = 0 and p = 1 intercepts of the lines of best fit serve as the entries of the game 

matrices. Note that in Figure 4b, we multiplied the entries by 100 for easier presentation. 

The game point are calculated from the matrices as x := C – A and y := B – D, and the error 

is propagated from the error estimates on lines of best-fit’s parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Monotypic culture exponential growth rates for parental (cyan) and resistant (magenta) 

cells in indicated experimental conditions. Confidence intervals on each experimental 

replicate is from confidence on the estimate of growth rate for that single replicate according 

to the Theil-Sen estimator. Comparisons between experimental conditions (of 6 replicates 

each) are made using Wilcoxon rank-sum. In addition to conditions linked by lines with 

reported p-values, conditions labeled by ‘a’ and ‘b’ are pairwise distinguishable with p < .

005.
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Figure 2: Coculture growth rates across four experimental conditions.
(a-f) serve as a sketch of the analysis procedure to produce the main subfigure (g); for more 

detailed discussion, see Supplementary Information Section B.4 (a,b,c,d): In each 

experimental replicate at each time step, we quantify population size by fluorescent area of 

each cell type (shown: two different time points per well, from two different wells). 

Together, 30 time-lapse microscopy images (one every 4 hours) from each replicate create 

(e,f): time-series of parental and resistant population size (shown: two example wells). With 

x-axis is time, y-axis is log of population size. Exponential growth rates (and confidence 
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intervals; omitted) were estimated for each well using the Theil-Sen estimator. These 

exponential models are shown as solid lines and their slopes serve as the coordinates in (g). 

See Figure 3 for growth rate confidence intervals and Supplementary Information Section B.

2 for detailed discussion of growth-rate measurement. (g): Each point is a separate replicate 

of a competitive fitness assay with initial proportion of parental cells represented by opacity 

and experimental condition represented by shape (DMSO: circle; Alectinib: square) and 

colour (no CAF: red; + CAF: blue). Each replicate’s x-position corresponds to the measured 

parental growth rate and y-position for resistant growth rate; the dotted black line 

corresponds to the line of equal fitness between the two at x = y.
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Figure 3: Fitness functions for competition of parental vs. resistant NSCLC.
For each plot: growth rate with confidence intervals versus initial proportion of parental 

cells. This is the same data, measured in the same way, as Figure 2. Cyan data points are 

growth rates of parental cells, and magenta for resistant cells. Dotted lines represent the 

linear fitness function of the least-squares best fit; fit error is visualised in Figure 4b. The 

black dotted line is the gain function for parental (see Figure 4a), it is well below the y = 0 

line in the Alectinib conditions (indicating the strong advantage of resistance) and thus cut 

out of the figure. See Supplementary Information Section C for more discussion and 

equations for lines of best fit, and Supplementary Information Section F for alternative fits 

with non-linear fitness functions.
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Figure 4: Measured games. (a) Replicator dynamics.
Consider an idealized population of two strategies in a competitive co-culture: parental (P) 

and resistant (R). When a subpopulation of P interacts with P the subpopulation experiences 

a fitness effect A; when P interacts with R then P experience fitness effect B and R a fitness 

effect C; two Rs interact with fitness effects D, summarized in the matrix. This can be 

interpreted as an idealized exponential growth model for the number of parental (NP) and 

resistant (NR) cells. The dynamics of the proportion of parental cells p =
NP

NP + NR
 over time 

is described by the replicator equation (bottom). In Supplementary Information Section E we 

discuss a purely experimental interpretation based on effectiveGames. (b) Mapping of the 
four measured in vitro games into game space. The x-axis is relative fitness of a resistant 

focal in a parental monotypic culture: C – A; y-axis is relative fitness of a parental focal in a 

resistant monotypic culture: B – D. Games measured in our experimental system are given 

as specific points with error bars based on goodness of fit of linear fitness functions in 

Figure 3. The games corresponding to our conditions are given as matrices (with entries 

multiplied by a factor of 100) by their label. See Supplementary Information Section C for 

more details. The game space is composed of four possible dynamical regimes, one for each 

quadrant. The typical dynamics of each dynamic regime are represented as qualitative flow 

diagram between P and R: an upward cyan arrow corresponds to an increase in the parental 

proportion, and a downward magenta arrow correspond to an increase in the resistant 

proportion. In the case of the two dynamic regimes observed in our NSCLC system, we also 

include insets of measured dynamics (c,d): Experimental time-series of proportion of 
parental cells for DMSO + CAF (c) and Alectinib + CAF (d). Each line corresponds to 

the time dynamics of a separate well. A line is coloured magenta if proportion of resistant 

cells increased from start to end; cyan if proportion of parental cells increased; black if 

statistically indistinguishable proportions at start and end (where start/end are defined as the 

first/last 5 time-pints (20 hours)). See Supplementary Figure 1 for proportion dynamics of all 
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four games and Supplementary Figure 2 for density dynamics and their correspondence to 

the exponential growth model from Figure 4a.
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