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ABSTRACT
Dynamic communication within adipose tissue depends on highly vascularized structural char-
acteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose 
endothelial cells (AdECs) act as essential bridges for biological information transmission between 
adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and 
adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain 
adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. 
The differential regulation of AdECs in adipose plasticity often depends on vascular density and 
metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is 
still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to 
play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention 
has great potential as therapeutic strategies for obesity.
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1. Introduction

Obesity severely affects the quality of life and threatens 
the health of patients because of the accelerated growth 
rate and serious complications [1]. The traditional opi-
nion of the pathogenesis of obesity is centred on the 
response of adipocytes to insulin resistance (IR) and 
lipotoxicity [2]. Immune system dysfunction and 

vascular impairment are considered secondary events 
[2]. However, the importance of vascular pathogenesis 
as an initial trigger for the development of obesity and 
its comorbidities has been gradually recognized [3]. 
Adipose endothelial cells (AdECs) form a network of 
capillaries with a total length of nearly 1 m in each 
cubic millimetre of adipose tissue (AT) [4]. Each fat cell 
is in direct contact with the capillary network in 
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a circular manner. AdECs are not only a physical bar-
rier between blood and the other cells of AT but also 
directly regulate the effective transport of oxygen, 
nutrients, hormones, etc. in AT, and thereby have 
a lasting impact on the balance of AT metabolism [4– 
6]. Unexpected findings have transformed our under-
standing of the role of AdECs in the development of 
obesity prevention strategies that target AdECs [7,8].

Herein, we summarize and discuss the dramatically 
underexplored evidence in favour of the causal role of 
AdECs in systemic metabolic control. This review provides 
an overview of the molecular mechanisms of communica-
tion between AdECs-adipocyte and AdECs-stromal cells in 
the control of AT metabolic homoeostasis.

2. The metabolic characteristics of different 
types of AdECs

Endothelial cells in ATs can be divided into arterial 
endothelial cells (AECs), venous endothelial cells 
(VECs), capillary endothelial cells (CECs) and lym-
phatic endothelial cells (LECs) based on anatomy 
locations [9]. AECs are directly involved in maintain-
ing the physiological functions of AT through local 
blood flow regulation and nutrient supply. VECs are 
the primary site of permeability and recruitment of 
chemokines during obesity-induced inflammation 
[9]. However, this insufficiency in knowledge of reg-
ulations of AECs and VECs in AT metabolism should 
be subject for further examination. The lower capil-
lary density in the white adipose tissues (WAT) of 
patients with obesity could impair the lipids-storing 
capacity of WAT, and then lead to ectopic fat accu-
mulation [10]. The impaired thermogenesis of brown 
adipose tissues (BAT) was also correlated with capil-
lary rarefaction in obese mice 11. The results of 
single-cell sequencing from visceral AT in obese sub-
jects recently provided new clues to the types of 
AdECs, which indicates that 78% of vascular stromal 
cells from the visceral AT expressed genes LYVE1 
[12–14]. LYVE1 as a classic marker of LECs is 
enriched in AdECs, implicating that AdECs may pre-
sent LECs-like metabolic and structural features. 
LECs have been reported to control lipid transport 
and mediate AT inflammation via regulation of intes-
tine-adipose axis [15–19]. This observation keeps line 
with the recent literature showing the crosstalk 
between LECs and AT function [20]. Although 
important advances have been made about types of 
AdECs in WAT, very little progress has been 
achieved for precise classification of AdECs in other 
fat pads.

3. AdECs signalling networks within adipose 
stromal cells

AdECs can secrete signalling molecules to target neu-
ron cells, immune cells, and progenitors, altering their 
metabolic pathways and reshaping the AT microenvir-
onment. In this study, we will comprehensively sum-
marize the current studies on molecular signalling 
linking crosstalk between AdECs-immune cells, 
AdECs-neuron cells, and AdECs-progenitor cells 
(Figure 1).

3.1 AdECs- immune cells communication

A variety of AdEC-derived factors may target adi-
pose-resident immune cells to regulate adipose meta-
bolism and inflammatory responses [21]. Adipose 
tissue macrophages (ATMs) are one of the most 
abundant immune cell types present in visceral AT 
and can be categorized as M1-like (pro- 
inflammatory) and M2-like macrophages (anti- 
inflammatory) [22]. Obesity drives macrophages to 
polarize into an M1-like phenotype; strategies to 
increase the ratio of the M2-dominant population 
can improve adipose and whole-body metabolism 
[23]. Interestingly, modulation of angiogenesis can 
also cause a change in ATM phenotype. Vascular 
endothelial growth factor B (VEGF-B), the best- 
known angiogenic factor, binds to VEGFR1 on the 
surface of macrophages, causing M2-macrophage 
polarization [24]. Although the mechanism by 
which vascularization is prone to polarize ATMs 
towards M2-like macrophages remains to be 
explored, local vasculature administration could be 
a potential clinical route to improve AT inflamma-
tion. On the other hand, obesity-damaged AdECs 
could directly activate endothelial TLR-MyD88 sig-
nalling to drive M1 macrophages accumulation 
through production of GM-CSF, which is well 
known for promoting monocyte differentiation 
towards M1 pro-inflammatory macrophages [25]. 
Moreover, ATMs could regulate the formation of 
AdECs by producing po-angiogenic factors, such as 
the platelet-derived growth factor-B (PDGF-B) [26]. 
These findings suggest that AdECs harbour immuno-
suppressive feedback mechanisms that are triggered 
as a result of macrophage activation. Disturbances in 
AdEC–macrophage interactions drive the occurrence 
of obesity. We look forward to more research invol-
ving the interaction of AdECs with other immune 
cells in obesity because the current investigations 
have been confined to the communication between 
AdECs and ATMs.
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3.2 AdECs- neural cells communication

The close connection between AdECs and sympa-
thetic stimuli might be essential for AT remodelling 
during overfeeding or cold-induced thermogenesis 
[27]. AdECs-derived VEGF-B or VEGF-A can 
increase sympathetic control by binding to the 
VEGFR presented on the surface of sympathetic 
neurons [28,29]. Subsequently, excited sympathetic 
neurons might secrete noradrenaline or neuregulin 4 
(NRG4) to activate β-adrenergic receptors in the 
AdECs to induce VEGF production, which could 
elicit beiging in white adipocytes, along with by 
increased microvascular density [30]. Meanwhile, 
the abnormal secretion of sympathetic neurotrans-
mitters could initiate the lipolysis of adipocytes and 
the release of inflammatory adipokines, which 
reshape the function of AdECs [31]. Apart from 
the interaction between the peripheral sympathetic 
nerve cell system and the AdECs, the regulatory role 
of the peripheral vagus nerve on AdECs still 
requires further exploration.

3.3 AdECs- adipocyte progenitor communication

AT is a cellular heterogeneous endocrine organ. In 
addition to adipocytes, adipose progenitor cells 
(APCs), which can create mature adipocytes,                          

actively participate in metabolic homoeostasis [31]. 
APCs reside in a state of relative quiescence during 
adulthood [32]. The mechanisms responsible for 
establishing an activated state of APCs are closely 
related to vascular network formation. High vascu-
larization supplies sufficient nutrients to APCs, and 
subsequently accelerates the mobilization of APCs 
that differentiate to produce new adipocytes [33]. 
Accordingly, the activation of peroxisome prolifera-
tor-activated receptor γ (PPARγ)-VEGF signalling 
promotes the recruitment of APCs for adipogenesis 
and endothelial cell proliferation, highlighting the 
importance of neovascularization in the adipogenic 
differentiation of APCs [34]. Importantly, in visceral 
fat, a subpopulation of APCs, known as beige-like 
adipogenic progenitors (PDGFRα+), could be trig-
gered and differentiated into beige adipocytes by 
retinoic acid (RA), a metabolite of vitamin A [35]. 
The pro-beiging effect of RA on PDGFRα+ progeni-
tor cells requires the upregulation of the VEGF 
signalling pathway to bind to the promoter of 
PRDM16, which is a transcription factor that deter-
mines the fate of brown and beige fat [35]. Hence, 
exploring the key factors for beige-like differentia-
tion and to unlock the commitment potential of 
APCs could be a promising strategy to combat 
obesity.

Figure 1.  
The crosstalk of AdECs and adipose stromal cells. A) VEGFB or MyD88 released from AdECs determines the 
polarization direction of adipose tissue macrophages. B) AdECs engage in unique interactions with sympathetic 
neurons. VEGF-B release from AdECs binds to VEGF-R in sympathetic neurons to increase sympathetic 
innervation, which further promotes beige adipocyte formation. In turn, the sympathetic neuron-derived 
NRG4 induces AdECs to secrete VEGF-B, creating a positive feedback loop. C) Retinoic acid and VEGF-A 
signalling mediated-high vascularization supply sufficient nutrients to adipose progenitor cells and subse-
quently accelerates PDGFRα+ progenitor cells to differentiate them into beige adipocytes by binding to the 
promoter of PRDM16. 
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4. AdECs: the gatekeeper of adipocyte 
metabolism

Abnormal communication originating from AdECs 
or adipocytes leads to obesity and associated com-
plications [36]. Pellegrinelli et al. were the first to 
highlight that AdEC dysfunction negatively disrupts 
adipocyte metabolic balance by lowering insulin 
sensitivity, triggering metabolic stress, and promot-
ing the release of pro-inflammatory cytokines in 
patients with obesity [37]. Hence, we 

comprehensively summarize the multiple mechan-
isms by which AdECs modulate adipocyte IR, lipid 
overload, and metabolic remodelling (Figure 2).

4.1 AdECs: active players of adipocyte insulin 
sensitivity

In recent years, our understanding of the signalling 
molecules controlling insulin and glucose transport 
across the AdECs has unremitting increased. 
Examples of AdECs-derived protective factors include 

Figure 2.  
Proposed paracrine mechanism whereby AdECs modulate adipose metabolism. A) AdECs-derived factors, 
including hyposialylated IgG, ADK, and PDK1, can modulate insulin sensitivity by regulating insulin exocytosis, 
insulin signal transduction, and glucose uptake. B) VEGF-B, LRP1, apelin, and ET-1 are essential modulators for 
adipose lipid metabolism and lipid turnover. These factors released by AdECs regulate the expression of key 
elements required for lipolysis, lipogenesis, and β-oxidation in adipocytes, which further contributes to 
unhealthy adipose expansion. C) The angiogenic switch triggers beige remodelling based on the secretion of 
AdECs derived from brown mediators. The angiogenesis of AdECs causes WAT browning and energy expen-
diture via activation of VEGFR and activation of β3-AR. Liver and muscle release FGF21 and MDM2 and target 
AdECs for beiging initiation. 
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miR-181 and IgG receptor FcgRIIB, which serve as 
powerful regulators of insulin sensitivity and are impli-
cated in the maintenance of metabolic homoeostasis in 
AT [38–41]. MiR-181 produced by AdECs enhance 
insulin signalling transduction through AKT phosphor-
ylation and by inducing the expression of glucose trans-
porter proteins in adipocytes [38]. Activation of the 
immunoglobulin (Ig) G receptor FcgRIIB and in the 
AdECs by hyposialylated IgG impedes endothelial insu-
lin transcytosis into adipocytes, revealing the exact 
mechanism of insulin transport between AdECs and 
adipocytes [40]. AdECs also release detrimental factors 
PDK and ADK to directly impair adipocyte insulin 
sensitivity and glucose levels by inhibiting AKT activity 
[39,41]. Collectively, these findings suggest that the 
dysregulation of AdECs directly impairs insulin sensi-
tivity and disrupts glucose homoeostasis within the AT.

4.2 AdECs: active players of adipocyte lipids 
turnover

The functional relevance of adipocyte-AdEC circuitry 
for adipose lipid turnover was also demonstrated in 
studies designed to explore the function of AdECs in 
the maintenance of adipocyte lipid homoeostasis. 
AdECs have a tight cross-talk with adipocytes for 
fatty acid (FA) turnover as they secrete VEGF-B 
and apelin, which promote endothelial FA absorption 

by modulating FATP4 or CD36 and transport lipids 
into adipocytes [42–44]. This lipid transport is 
mediated by VEGFR1 and the apelin receptor 
APLNR, which are expressed by the AdECs, and 
have critical roles in coordinating AdECs-mediated 
FA uptake and the energy demand of the surround-
ing adipocytes [42,43]. Moreover, VEGF-B is co- 
expressed with mitochondrial proteins to coordinate 
FA β-oxidation in adipocytes and reduce the lipid 
accumulation in adipocytes [43]. Recently, a low- 
density lipoprotein receptor-related protein 1 
(LRP1) was reported to induce lipogenesis by activat-
ing PPARγ signalling in white adipocytes [44,45]. 
The molecular mechanism of AdECs for controlling 
lipid catabolism was also demonstrated to involve 
endothelin-1, which, as an angiogenesis inhibitor, 
could suppress hormone-sensitive lipase-mediated 
lipolysis of adipocytes [46,47]. In summary, AdECs 
are highly specialized endothelial cells that are 
adapted to regulate lipid transport and lipid metabo-
lism in adipocytes, and are implicated in the patho-
genesis of obesity.

4.3 Angiogenesis of AdECs linking adipocytes 
remodelling: friends or foes?

AdECs are the most important cells for AT vasculature 
involved in self-renewal and construction of the lumen 

Table 1. Clinical correlation between angiogenesis and obesity.

Drug or diet or exercise 
therapy

Change of 
angiogenesis markers Conclusion

Disease 
(sample size)

Exercise /Diet-induced weight loss
Diet intervention or 

Exercise intervention[71]
Circulating VEGF ↓ 
Circulating PEDF ↓

Sustained weight loss via diet and/or exercise result in reductions in angiogenic 
factors, and can be maintained up to 30-month follow-up.

Overweight 
or obesity 
(n = 439)

Six month running 
training[75]

Plasma Endostatin ↓ Endurance training reduced the antiangiogenic mechanisms by reducing endostatin 
plasma level

Overweight 
(n = 21)

12 month moderate- 
intensityaerobic 
exercise[72]

Plasma PEDF ↓ Fat-loss reduces circulating PEDF in obesity obesity 
(n = 173)

LCD VS VLCD diet[73] Circulating VEGF ↑ The rate of weight of loss is positive correlated with angiogenic factor Obesity 
(n = 25)

Diet intervention or 
Exercise intervention[74]

Circulating ANT-1 ↓ 
Circulating and AT 
ANGPTL4 ↑

weight loss reduced angiogenic activity during obesity Obesity 
(n = 79)

Drug intervention
Exenatide[79] AT angiogenesis ↑ 

AT1 glyoxalase-1 ↑
Liraglutide improves adipose tissue angiogenic function via GLO T2DM 

(n = 140)
Metformin[92] AT TSP-1 ↓ Metformin treatment increases serum TSP-1 in pcos women PCOS 

(n = 73)
Rosiglitazone[86,87] AT VEGF-A ANGPTL4 ↑ 

capillary density ↑
Rosglitazone therapy promotes adipose tissue vascularisation Obesity 

(n = 35)
Serum angiogenin ↑ T2DM 

(n = 50)

LCD:Low-calorie diet;VLCD:Very low-calorie diet 
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and basement membrane [48]. Most studies have 
reported that AdEC-dependent angiogenesis differen-
tially regulates the metabolism of white and brown fat.

Angiogenesis of AdECs favours activation of brown/ 
beige adipocytes
Beige-like or brown-like AT remodelling is an energy- 
consuming process that relies on the growth of micro-
vessels to match the energy demands [49]. The angiogen-
esis of AdECs could induce the activation of beige and 
brown adipocytes and accelerate energy consumption 
[50–53]. Furthermore, the delivery of pro-angiogenic fac-
tors to metabolically active brown or beige adipocytes 
may accelerate fat burning and improve insulin sensitivity 
[49–51]. Pro-angiogenic factors released by AdECs could 
trigger a browning programmes via activation of VEGFR 
and the β3-AR [54,55]. Such factors play promoting roles 
in browning and angiogenesis and are termed brown- 
angiogenic factors.

In addition to paracrine factors derived from 
AdECs that can regulate vascularization and the 
browning process, the fibroblast growth factor-21 
(FGF21) and murine double minute 2 (Mdm-2) 
derived from the liver and skeletal muscles can 
change the phenotype of adipocytes by regulating 
AdEC-dependent angiogenesis [56,57]. Recently, an 
outstanding study revealed a novel molecular 
mechanism for the AdEC-governed fat cell thermo-
genic fate [58]. The endocytosis of triglyceride-rich 
lipoprotein (TRL) particles by AdECs through the 
lysosomal acid lipase (LAL) pathway contributes to 
the browning of white adipocytes [58]. However, the 
paracrine molecules secreted by AdECs during intra-
cellular TRL processing remain to be elucidated. 
Further studies are essential to identify the biological 
functions of these potential molecular mediators and 
to explore the proposed AdEC-adipocyte 
communication.

Angiogenesis of AdECs in metabolism of white 
adipocytes: a double-edged sword
Obesity causes excess energy to be deposited in the 
white adipocytes, and its progression leads to a high 
demand for oxygen and nutrients [59]. Hence, strate-
gies to block oxygen and nutrient supply by preventing 
white adipocyte angiogenesis could combat obesity 
[59,60]. Based on the theoretical notions above, some 
angiogenesis inhibitors, such as endostatin and AGO1, 
have been found to resist obesity [60–66], whereas 
proangiogenic factors such as ANT-2 exert anti- 
obesity effect [67].

Certain rodent literature held the opposite views that 
promoting angiogenesis can effectively improve local 
hypoxia, fibrosis and inflammation induced by the 
rapid expansion of fat cells. Conversely, targeted deliv-
ery of pro-angiogenic factors including VEGFs, PDGF- 
B and PDGF-CC into AT enhances microvessel growth 
and can effectively reverse adiposity, macrophage infil-
tration, and oxidative stress [68–70]. Hence, the AT 
phenotype may depend on the metabolic state of the 
white adipocytes. During the metabolic quiescent state, 
excessive angiogenesis leads to an obese phenotype, 
while during the metabolically active phase or meta-
bolic stress, excessive angiogenesis leads to a lean 
phenotype.

Pharmaceutical angiogenesis intervention for 
combating obesity
In the previous chapter, we have introduced the pros 
and cons of angiogenesis on fat metabolism in animal 
experiments. Limited AT vascularization and blood 
flow were shown to be correlated with hypoxia and 
insulin resistance, whereas hyperactived angiogenesis 
may result in unhealthy expansion of WAT [71]. 
Thus, angiogenesis of AT is a potential target for meta-
bolic diseases. Currently, it remains obscure whether 
angiogenesis stimulation or inhibition serves as 
a treatment for obesity. Hence, we summarize clinical 
evidence describing angiogenesis activity in obesity, 
which provides a rationale for angiogenesis option 
(Table 1) [72–74]. In a randomized controlled study 
with a small sample size, postmenopausal women with 
obesity had higher serum levels of angiogenic factors, 
such as VEGF, plasminogen activator inhibitor, and 
pigment epithelium-derived factor [71]. Other studies 
found that weight loss programmes, including exercise 
or diet intervention, lead to decreased or increased 
angiogenesis activity in the circulation or AT [72–76]. 
Furthermore, we have also summarized the new 
mechanisms of other drugs to improve obesity- 
associated metabolic disorders from the perspective of 
angiogenesis, although most of the research on these 
drugs is still limited to animals.

Exenatide. Exenatide, a glucagon-like peptide 1 recep-
tor (GLP-1 R) agonist, is a first-line clinical drug with 
dual effects of anti-obesity and insulin resistance [77]. 
Hypoxia of AT drives the occurrence of IR through the 
disruption of the insulin signalling pathway. The meta-
bolic benefits of the exenatide are correlated with the 
activation of VEGF-A-mediated angiogenesis and alle-
viate hypoxia in AT [78]. In line with animal studies, 
a recent clinical study reported that exenatide increased 
the vascularization of AT in obese diabetic patients to 
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improve blood glucose levels and insulin sensitivity 
[79,80]. Therefore, activation GLP-1 R may facilitate 
AT vascularization, and then improve AT chronic 
hypoxia to alleviate obesity and obesity-related meta-
bolic disturbance.

TNP-470. TNP-470 is a synthetic analogue of fumagil-
lin, which selectively inhibits endothelial cell growth 
and angiogenesis. The angiostatic mechanism of TNP- 
470 involves suppression of VEGF production in 
endothelial cells [65]. Previous studies have focused 
on that administration of TNP-470 daily reverses obe-
sity by increasing energy expenditure and reducing 
energy intake [81,82]. However, the mechanism of 
TNP-470 altering energy balance in AT is not well 
understood. One possibility is that it is acting directly 
on the central nervous system and BAT via regulation 
of blood flow. Future studies are required to confirm 
the hypothesis. Furthermore, the glucose-lowering 
effect of TNP-470 in combination with sitagliptin ther-
apy is superior to these drugs alone [83]. However, the 
clinical potential of TNP-470 remains to be confirmed.

Rosiglitazone. PPARγ is a key transcriptional factor 
for promoting adipocyte differentiation, but enhancing 
insulin sensitivity. PPARγ induces vascularization to 
increase adipocyte numbers [84]. Rosiglitazone (RSG), 
a classic PPARγ agonist, increases capillary density in 
the AT of obese mice via upregulation of ANGPTL4 
and VEGF-A expression [84]. PPARγ-dependent 
angiogenesis is required for AT healthy growth, 
whereas PPARγ silencing impairs FA uptake, acceler-
ates ageing and worsen inflammation response by redu-
cing angiogenesis activity in human AdECs [85]. 
Clinical studies have confirmed that angiogenesis in 
AT is enhanced temporarily and is accompanied by 
an increase in adiponectin secretion after RSG admin-
istration [86,87]. These evidence suggest that the reg-
ulation of glucose and lipid metabolism by PPARγ 
relies on enhanced vascular density

Nifedipine. Nifedipine is a well-recognized dihydro-
pyridine calcium-channel blocker that is widely used 
for the treatment of hypertension [88]. Experimental 
studies have revealed that nifedipine has a number of 
blood pressure-independent effects, including 
enhanced energy expenditure and resistance to hepatic 
steatosis [89]. Mechanistically, nifedipine administra-
tion ameliorates obesity-impaired vascularization by 
suppressing oxidative stress and enhancing the number 
of endothelial progenitor cells [89]. Once the damaged 
vascularization is repaired by nifedipine, hypoxia of AT 
will be improved, and mitochondrial respiration of AT 

will be augmented to prevent the development of obe-
sity. Therefore, nifedipine may be useful in the treat-
ment of obesity-related vascular deficiency.

Metformin. Metformin is used as a first-line treatment 
in newly diagnosed T2DM patients and ameliorates 
hyperglycaemia and improves systematic metabolism 
[90]. Although the precise mechanisms of action for 
metformin in obesity remain unclear, growing studies 
have approved that metformin also protects cardiovas-
cular system and improves adiposity partly through 
decreasing angiogenesis activity in AT [91,92]. One 
prior clinical study believed that metformin-mediated 
increased angiogenesis activity is related to decreased 
expression of TSP1 [92], which is a novel antiangio-
genic adipokine highly expressed in obese insulin- 
resistant subjects [93,94]. Altogether, restricting angio-
genesis in AT is a potential mechanism for metformin 
to resist obesity.

Botanical extracts. Several plant extracts have been 
reported to exhibit anti-angiogenic activity by suppres-
sion of VEGF-mediated proliferation in ECs [95–97]. 
For example, ginseng metabolites could suppress adi-
pocyte differentiation and promote apoptosis by 
decreasing expression of angiogenic factor (VEGF-A, 
VEGF-B) [95]. Another regulator of angiogenesis and 
lipogenesis is curcumin polyphenol in turmeric spice, 
a bioactive extract from Pu-erh tea, which could reduce 
the adiposity and microvessel density in AT by inhibit-
ing the VEGF signalling pathway [97]. Hence, follow- 
up studies could commit to developing novel therapeu-
tic and supplementary foods based on the modulation 
of angiogenesis in AT to combat obesity.

4.4 Targeting surface markers of AdECs for obesity 
treatment

Since prohibitin and ANX2 were identified as surface 
markers of AdECs useful for its targeting with a peptide 
precision therapy [98,99], accumulating evidence sug-
gests that the potential of prohibitin or ANX2 as 
a therapeutic agent against obesity. Mechanistic expla-
nation of ANX2 and prohibitin resisting obesity could 
be due to accelerated lipids turnover and elevated meta-
bolic rate of adipocytes [100–102]. Herein, targeting 
surface markers of AdECs translation into potential 
clinical applications might be feasible.

5. Conclusion

Evidence indicating the interaction between adipose- 
resident cells and AdECs has mined the novel 

114 -Z.-Z. LIAO ET AL.



perspective of AT homoeostasis maintenance. We posit 
that AdECs, as major initiators, effectors, and regula-
tors of metabolic stress, might be a central determinant 
of unhealthy AT growth. Some metabolites, proteins, 
miRNAs serve as messengers in the communication 
between adipocytes and AdECs [103–108]. Recently, 
one surprising discovery revealed that extracellular 
vesicles might be carriers of the above-mentioned sig-
nal molecules derived from AdECs, which then target 
adipocytes to adapt to metabolic statues [109]. Hence, 
the signal transmission between AdECs and adipocytes 
requires further investigation. Although these fields of 
exploration remain at an early phase, improving the 
AdECs health has a high therapeutic potential for obe-
sity. The current challenge is the identification of stra-
tegies to specifically target AdECs and modulate their 
activity, and future studies using microvascular 
endothelial cells from human AT are warranted.
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