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Abstract

Background

The ability to balance on one foot for a certain time is a widely used clinical test to assess

the effects of age and diseases like peripheral neuropathy on balance. While state-space

methods have been used to explore the mechanical demands and achievable accelerations

for balancing on two feet in the sagittal plane, less is known about the requirements for sus-

taining one legged balance (OLB) in the frontal plane.

Research question

While most studies have focused on ankle function in OLB, can age and/or disease-related

decreases in maximum hip abduction strength also affect OLB ability?

Methods

A two-link frontal plane state space model was used to define and explore the ‘feasible bal-

ance region’ which helps reveal the requirements for maintaining and restoring OLB, given

the adverse effects of age and peripheral neuropathy on maximum hip and ankle strengths.

Results

Maintaining quasistatic OLB required 50%-106% of the maximum hip abduction strength in

young and older adults, and older patients with peripheral neuropathy. Effectiveness of a

‘hip strategy’ in recovering OLB was heavily dependent on the maximum hip abduction

strength, and for healthy older women was as important as ankle strength. Natural reduc-

tions of strength due to healthy aging did not show a meaningful reduction in meeting the

strength requirement of clinical OLB. However deficits in hip strength typical of patients with

peripheral neuropathy did adversely affect both quasistatic OLB and recoverable OLB

states.
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Significance

The importance of hip muscle strength has been underappreciated in the clinical OLB test.

This is partly because the passive tissues of the hip joint can mask moderate deficits in hip

abduction strength until it is needed for recovering OLB. Adding a follow up OLB test with a

slightly raised pelvis would be a simple way to check for adequate hip abductor muscle

strength.

1. Introduction

One-legged balance (OLB) is a familiar activity of daily living, as for example when pulling on

a pant leg or sock. Because it is familiar, the ability to balance on one leg is commonly used to

test balance in the clinic, especially since the timed ability to stand on one leg declines with

age, as well as with diseases that affect neuromuscular coordination and sensorimotor function

[1, 2]. During such a test, a clinician asks the patient to lift one foot off the ground without

touching it against the stance leg and then measures how long balance can be maintained,

recording the outcome as the unipedal stance time (UST). Depending upon the protocol being

followed, the performance is scored as perfect (and halted) if the patient reaches the stated

goal, which often ranges from 30 s to two minutes [1, 2]. On the other hand, thresholds for

minimum UST performance of five seconds [3] or 30 s [4] have been proposed to identify

patients at higher risk for injurious falls. The clinician also notes severe weakness in the ipsilat-

eral hip abductor muscles during the OLB trial if the pelvis significantly drops on the contralat-

eral side (positive Trendelenburg sign), or the trunk is visibly shifted toward the ipsilateral hip

to reduce the hip abduction moment demand (negative Trendelenburg sign) [5]. In some

studies a weak but significant correlation between UST and maximum hip abduction strength

has been noted [6] and this relationship strengthens with age and peripheral neuropathy (PN)

[7]. These results suggest a threshold may exist for the hip abduction strength in order for a

patient to perform well in the OLB test. What that threshold may be is unknown; moreover,

that knowledge gap is an impediment to setting rehabilitation goals for that patient.

Biomechanical studies of OLB have traditionally focused on the stance foot and the ankle

joint [8–11]. A torque developed at the ankle controls the position of the resultant vertical

reaction force under the stance foot, namely the center of pressure (COP) [8, 10, 12]. We can

call this the ‘ankle strategy’ due to its similarity to its role in the well-studied eponymous strat-

egy in bipedal standing [13]. Physically, the COP cannot be moved outside the area under the

stance foot, the base of support (BOS). If the ankle muscles are strong enough, the subject can

bring the COP close to the margins of the BOS. But any further exertion and the foot will tilt

onto its edge thereby saturating the effective ankle moment. On the other hand if the ankle

muscles are weak, they cannot move the COP as far. The “Functional Base of Support”
(FBOS) or other variations of the term have been used to demonstrate this relationship [14,

15].

In this and the next paragraph let us first consider the strength requirements for maintain-

ing quasistatic balance. For purely static balance, to satisfy mechanical equilibrium conditions

[16], the vertical projection of the center of mass (COM) onto the floor has to coincide with

the COP. Any offset between the two will accelerate the COM away from the COP [17, 18].

Since OLB is an unstable equilibrium and the ankle strategy is the only way to control OLB

while staying quasistatic [12], maintaining a large enough FBOS width can then be considered

an ankle strength requirement for quasistatic OLB [9, 14]. This is especially true given that
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successful OLB trials are, for the most part, quasistatic [11]. However, even when quasistatic,

there should be enough strength about all the joints to maintain a given OLB posture. For

example, during OLB, the COM of the body without the stance leg stays medial to the ipsilat-

eral hip, thereby creating a large hip abduction moment demand.

The hip abduction moment required for quasistatic OLB received attention in the mid-

twentieth century when it was important for calculating the contact loads on the first pros-

thetic hips. Notably, Inman [19] theoretically calculated the hip abduction moment to be equal

to the weight of the person times half of the distance between the femoral head centers; the pel-

vis was assumed to be kept level. Then in a clever experiment, Inman [19] calibrated the hip

abductor muscles activity, using both needle and surface EMG, as a function of measured hip

abduction moment exertions. The participants then stood on the same leg, while EMG activity

was being recorded to estimate the hip abduction moment. Surprisingly, Inman’s estimates of

the hip abduction moment based on the measured EMG activity were almost half of his theo-

retical calculations. Furthermore, decreasing the pelvic inclination angle decreased the EMG

activity in spite of the fact that doing so actually increased the hip abduction moment demand.

(In the present paper decreasing pelvic inclination angle is defined as lowering the contralat-

eral hip below a horizontal line through the ipsilateral hip, and vice versa.) Inman [19] con-

cluded that this discrepancy was due to tension in the iliotibial band. About twenty years later,

Charnley and McLeish [20] confirmed Inman’s theoretical calculations for the hip abduction

moment for a level pelvis. Charnley and McLeish [20] then went on, in an experiment with

three subjects, to show that the hip abduction moment demand greatly depended on the pelvic

inclination angle and lateral bending of the torso. However, they refuted Inman’s theory of

iliotibial tension on two grounds: first, subjects did not achieve the end of their hip adduction

range of motion while standing on one leg which seemed necessary to engage the passive ilioti-

bial tissues and, second, they dismissed Inman’s EMG evidence as faulty measurements due to

old amplifier technology as well as a failure to account for changes in muscle length. A 2014

study with EMG recordings from gluteal muscles [21], however, corroborated the same trend

of increased muscle activity with increasing the pelvic inclination angle, and vice versa, that

Inman had observed. So, it is clear that both the hip abduction moment demand of OLB, as

well as the relative contribution of passive tissues and muscles in meeting the demand, change

as a function of pelvic inclination angle. However, to our knowledge, the relative contributions

of the hip abductor muscles and passive abductor tissues toward meeting the hip abduction

moment demand in OLB is currently unknown. This gap has confounded the ability to esti-

mate the hip abduction strength requirements of OLB and has also made interpretation of the

clinical OLB test result more difficult.

Now let us consider what happens when maintaining balance quasistatically is no longer

possible. What dynamic strategies could be used to recover balance? A rapid change in hip

abduction moment is a part of a more dynamic set of strategies for controlling the COM during

OLB. For example, a change in angular momentum of the body, developed by creating rapid

movements of the torso and non-stance limbs, can create shear forces under the stance foot that

affect the COM movements via the ‘shear force strategy’ [12]. Otten [22] showed that the stance

limb hip is the most effective joint in creating larger instantaneous shear forces under the stance

foot. In the same way one can analyze control strategies for bipedal standing in the sagittal

plane [13], we can call this the ‘hip strategy’ if we assume the rest of the body is kept in the same

relative position for the duration of the OLB trial. While such a dynamic strategy is only used by

subjects as a “plan B”, after the ankle strategy [11], it should still be considered an important

part of OLB test when considering its potential for helping to avoid lateral falls [23].

Sufficient hip abduction strength is important for both efficacy of the hip strategy for con-

trolling balance as well as maintaining quasistatic OLB. In what follows we use a double
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inverted pendulum mass-link model to investigate the effect of hip abduction strength on both

modalities. To study age and disease effects, we applied scaled ankle inversion / eversion and

hip abduction / adduction strength data from three different population groups to our model,

namely healthy younger adults, healthy older adults, and older patients with PN, the latter

were chosen because they are a large group of patients with known balance problems [24].

We will first explore how hip abduction strength affects quasistatic OLB by introducing the

‘Feasible Balance Region’ (FBR) as a tool to capture the different states in which one meets

the strength requirements of quasistatic OLB. FBR is essentially an extension of the FBOS that

includes the hip abduction strength requirement as well. The state variable approach was

introduced by Kuo and Zajac [25] to determine ‘feasible accelerations sets’ in the ankle and

hip angle state-space in the sagittal plane during bipedal standing as a function of individual

muscle capacities. Similarly, Pai and Patton [26] used a ‘feasible stability region’ to examine

the effect of maximum ankle torque, foot-floor friction, and BOS length on the ability to attain

bipedal quasistatic balance. Here we build on these earlier state-space approaches to show the

effect of considering a reasonable lower bound for the passive tissue hip abduction moment on

maintaining quasistatic OLB, by both including and excluding it in order to arrive at the net

and active FBR, respectively. Finally, for two groups of subjects with similar net FBR, we show

that the active FBR is a better representation of the effectiveness of the hip strategy for avoiding

an ipsilateral fall from OLB. We will conclude by discussing how our findings can be used to

better interpret the results of the clinical OLB test.

2. Methods

2.1. Modeling of OLB in the frontal plane with a double inverted pendulum

Details of the double inverted pendulum model of balancing on one leg and some of the

assumptions of the model can be seen in Fig 1. Maximum isometric strengths for ankle inver-

sion / eversion, and hip abduction / adduction in neutral position were found from the litera-

ture for men and women in three different groups to represent the effect of age and

Fig 1. Details of the double inverted pendulum model used to represent the task of balancing on one leg in the frontal plane over a

stationary stance foot. (A) One link represents the stance leg (SL) and the other the rest of the body (RB). The trunk is assumed to be

straight without any lateral bending, and the contralateral leg is kept at a neutral abduction angle. (B) Parameters of the model are

calculated from published mass-link information of a mid-size male aviator (m1 = 14 Kg, m2 = 67 Kg, l = 57 cm, h = 88 cm, r = 19 cm, α =

56˚) [29]. (C) Two independent states (θ1, θ2) are required to describe balancing quasistatically on one leg. (D) Free Body Diagram for the

equilibrium of the quasistatic double inverted pendulum.

https://doi.org/10.1371/journal.pone.0242454.g001
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neuropathy on OLB: healthy younger adults (20–30 years), healthy older adults (65+ years),

and older patients with PN [7, 27, 28]. In order to apply the isometric strengths to our model,

they were first normalized by the reported mean mass and height of the subjects in each group,

and scaled back to the mass and height of the model (please see S1 Text). Maximum ankle

inversion / eversion strengths were considered constant, and passive tissue contribution as

negligible within the ankle angles common during OLB.

2.2. Available hip abduction moment within the range of motion

The net hip abduction moment consist of both active and passive components. The active hip

abduction moment is generated by the abductor muscles; the passive moment is generated by

non-muscular tissues surrounding the hip such as ligaments and fasciae. The net effect of

force-length changes in the muscles of the hip and their corresponding moment arms within

the range of motion was accounted for by using Neuman’s reported changes in hip abduction

/ adduction isometric strength as a function of hip abduction angle [30].

Our review of the literature revealed no studies for which the passive hip abduction

moment had been modeled as a function of the hip abduction angle. However, an exponential

relationship has been suggested for the passive hip flexion / extension moment as a function of

hip flexion angle [31, 32]. Since the range of hip abduction angles encountered during clinical

OLB is nowhere near the hip abduction end of range of motion [33], we assumed the passive

hip adduction moment during OLB was negligible. On the other hand, whether passive hip

abduction moment during OLB is negligible is a subject of debate [20]. We therefore consid-

ered the passive hip abduction moment to follow an exponential trend as a function of hip

abduction angle (θ2):
Tpassive ¼ B1ek1y2 , where θ2 is the hip abduction angle (degrees) and Tpassive in N.m. We fit the

exponential passive tissue moment for the hip abduction based on two studies. First, in a study

of passive hip range of motion, Nussbaumer et al. [34] reported a mean abduction moment of

1.2 ± 0.36 N.m/º at the end of passive adduction range of motion (~22º adduction) for their 15

healthy subjects. Second, van Arkle et al. [35] reported an abduction moment of 5 N.m at about

10º of adduction in a cadaver study with all tissue being removed except for the capsular liga-

ments of the hip. B1 and k1 were found to be 1.276 and -0.137 respectively by fitting the curve to

passive abduction moments in the aforementioned studies. Since the passive tissue moment at

lower adduction angle was based on a cadaver study with only capsular ligaments intact, it is

safe to assume this formula as a lower limit to the passive hip abduction moment.

2.3. Quasistatic OLB and feasible balance region

Two variables (θ1, θ2) are sufficient to describe all the states in our model for quasistatic OLB

(Fig 1C). Ankle eversion moment (TS
+) and the hip abduction moment (TH

+) required for

maintaining a quasistatic OLB state can be derived from the equilibrium equations (please see

S2 Text). For a description of parameters in Eqs (1) and (2) please refer to Fig 1B. Eq (3) limits

the range of pelvic inclination angles between contralateral hip sag and raise encountered in

the clinic [19].

TSðy1; y2Þ ¼ � ðm1l þm2hÞg sin y1 þm2gr cosðaþ y1 þ y2Þ ð1Þ

THðy1; y2Þ ¼ m2gr cosðaþ y1 þ y2Þ ð2Þ

� 20� � y1 þ y2 � 20� ð3Þ

The combination of states within the physiological range of motion where the strength
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requirements of maintaining quasistatic OLB is possible depends on the maximum available

moment at the ankle and stance hip. We assumed the reported maximum ankle strengths cor-

respond to ankle moments that would bring the center of pressure to the lateral and medial

edges of the functional base of support. Since our focus is on the hip abduction moment

demand in this study, this assumption will have negligible effects on the results. Combining

these constraints results in an area in the (θ1, θ2) plane where quasistatic one-legged balance

can be maintained. We refer to this area as the Feasible Balance Region (FBR). FBR calculated

with only active hip abduction strength is called the active FBR. FBR calculated with both

active and passive hip abduction moments will be referred to as the net FBR.

2.4. Effectiveness of hip strategy for recovering OLB

Lateral falls onto the stance hip are more likely to cause injury compared to medial falls where a

person can simply place their contralateral foot down to break the momentum [23]. Initial qua-

sistatic states where the COM stays lateral to the stance ankle would lead to a lateral fall if a cor-

rective strategy was not initiated. A simple criterion for a successful recovery from a lateral fall

is to find a strategy that causes the double inverted pendulum model to fall medially instead.

Using MATLAB1 simulations of the equations of motion for the double inverted pendulum

model of OLB (ode45 solver), we found all the initial quasistatic OLB states where recovering

OLB was possible (please see S2 Text for the derivation of the equations of motion using Newto-

nian Mechanics). We implemented a simple control strategy in which to avoid a lateral fall,

maximum ankle inversion and maximum hip abduction moments are activated from their ini-

tial values. This strategy can be derived both specifically for the double inverted pendulum (sec-

tion 4 in S2 Text) and generally based on the induced change in angular momentum of the

body for a multi-link model, for example see Hof (2007) [12]. Range of motion constraint was

implemented by adding a large negative damping term in the last two degrees of the range of

motion. We assumed zero initial ankle moment (TS0 = 0), and the smaller of two values for the

initial hip abduction moment (TH0); the one calculated from Eq (2) and the maximum net avail-

able hip abduction moment at the initial state. A limited rate of torque development for both

ankle and hip moments was enforced based the work of Thelen et al. [36]; briefly, they showed

for ankle plantarflexor moment that regardless of age or sex, subjects took on average 90 ms to

increase the moment from rest to half of their maximum strength. For more details on the

assumptions of these simulations, please refer to S3 Text.

3. Results

3.1. Calculated hip abduction moment demand for OLB

The hip abduction moment demand for standing on one leg was calculated assuming the pel-

vis was kept horizontal (θ1+ θ2 = 0). For men in the healthy younger, healthy older, and older

with peripheral neuropathy groups, the hip abduction moment demand for OLB was calcu-

lated to be 50%, 66%, and 106% of their maximum voluntary isometric hip abduction strength

respectively. For women in the aforementioned groups, the calculated values for the hip

abduction moment demand for OLB were 57%, 82%, and 95% of their maximum voluntary

isometric hip abduction strength, respectively.

3.2. Active feasible balance region (FBR) for quasistatic OLB

Fig 2 shows the predicted active FBR for each of the populations. The sensitivity of the calcu-

lated hip abduction moment demand and the active FBR to lateral bending of the trunk and

movements of the contralateral leg are given in S4 Text.
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3.3. Effect of including hip abduction passive tissue moment on the FBR

If we include the modeled contribution of passive tissues to the net available hip abduction

moment, the net FBR for all groups, except for the older men with PN, would extend between

the lines for pelvic inclination angles decreased and increased by 20º on Fig 2. For example,

Fig 3 shows the increased engagement of the passive tissues in bearing more of the hip abduc-

tion moment demand with increasing hip adduction (smaller θ2 values) in older women with

PN. Fig 4 shows that for the corresponding population of older men with PN, the passive tissue

contribution to the net available hip abduction moment was not enough to compensate for the

weakness of the hip abductor muscles, leading to the net FBR actually being divided into two

parts.

3.4. Effectiveness of the hip strategy in recovering OLB

All initial quasistatic states, where our simulations predict recovering OLB from an impending

lateral fall was possible, are shown in Fig 5 (blue region). Despite the net FBR being similar

between the healthy older women and older women with PN, a shorter active FBR (weaker hip

abduction strength) in the latter led to a hollowing of the recoverable states. Comparing the

Fig 2. A graphical comparison of the effect of ankle and hip strength on the mean calculated quasistatic active feasible balance

region (FBR) for OLB in women (left) and men (right) of different ages and health status. A point on each state-space plot represents a

quasistatic state for the OLB double inverted pendulum model with a fixed foot link, where θ1 is the angle that the stance leg makes with

the vertical line and θ2 is the stance leg’s hip abduction angle (please see Fig 1C). Because of limited ankle and hip strengths and ranges of

motion, quasistatic OLB can only be maintained for the states inside the solid lines defining the FBR for each sex and group. The dashed-

dot line in the middle of each FBR is the locus of states for which the COM lies in the same vertical plane as the ankle so that no ankle

moment is required (TS = 0). The top boundary of the FBR for all groups is the locus of points for which the pelvic inclination angle is

raised a nominal 20º. For healthy young men and women, and healthy older men, the lower boundary of the FBR is the locus of points for

which the pelvic inclination angle is decreased a nominal 20º. However, for healthy older women and older patients with peripheral

neuropathy it is the maximum active hip abduction strength that constrains the lower end of the FBR. The left and right boundaries of the

FBR are always determined by the medial and lateral margins of the functional base of support, respectively.

https://doi.org/10.1371/journal.pone.0242454.g002
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width of the FBR (Fig 5, top row) and the recoverable quasistatic states when considering no

ankle strength (Fig 5, bottom row) the effectiveness of the hip strategy in recovering OLB is

seen to heavily depend on the maximum hip abduction strength. Indeed in the healthy older

women, the hip strategy was as effective as the ankle strategy.

4. Discussion

4.1. What’s new?

We believe this is the first biomechanical study of OLB to investigate the effect of limited maxi-

mum hip abduction strength on quasistatic stance and balance recovery. Previous biomechani-

cal studies have either: a) ignored the stance hip altogether in favor of a simpler single inverted

pendulum model that only considered stance ankle and foot mechanics [8, 11], b) despite

using a double inverted pendulum model, incorrectly assumed the center of mass of the body

without the stance leg to lie in the same vertical plane as the stance hip during OLB [9, 10], or

c) utilized more complicated multi-joint models to study dynamic tasks different than clinical

OLB such as standing on one leg on a narrow ridge or the single stance leg phase of gait [22,

37]. The present methods provide an approach to begin to study what a ‘loss of balance’ looks

like given the simplifying assumptions of the model. Yet even for this simple two-link model,

the state-space for the full dynamic OLB is four dimensional (i.e., hip and ankle angles as well

as angular velocities), making it difficult to visualize. So we resorted to assuming initial

Fig 3. Example of calculated passive tissue contribution to hip abduction moment during OLB in older women with peripheral

neuropathy. (A) Calculated effect of passive tissue contribution to the net hip abduction moment on the FBR. Each line in the plot tagged

with a small letter in gray shows a locus of quasistatic OLB states where a condition is satisfied: a: zero ankle moment (TS = 0); b: pelvic

inclination angle increased 20º; c: pelvic inclination angle held level with horizon; d: pelvic inclination angle decreased to -20º; e: FBR derived

with only active hip abduction strength (red region); f: FBR derived with both active and passive hip abduction moments (region with

diagonal lines); g: required hip abduction moment for maintaining the quasistatic state is equal to the net available hip abduction moment; h:

required hip abduction moment for maintaining the quasistatic state is equal to the maximum active hip abduction moment strength; i: each

green dashed line shows the states where the hip abduction moment from the passive tissues is equal to a percentage of the hip abduction

moment load of OLB ranging from 10% to 100% in 10% increments which increase in the direction of the arrow. (B) Available hip abduction

moment as a function of hip abduction angle.

https://doi.org/10.1371/journal.pone.0242454.g003
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quasistatic OLB states to ameliorate this difficulty and visualize the two-dimensional state

spaces (for example, Fig 5).

4.2. Hip abduction moment demand during quasistatic OLB

The presence of the hip joint in the present model allows one to estimate the hip abduction

moment demand of OLB. For a level pelvis this ranged from 50% to 106% of the maximum

hip abduction strength depending on the population group being studied (Results 4.1). These

results are in agreement with Inman’s and Charnley’s calculations for standing with a level pel-

vis [19, 20]. So, we conclude the hip abduction moment demand in OLB is sufficiently high to

warrant the use of a model including a hip joint.

4.3. Investigating OLB with the FBR

FBR is essentially an extension of the FBOS criterion for quasistatic OLB (see Introduction) to

account for limited hip abduction strength. The lateral and medial margins of the FBOS can be

seen as the two lines parallel to the TS = 0 locus of points (Fig 2). On the other hand, if the

patient does not have enough hip abduction strength, then the active FBR will not extend all

the way between the lines indicating a nominal 20º increase and decrease in pelvic inclination

Fig 4. Example of passive tissue contribution to hip abduction moment during OLB in older men with PN.

Calculated effect of significantly decreased active hip abduction strength on the FBR for older men with peripheral

neuropathy. The locus of points tagged by grey letters a-g and the choice of colors are the same as described in Fig 3A.

https://doi.org/10.1371/journal.pone.0242454.g004
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angle. Since the intrinsic noise in physiological feedback loops and force generation within the

muscles causes random variations in the OLB states (for example [38]), an important insight is

that a reduction in FBR size makes maintaining quasistatic OLB a more difficult task. Factors

increasing the random motion of the OLB states, such as loss of sensory function or recruiting

higher muscle forces [39], increases the random motion, thereby effectively shrinking the FBR.

Fig 5. Graphical comparison of calculated active and net FBR with recoverable laterally perturbed initial quasistatic

OLB states in healthy older women and older women with peripheral neuropathy. Letters a-d show the loci of quasistatic

initial states similar to those shown in Fig 3. Letter e (green region) shows the active FBR, derived with only active hip

abduction strength. Letter f (region with diagonal lines) shows net FBR derived with both active and passive hip abduction

moment. Letter j (blue region) shows laterally perturbed initial quasistatic states which can be recovered by a strategy

involving maximum acceleration of the center of mass. We can see that while for both groups the net FBR extends between

lines b and d, weaker active hip abduction strength significantly ‘hollows out’ the recoverable states for the older women with

PN (A and B). Repeating the simulations with zero ankle inversion / eversion strength collapses both active and net FBR to

line a, and shows the same hollowing effect on the recoverable quasistatic states as the simulations with full ankle strength (C

and D). Comparing the width of the FBR (top row) and the recoverable quasistatic states when considering no ankle strength

(bottom row) shows that the effectiveness of the hip strategy in recovering OLB heavily depends on the maximum hip

abduction strength. In the healthy older women, the hip strategy seems as effective as the ankle strategy.

https://doi.org/10.1371/journal.pone.0242454.g005
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If one’s quasistatic state is inside and away from the boundaries of the FBR, then fine adjust-

ments of the center of pressure (COP) and maintaining a nearly constant hip abduction

moment can control the state without the need for any dynamic maneuvers. However, if the

quasistatic state nears an FBR boundary, that is an indication that the strength defining that

boundary is nearly saturated. In the case of individuals with strong hip abductors, the only

FBR boundaries encountered are the lines defined by the margins of FBOS (Fig 2). In that

case, the simpler method of investigating COP movements within the FBOS would be enough

for interpreting the results of the OLB test. This is true for studies of OLB with healthy young

subjects [8]. On the other hand, loss of hip strength due to aging or disease can make the maxi-

mum hip abduction strength an active constraint during OLB. This is clearly the case if we

neglect the passive hip abduction moment and only consider active FBR (Fig 2). Unlike the

FBOS boundaries that can be avoided by rapid hip moment generation [12, 22], nearing a

maximum hip abduction strength boundary essentially leads to the end of a OLB trial unless

the subject violates the assumption of no lateral bending of the trunk. If we consider the contri-

bution of passive hip tissue to the abduction moment, then only a severe loss of strength would

make the maximum hip abduction strength an active constraint (Fig 4).

4.4. Passive tissue contribution to the hip abduction moment

Decreasing the pelvic inclination angle in OLB (θ1 + θ2) increases hip abduction moment

demand on a cosine curve, while it increases the passive tissue moment exponentially. The

reverse is also true for an increase in the pelvic inclination angle. The positive Trendelenburg

test of gluteal function is an attestation to this interaction; some patients with severe gluteal

damage stand on one leg with a marked decrease in pelvic inclination angle [5]. We believe a

knowledge gap is that there are currently no studies reporting direct measurement of the

abduction moment generated about the hip by the passive tissues as one varies adduction

angle. As already explained (see Methods, 3.2) one of two relevant studies that were used for

estimation of the passive tissue hip abduction moment used cadaver specimens with all tissues

but the hip capsular ligaments removed. While these results underestimated curves for the pos-

sible contribution of the passive tissue hip abduction moment during quasistatic OLB, they

still proved sufficient to compensate for the loss of strength due to aging and PN in women.

This can be seen by comparing the active and net FBR in Figs 2 and 3. However, in case of fur-

ther loss of hip abduction strength we showed that, while accounting for the passive tissue hip

abduction moment enlarged the net FBR compared to the active FBR, it was not enough for

older men with PN and led to a dividing of the net FBR in the middle close to the level pelvic

inclination angle (Fig 4). The lower part corresponds to a positive Trendelenburg sign, while

the upper part corresponds to a negative Trendelenburg sign in which patients essentially

reduce the hip abduction moment demand by bending their torso in the ipsilateral direction

[5].

4.5. Active FBR, Net FBR, and loss of balance recoverability

The results show that maintaining quasistatic balance and recovering OLB are not the same,

yet both are important for a successful OLB trial. While maintaining quasistatic balance, one’s

OLB states (Fig 1C) have to remain within the boundaries of the FBR. Due to the abduction

moment from passive tissues acting about the hip joint, the net FBR for most people only has

two active boundaries: these correspond to the lateral and medial margins of the FBOS. How-

ever, when the quasistatic state approaches one of these boundaries or even crosses them, the

subject can resort to a dynamic shear force strategy [12] to recover the OLB state back to a qua-

sistatic state inside the net FBR. In our simple model with only the stance hip and ankle joints,
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the rest of the body was considered rigid. Then in case of recovering from an impending ipsi-

lateral fall, the shear force strategy reduces to a rapid increase in hip abduction moment that

leads to lifting the contralateral hip (increasing pelvic inclination angle). So the rate of torque

development (RTD) is the factor that determines the effectiveness of this hip strategy for recov-

ering OLB. Given that maximum RTD and maximum active strength are positively correlated

[36], the effectiveness of a hip strategy for recovering OLB is governed by the active hip abduc-

tion strength. The result of our simulations (Fig 5) confirm this reasoning. Comparing the net

FBR for older healthy women (Fig 5A) and older women with PN (Fig 5B) shows no difference

except for a narrowing of the region due to weaker ankle strength in the latter group; however

the active FBR is clearly shorter due to decreasing maximum hip abduction strength. This then

leads to the difference between recoverable quasistatic OLB states for the two groups. For

healthy older women, addition of the hip strategy in calculating the recoverable states evenly

extends the boundary corresponding to the ipsilateral margin of FBOS. However for older

women with PN, one can see that this extension is hollowed just above where the active FBR

ends. Repeating the simulations with no ankle strength (Fig 5C and 5D) shows the same effect,

leading us to believe the difference in hip abduction strength was the driving factor for this dif-

ference. It also provides a visualization aid for comparing the effectiveness of the hip strategy

and the ankle strategy in controlling OLB. So, while the net FBR corresponds to the effect of

ankle and hip strength on quasistatic OLB, the active FBR can be used as a measure of OLB

recoverability.

4.6. What can clinicians learn from this study?

Clinical OLB is quasistatic; in some cases to ensure the patient’s safety, the examiner might

even stop the trial if rapid movements of the torso and arms are observed. So the patient’s OLB

states are quasistatic and therefore have to lie for the most part inside the FBR. Our results

show that even including an underestimation of passive hip abduction moment in visualizing

the net FBR, limits the difference between healthy young and older adults to the difference in

effective ankle strength (FBOS width). So, unless the population being studied has a severe loss

of hip strength, hip abduction strength should not play a role in differentiating patients during

quasistatic OLB. So the current test of clinical OLB is more sensitive to ankle strength, sensory

feedback, and coordination than to changes in hip abduction strength. These results help

explain why a timed Trendelenburg sign test performs better than the conventional test [5];

sustained effort in the hip abductor muscles during OLB leads to fatigue and reduction of

effective maximum strength over time according to Rohmert’s curve [40]. If the maximum hip

abduction strength is close to the critical value where a splitting of the net FBR occurs, then a

Trendelenburg sign will be observed after fatigue. This also explain why even a 50% experi-

mental reduction in maximum hip abduction strength by ultrasound nerve blocking did not

evoke a Trendelenburg sign in a group of nine healthy young men [41]. We therefore suggest a

modified Trendelenburg test should be added to the clinical OLB test. The patient could be

asked to stand on one leg with a slightly raised contralateral hip while being allowed to use

small occasional finger touches to a nearby support to help with the coordination. This test

will increase the contribution of the abductor muscles to providing the demand of the OLB as

shown by EMG measurements [19, 21]. Since muscles are more involved in meeting the

abduction moment demand of OLB, they will fatigue easier, which then allows the measured

time to be used as a proxy for maximum hip abduction strength measurement without the

need for dynamometers. Such a measure can better capture the capacity of the individual to be

able to use a hip strategy in order to avoid a lateral fall from OLB compared to the quasistatic

OLB test.
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4.7. Strengths and limitations

In this study the simplest model of OLB was used that could allow one to include hip strength

in the analysis. The simplicity of the model helps one characterize the effect of ankle and hip

strength on quasistatic OLB states in the form of the net FBR, and a method for comparing the

effectiveness of the hip and ankle strategies. These results are an upper bound estimation for

what is physically possible since sensory feedback signals were assumed to be perfect with no

delay across all population groups. For a patient population such as those with peripheral neu-

ropathy, these upper bound estimates are greatly overestimating the OLB capacity. In spite of

this, our approach is still successful in pointing out that while ankle sensorimotor function is

the focus for these patients, their hip strength is also automatically putting them at consider-

able risk for falls, a point that is currently usually neglected.

Amongst the most important limitations of this study are modeling errors and extracting

anthropometric and capacity related parameters of the model from published mean values in

the literature. First, we used a double inverted pendulum model for all our analyses. This

required considering the arms, head, non-stance leg, and particularly the spine to be always

kept rigid. In addition the stance foot was assumed to be stationary while in a typical OLB in

the daily life, one might even shuffle the stance foot medially or laterally to help control bal-

ance. Such a simplification was a compromise for finding the simplest model that could still

capture the importance of the stance hip joint during OLB. In S4 Text the sensitivity of our

findings to some of these assumption is given. Second, we used published mean muscle capac-

ity data from the literature and scaled them to the height and weight of our 50th percentile

man model. Unfortunately, this approach neglects the between-subject differences in mass dis-

tribution, anthropometry, strengths and ROM. In spite of these assumptions the model still

provides useful insights. Third, our estimation of the passive hip abduction moment was based

on the two quantitative articles that we could find in the literature. While our model underesti-

mates the passive hip abduction moment it is still capable of showing the substantial difference

that it makes by comparing the shapes of the active and net FBR. This underlines the impor-

tance of obtaining accurate measurements of the passive hip abduction moment close to the

end of adduction range of motion. Finally, the assumption that the maintenance of OLB is

accomplished by movements completely contained within the frontal plane may not always be

valid. For example, at the stance hip, one can redirect torso momentum in the frontal plane to

the sagittal plane by engaging the hip internal or external rotator muscles. Despite these limita-

tions we believe the model provides useful insights into the clinical test of OLB.

5. Conclusions

1. The FBR is a useful tool for capture the different states in which the strength requirements

are met for quasistatic OLB.

2. Comparison of the active FBR and the net FBR revealed that the contribution of passive tis-

sues to the net hip abduction moment can mask moderate deficits in hip abduction strength

in a clinical OLB test.

3. In contrast, quasistatic OLB states that could be recovered from a lateral fall greatly

depended upon adequate maximum hip abduction strength, better captured by the active

FBR.

4. We therefore suggest that, in the clinic, adding a follow-up OLB test with a slightly raised

pelvis is a simple way to check for adequate hip abductor muscle strength.
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