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Moving the field forward: detection of 
epileptiform abnormalities on scalp 
electroencephalography using deep  
learning—clinical application perspectives

Mubeen Janmohamed,1,2,3 Duong Nhu,4 Levin Kuhlmann,4 Amanda Gilligan,5  

Chang Wei Tan,4 Piero Perucca,1,2,6,7 Terence J. O’Brien1,2 and Patrick Kwan1,2

The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies 
published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in de-
scriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have 
made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a de-
tailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge 
detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, 
background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact 
and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epi-
leptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is re-
commended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to 
public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
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Graphical Abstract

Introduction
Research in computer-assisted automated detection of inter-
ictal epileptiform discharges (IEDs) transpired in the decades 
after EEG acquisition systems became available in clinical 
practice. The goal was to computerize detection of the 
‘sharp-transient’ hallmark in epilepsy patients.1,2 An early 
study pursuing this goal was done in the early 1970s,3 where 
a now antiquated computer (PDP-12) was used to discrimin-
ate a waveform from a moving average derived from similar 
polarity amplitudes of 128 preceding waveforms. An indica-
tor pulse was generated when the difference of a waveform 
amplitude reached a critical ratio. From that time onwards, 
modern research has explored quantitative time–frequency 
algorithms as well as machine learning (ML) strategies to de-
velop mathematical models with the intent to achieve reliable 
automated IED detection.4 A range of methodologies have 
been employed to date often in combination, including tem-
plate matching, autoregressive methods, mimetic analysis, 
power-spectral analysis (fast Fourier transform, Hilbert 
and Walsh transform), wavelet analysis, independent com-
ponent analysis methods and neural network ML methods.5

However, these methods were tested only on small data sets,6

thus resulting in low generalizability. Larger data sets im-
prove model performance but require time-consuming fea-
ture engineering process.7 Deep learning (DL), a relatively 
young field within ML, opens up a possibility to implement 

modern computing power to detect IEDs and improve work-
flow efficiency in EEG laboratories. DL differs from trad-
itional ML by using multiple mathematical functions and 
has the advantage of automating latent feature extraction ra-
ther than manual feature selection, making the supervised as-
pect of training and learning from large data sets more 
efficient.7

A great deal of enthusiasm has been raised regarding DL 
outperforming expert specialists in healthcare diagnosis 
and clinical decision-making, and a considerable amount 
of diagnostic, prognostic and treatment-based ML experi-
mentation has been pursued and published across medical 
subspecialties. These studies continue to make headlines in 
various fields. As an example in skin lesion detection, the 
classification of lesions into melanoma versus benign nevi 
has shown convolution neural networks (CNNs) outper-
forming dermatologists in dermoscopic examinations.8 In 
another landmark study for identifying and grading diabetic 
retinopathy using retinal fundus photographs, a DL neural 
network showed above expert-level sensitivity and specificity 
of over 90% in detecting referable diabetic retinopathy and 
macular oedema.9 This required labelled imaging by 54 
ophthalmologists on a data set of 128 000 images for train-
ing and validating and testing in a subsequent data set where 
it outperformed health experts.

Such examples of remarkable success however should not 
be prematurely taken to conclude that ML in health has 
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reached an implementational level in real-world clinical 
practice. When the above promising retinal classification 
model was deployed in a real-world prospective study in 
Thailand, several impediments were identified affecting sys-
tem performance.10 Twenty-one per cent of the retinal 
photographs were rejected by the algorithm as they did not 
meet the system’s high standard for grading even when 
they were of adequate quality to be graded by the human vis-
ual eye. Real-world clinical data on the ground are frequent-
ly affected by a diverse range of technicalities which health 
experts have to regularly deal with, and this is particularly 
pertinent in the EEG and epilepsy world.

DL and ML in the EEG field covers a broad scope of re-
search including epilepsy, sleep diagnostics and brain–com-
puter interfacing.11,12 Within clinical epilepsy itself, ML 
approaches have been investigated for seizure detection,13,14

seizure prediction,15 epileptiform detection,16 epilepsy im-
aging, genetic mining and classification, medical17 and surgi-
cal treatment decision-making and clinical outcome 
prediction.18 High discriminative abilities have been asserted 
in these varied fields; however, there remains an uncertain per-
spective of real-world implementation and generalizability.

A recent study related to EEG IED detection employed a 
10-fold cross-validation method on over 13 262 IED candi-
date waveforms.19 A very impressive area under the curve 
(AUC) of 0.98 of IED detection was cited for a DL model de-
veloped and termed as SpikeNet. Additionally, an AUC of 
0.847 was also reported for classifying whole EEGs using a 
binary classifier trained using 10 extracted features. The 
model reportedly outperformed fellowship-trained EEG ex-
perts to detect individual IEDs. This number, however, needs 
to be contextualized. All data were obtained from a single 
centre including training and test data set and an external 
out-of-hospital test data set was not employed. An epoch- 
based graphical user interface point and click format 
(NeuroBrowser) was employed which required blinded clas-
sification by the raters. The overall inter-rater reliability in 
this particular study for these blinded reviewers agreeing 
on candidates as spikes was only fair with (Gwet κ) of 
48.7. Most importantly, the source code for this model has 
not been available on public repositories to validate on exter-
nal independent data sets. This external validation limitation 
in ML is well known.18

This review summarizes some of the perspectives of clini-
cians who have provided clinical support in DL IED detec-
tion in collaboration with data scientists via EEG data 
obtained from tertiary epilepsy centres in Melbourne. The 
article will allow data scientists and researchers entering 
the automated IED detection field to quickly understand 
the basic nature of the EEG data used in epilepsy manage-
ment, challenges they will encounter upon embarking their 
journey and recommendations on moving the field forward.

Search strategy and selection criteria
References for this review were identified through searches 
of PubMed with the search terms ‘inter-ictal, ‘epileptiform’, 

‘spike’, ‘deep learning’, ‘automated software’ and ‘epilepsy’ 
from 2010 to January 2022. Only papers published in 
English were reviewed. The final reference list was generated 
on the basis of originality and relevance to the broad scope of 
this review.

Why research in this field and 
limitations
The digital era has opened itself to automating tasks requir-
ing human efforts, especially those which are repetitive and 
time-consuming (Table 1). This pursuit has been embarked 
to make hospital workflows more efficient. A routine EEG 
recording of 30 min usually takes anywhere between 5 min 
and an hour (median: 13 min) to be visually assessed and re-
ported by an epilepsy specialist, depending on various fac-
tors, including presence of abnormalities, length of the 
EEG and artefacts present.20 This time can also be increased 
or decreased based on the setting of the EEG. In the intensive 
care unit (ICU) setting, 24 h of abnormal continuous EEG 
being reviewed for only seizure identification required a me-
dian of 44 (±20) min in a retrospective review of convention-
al review versus quantitative EEG comparator study.21 In 
contrast, a DL algorithm can take minutes to label and pro-
vide prediction labels for a 24 h EEG. A recent paper showed 
an average computational time of 7 s to label signal lengths 
of 1 h.22

During manual review, Identification and interpretation 
can take longer for more difficult and complex EEG data. 
An example would be intracranial data of a patient with a 
complex epileptogenic zone and several dozens to hundreds 
of electrode contacts resulting in a vast number of channels 
to review. Inconsistent labelling is also common in practice 
as different EEG technicians and clinicians use different ap-
proaches and terminology in marking data. A successful 
computer-assisted detection would theoretically vastly re-
duce the time and improve quality of labelling done manual-
ly by EEG scientists, technicians and clinicians.

Table 1 Pros and cons of future computer-assisted 
detection in EEG laboratories

Pros
• Speed labelling and substantial data reduction leading to faster 

workflows
• Substituting unavailable expertise in low-resource countries
• Artificial intelligence is purported to have the potential of better 

results than traditionally trained experts.

Cons
• Missed true epileptiform discharges (false negatives) with the 

potential to delay treatment
• Exaggerated labelling of artefacts as abnormalities (false positives) (see 

Fig. 3)
• Reduction of job and learning opportunities for EEG scientists and 

epilepsy trainees
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The most concerning limitation of implementing auto-
mated detection in future workflows would be misreporting 
of an EEG by an overseeing clinician, in particular a non- 
expert epileptologist, biased by the automated programme. 
Every EEG has variation, and no model will ever result in a 
100% accuracy. An EEG may be reported as positive when 
not, resulting in unnecessary and even harmful treatments 
being implemented, and conversely false negatives may delay 
treatment with the potential to cause harm to patients. This 
problem has also been often noted in global clinical practice, 
outside the expert neurophysiology community and ad-
dressed in a series of articles in 2013 appearing in 
Neurology. In a survey of 47 trained neurophysiologists, 
during the annual meeting of the ACNS in 2010, many noted 
coming across misread EEGs and 38% encountering them 
frequently.23 In a more recent study in India,24 1862 EEGs 
were prospectively performed to identify the prevalence of 
benign epileptiform-like variants (BEVs). Under recognition 
and misreporting were common in the neurology 
community. Amongst 101 subjects whose previous raw 
EEGs were accessible, 30% of benign variants were noted 
to be misinterpreted as epileptiform abnormalities. Several 
recommendations and guidelines across the epileptology lit-
erature23,25,26 have been made to reduce this risk and efforts 
are in place to increase the training, teaching and reporting of 
EEGs. In the hands of inexperienced EEG readers, an auto-
mated detection programme may confound and potentially 
worsen misreporting.

Overview of scalp EEG data sets 
available for automated detection
A wide array of EEG recording types can be retrieved from 
hospital-based EEG servers (see Fig. 1). A scalp outpatient 
routine EEG is the simplest of the raw EEG data sets avail-
able and is usually recorded in a 10–20 electrode configur-
ation, with or without ear electrodes. Routine EEG 
recordings are frequently done in rested patients who are 
not in an unwell clinical state and can generally, at most 
times, follow instructions. The quality of the EEG signals 
would be amenable for machine and DL as recording techni-
cians in real-time are able to improve the quality of the signal 
recording and annotate important segments for a further 
clinician’s review. This has been a common data set used in 
DL literature. Routine outpatient EEGs typically range 
between 20 and 30 min and sometimes a more prolonged 
1–3 h sleep-deprived or non-sleep-deprived EEG may be 
requested by the clinician overseeing the patient’s care. 
Sleep-deprived EEG similarly provide good quality record-
ings given artefacts from movement and muscle are consider-
ably reduced during sleep, and a marked surge in 
epileptiform abnormalities is seen in both focal and general-
ized epilepsy during sleep.27–29 Sleep, however, presents a 
different overall background from which the epileptiform 
abnormality emerges, and the epileptiform abnormality 
can present different morphologic characteristics and of 
briefer duration in the case of genetic generalized epilepsy.30

A downside of routine EEGs is that they are less likely to 
have abnormalities to gather for the training data set given 
their shorter duration. However, major tertiary referral cen-
tres however would still have several hundred to thousands 
of routine outpatient EEGs that are abnormal and contain 
epileptiform abnormalities stored on their servers depending 
on the protocol of archiving used and format compatibility 
with modern software. In a hospital, an EEG recording can 
also occur in a ward-based inpatient setting, a multiple-day 
elective video monitoring setting or the critical care setting. 
Video-EEG recordings of patients who are electively admit-
ted for a multi-day recording would be intermediate in qual-
ity. Scientists are able to correct loose electrodes and aim to 
reduce artefact contamination, improve impedances and 
educate the inpatients to aim for better technical recordings. 
Sleep background is also available, and video is always avail-
able to correlate abnormalities for review. Here the number 
of electrodes can differ depending on the purpose of the elect-
ive admission. Recordings for surgical localization regularly 
have additional sub-temporal electrodes. Sometimes sym-
metric or asymmetric higher density electrode coverage in 
addition to the standard 10–20 electrode placement system 
may be carried out in different regions of the brain which 
introduce variation. Such video-EEG recordings can easily 
be processed to a 10–20 format for further data processing.

Lesser quality data sets would include ambulatory 
EEG31,32 recorded when patients are up and about at 
home, introducing large movement and myogenic artefacts 
and where an overseeing scientist is not reviewing the record 
until the leads are removed the next day or at the end of re-
cording duration. Perhaps, most challenging of all would be 
critical care patients where electrical interference from sur-
rounding equipment causes significant artefacts, electrodes 
may be placed in non-traditional positions or excluded due 
to craniotomies and the background may be confounded 
by sedative medications or the underlying brain insult. 
Prolonged ICU continuous EEG is often performed in hospi-
tals for monitoring seizure activity of critically unwell 
patients.33

The nature of EEG background and 
epileptiform discharges
The EEG presents a wide diversity and dynamic nature of 
both background and epileptiform discharges in an EEG. 
This variation has to be understood before embarking on 
the ambition of a universal IED detection model. Figure 2 de-
monstrates sample EEG epochs of epileptiform variation in a 
genetic generalized epilepsy data set showing a sample of di-
versity in epilepsy IEDs for one epilepsy type.

The normal background of an EEG is dynamic and can be 
divided into normal awake, drowsy and sleep stages.34

Background frequencies are slower and less dynamic in ence-
phalopathic patients or those with developmental delay and 
neurodegenerative conditions. There can even be an associ-
ation of background frequencies with age. Paediatric EEG 
has a much more complex range of normal background 
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while older patients demonstrate slowing of the dominant 
posterior alpha activity. Simple state-occurrences such as 
eye closure can also modulate the background. A wide multi-
tude of technical issues and artefacts can add to tremendous 
variation in the background during the awake state and some 
of these can resemble epileptiform abnormalities.35 These 
can occur in both the awake and drowsy state. Several back-
ground variants of the normal EEG can occur including al-
pha variants (fast and slow) and posterior slow waves of 
youth. Further, BEVs can occur in the EEG during awake 
and drowsy state and may include Benign small sharp spikes 
(or Benign Epileptiform Transients of sleep, BETs), wicket 
waves, 14 and 6 positive spikes, and 6 Hz phantom spike 
and wave.34,36,37 Physiologic changes in the drowsy and 
sleep record include attenuated posterior rhythm, central 
theta, V-sharp (vertex) waves, large K-complexes, spindles, 
arousal patterns, positive occipital sharp transients, as well 
as temporal or diffuse rhythmic theta and high-amplitude 
delta slowing.38 Detection models may confuse some of these 
morphologies with epileptiform discharges (see Fig. 3), espe-
cially those discharges showing rhythmic sharply contoured 
waves forms or even delta duration slow waves, such as the 
kind seen in spike/slow wave.39 Similar to dynamic changes 
in background which characterize a normal or abnormal 
EEG, there is no uniformity in epileptiform discharges within 
and across patients. Epileptiform discharges can vary in dur-
ation, morphology, periodicity, topography (Fig. 2) and can 
be modulated by either state changes or other provocative 
manoeuvres. The diversity of epileptiform discharges can in-
clude spikes (20–80 ms), sharp waves (80–200 ms), spike– 
slow wave, sharp-slow wave, polyspikes, polyspike–slow 

waves, as well as fast activity associated with the aforemen-
tioned. These can be located, within one subject, in one region 
or in two or more regions either in one hemisphere or bilat-
erally. When these engage bilateral networks, they are referred 
to as generalized epileptiform abnormalities and when con-
fined to one hemisphere in a few electrode sensors as focal ab-
normalities. They can occur as isolated transients or be part of 
a sequential train or run which can be periodic40 or quasi- 
periodic. In some patients, these frequently recur through 
the duration of an EEG recording but may only occur only oc-
casionally in briefer recordings. They can occur in combin-
ation with any of the background states mentioned above.

Sleep modulates and accentuates the occurrence of epilepti-
form discharges30 in focal, as well as in generalized epilepsy 
and so does provocative manoeuvres which in different epilep-
sies may include photic stimulation,41 hyperventilation or even 
things such as visual, audio or cognitive tasks.42,43 An ambi-
tious all-spike (universal IED detecting) DL model should 
have undergone training with a vast amount of EEG capturing 
the majority of this variation. The differences further are con-
founded by EEGs available from different settings, where dif-
ferent noise levels will be present. To reiterate, an outpatient 
ambulatory EEG recording is not equivalent to a routine rest-
ing EEG in terms of background quality and both of those will 
be different to EEGs acquired in a critical care EEG.

Inter-rater agreements and the gold 
standard comparator
One of the main concerns in current DL and ML studies is the 
lack of an unambiguous framework of what the gold 

Figure 1 The structure of data available from hospital-based EEG servers.
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standard or ‘ground-truth’ is for determining the accuracy of 
the final computing model.44 Given the consistent real-world 
underperformance in the reliability of computers versus hu-
mans in EEG IED discretion, the reference standard today re-
mains visual review and classification by a trained 
epileptologist or clinical neurophysiologist. This presents 
some limitations as inter-rater reliability amongst EEG read-
ers has been controversial due to the perceptual phenomenon 
and probabilistic art of reading spikes.45 For decades, the 
question of inter-rater agreement (IRA) has been investigated 

in parallel with the question of computerized detection. The 
Food and Drug Federal Administration requires three elec-
troencephalographers (EEGers) in the annotation process 
for approval of an algorithm.46 Some authors have directly 
looked at inter-rater reliability and specify the number of 
EEG raters selected for an internal criteria of a definite 
IED.19 Halford5 mentions at least four different agreement 
criteria used by ML authors for referencing actual IEDs in 
his review paper including concordance between all raters, 
a cut-off number of raters from the whole group, reconciled 

Figure 2 Epileptiform variation in Genetic Generalized Epilepsy EEG data sets. (From left to right) (A) Classic 3 Hz spike and wave on 
transverse montage, (B) polyspikes with EMG artefact in frontopolar channels and eye movements, (C) slow spike/wave on transverse montage, 
(D) mild EMG affecting frontal channels with embedded small spike and waves and irregular slow waves, (E) fragments on transverse montage, (F) 
polyspike/slow waves on transverse montage, (G) marked EMG artefact confounding epileptiform abnormality in temporal and frontal channels on 
longitudinal montage, (H) a train of focal posterior sharp waves and a (I) generalized paroxysmal fast burst.
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rating amongst reviewers and some papers using only one 
rater to define the gold standard. Expert pooling has been 
found to be better and larger group sizes from 3 to 10 have 
been reported to be ideal yet judiciously selecting expert 
EEGers for IED annotation research projects may reduce 
the need for this number.46

Although the above may lead to a perception that IRA 
amongst EEGers is imperfect and unreliable, this is not 

entirely accurate. Several studies have shown moderate to sub-
stantial IRAs with some studies report higher Gwet or kappa 
as well as high performance of blinded clinical experts com-
pared to an unblinded gold standard.47–49 IRA in ‘whole 
EEG’ categorization remains high given low-perception spikes 
are contextualized by EEGers before concluding the report as 
normal and abnormal. A limitation of poor or fair IED agree-
ment studies is that reviewers are blinded to clinical context or 

Figure 3 Artefacts mimicking interictal epileptiform abnormalities. IED mimics (A) v-wave mimicking sharp wave and is labelled as 
abnormal by algorithm. (B) High-amplitude slow wave in Stage 3 sleep causing false positive, (C) ocular artefact, (D) ECG artefact picked up as runs 
of IEDs, (E) lateral rectus spikes and (F) wicket spike picked as false positive.
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deal with very short segments of data when tested.50 Most 
real-word EEG review of waveforms requires an awareness 
of patients’ age, compliance with recording instructions, tech-
nical quality, sedative agents, pharmacologic agents, previous 
EEG characteristic, clinical context and the conscious state of 
the patient during recording.

A recent paper provides a good benchmark and sheds light 
on what can be used as a gold standard. Kural et al.47 as-
sessed six criteria that are used to determine what is or is 
not an epileptiform abnormality to assess inter-rater vari-
ability amongst clinicians for each feature criteria and assess 
the International Federation of Clinical Neurophysiology 
(IFCN) criteria as a whole for validity. In the study, they 
used a strict methodology to confirm an IED. It required 
two reviewers agreeing that the candidate waveform was a 
sharp-transient and furthermore additional criteria of a pa-
tient not only to have confirmed epilepsy but of the selected 
transient being concordant with the patient’s recorded seiz-
ure and location as expected in that syndrome or focality (in-
terictal, ictal and syndrome correlation). The clinical context 
was thus extensively incorporated in the decision-making of 
what is or is not a spike thus setting an acceptable benchmark 
for gold standard for the purposes of that study. With that 
gold standard other methods of defining epileptiform were 
evaluated. Blinded reviewers utilizing four or five of the six 
IFCN criteria together provided a strong accuracy of the 
waveform being labelled as epileptiform with accuracy levels 
of 91% (95% CI: 83.6–95.80) and 88% (95% CI: 80–93.6) 
against the gold standard. Furthermore, experts solely using 
their clinical experience with no protocol method and simply 
consensus provided a 92% (95% CI: 84.8–96.5) accuracy. It 
is important to note that all these experts were blinded to the 
original two reviewer unblinded gold standard assessment. 
The six IFCN criteria used included the morphology of spiki-
ness or sharpness, asymmetry of ascent–descent slope, dur-
ation difference from background, an after-going slow 
wave, background disruption and a concordant voltage map.

Assessment of current DL studies
A systematic review by the authors submitted and under re-
view examined 17 recent DL scalp EEG studies for IED detec-
tion (Supplementary Table 1). Of the studies, 60% used focal 
and generalized epilepsy EEGs, whereas the remaining fo-
cused on either or a BECT data set. Six studies used data 
from more than one centre for testing set. Two papers used 
more than a thousand EEG recording data set with median 
number of EEG recordings per study as n = 166. Routine 
EEG recordings were most commonly employed whereas pro-
longed recordings next most common. All studies utilized su-
pervised or semi-supervised learning requiring labelled data; 
however, significant variation in gold standard identification 
of IEDs existed. Montage applications were mentioned in 
some studies and not mentioned in others with the most com-
mon channel combination for data input as longitudinal bipo-
lar montage. The most common architecture employed for DL 
was CNN and long short-term memory with combinations 

and hybrid comprising the rest. Accuracy-based measures 
AUC/balanced accuracy or simply accuracy were reported in 
all studies; however, sensitivity in combination with either 
false positives or precision was not reported in some studies. 
Overall, a wide variety of data preparation, pre-processing 
methods and neural architecture techniques were utilized. 
Presentation focus of performance metrics vary significantly 
amongst studies introducing difficulty in comparisons of 
strength of models. Further technical details of the data prop-
erties, pre-processing methods, design of DL architectures and 
layers, optimizers and pooling methods can be reviewed from 
the original papers and a systematic review by the authors is 
under review.

Annotation standards
Recent literature on DL IED detection do not usually elabor-
ate on the clinical annotation protocol used for the super-
vised learning process and we found this information 
lacking in publications. A six-way labelling classification of 
epilepsy EEGs is employed by the Temple University group 
which has availed their public data set on the internet.51

Proper annotation labelling may be important for the per-
formance of the algorithm. An abnormality can be marked 
using a single marker or a start and end marker. The win-
dowing method employed for training and testing purposes 
for IED detection may incorporate partial normal segments 
in the windows designated as abnormal containing epilepti-
form abnormalities. If only one marker is used it can be 
placed at various points along the discharge most frequently 
at the negative peak of a selected spike portion. No strict rig-
our can be employed here due to the vast heterogeneity of 
how transients and prolonged discharges appear. Even 
when a more laborious ‘start’ and ‘end’ markers are utilized 
there is frequent inter and intra-rater variation from our cen-
tre’s experience in labelling as abnormalities often do not 
have clean onsets and offsets. A decision may be made to an-
notate the first spike onset, however spikes may terminate 
before the discharge has ended in the case of generalized epi-
leptiform abnormalities.52 Conversely, discharges may 
emerge with some abnormality in background or rhythmic 
slowing before showing clear spike morphology. In the 
case of stereotyped repeated focal transients, the onset and 
offset may be easier to define. An annotation marker may 
be generic with an instant timestamp without regard to the 
channels involved, or it may be specific and labelled accord-
ing to the specific channels involved. The Temple University 
Hospital (TUH) events public corpus has made an effort to 
label abnormalities based on specific channels involved and 
may allow more precise abnormal signal input for the subse-
quent learning process.53 These annotations of the data sets 
however will need to be systematically validated.

Metrics evaluation
Utilizing sensitivity, specificity and AUC of each model does 
not always translate into useful clinical assessment. There 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac218#supplementary-data
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remains a challenge with reporting metrics in regard to IED 
DL models, and the most clinically useful metrics are va-
riedly reported in the currently existing literature. Both ac-
curacy and to some extent AUC as understood by data 
scientists in the field, unless contextualized with other me-
trics, can be misinterpreted by clinicians. This has been noted 
by some authors.54 Summaries of recent DL models consist-
ently report over >0.9 or 90% AUC19,55–59 A model can be 
stated as having 90% ‘AUC’ or accuracy and yet be unreli-
able from the clinical perspective. This will occur if the nor-
mal windows for the majority part were correctly predicted 
even if the abnormal discharges, which occupy very brief 
lengths and occur sparsely, were all mostly missed. The 
only tuning of the model to give a high accuracy would be 
to reduce the number of false positives which could be at-
tained by raising the detection or perception threshold (low 
sensitivity setting). True negatives in such a model will be 
high in both the numerator and denominator, falsely giving 
an ‘accurate performance’. An AUC does not always solve 
this problem as both a high sensitivity and specificity do 
not necessarily address the issue of false positives (examples 
in Fig. 3). This problem of imbalanced data set during ML 
and DL training occurs when normal background input vast-
ly exceeds abnormal windows with a ratio of up to 1:1000.56

Data augmentation methods have at times been incorporated 
to increase the representation of the spike minority class 
using oversampling techniques.60,61

When evaluating a DL model, several other metrics, there-
fore, have to be taken into account and few metrics are help-
ful as standalone measures to give a perspective on success 
(see Table 2). Precision reports true positive IEDs in the 

entire set of predicted IEDs. It represents the positive predict-
ive value in clinical terms. A higher precision implies a lower 
false positive rate. False positives per minute or hour is a sim-
ple and informative metric which provides accurate insight 
into performance when full-length EEGs are evaluated in 
the test data set. Precision or false positive rate coupled 
with sensitivity represent a better measure than specificity 
and AUC. Class imbalance as described above skews specifi-
city TN/(TN + FP) and other measures dependent on it like 
AUC. Amongst other parameters of high utility is the 
F1-score which provides a weighted average of both sensitiv-
ity and precision and the AUPRC which is the area under the 
precision–recall curve (AUPRC). The F1-score weights the 
two most important variables and will take into account 
false positives and false negatives without contaminating 
or exaggerating performance with the imbalanced true 
negatives.

Channel-based labelling has its advantage. For focal ab-
normalities and artefacts maximal involvement is in few 
channels can improving the target specificity for data train-
ing. On the other hand, if one maximally involved channel 
is selected for training this has the risk of ignoring data 
from the remaining field extent of the IEDs. If per channel 
evaluation is desired modifications to appraisal will be re-
quired in a mixed unselected data set as generalized epilepti-
form abnormalities or spikes with broad fields will show 
preferential biasing compared with localized spikes. From 
the clinicians’ perspective, single-channel annotation would 
be tedious to review, present redundant data and pose diffi-
culty in evaluation when many channels are involved. A sin-
gle timestamp even for generalized or broad field focal 
abnormalities would serve the intended purpose of auto-
mated detection as a screening tool.

We found a lack of clarity in many papers as to how re-
dundant predictions for a single contiguous discharge are 
dealt with. Continuous EEG data are frequently segmented 
into short windows (ranging from 0.5 to 2 s) and is trained 
or tested using a sliding window of overlapping or non- 
overlapping windows (50–75%). From a clinician’s perspec-
tive, redundant (repeated) markings between pre-labelled 
start and end marking of a contiguous epileptiform abnor-
mality should not be counted as true or false positives and 
should not influence metric calculations. This may differ 
from the understanding of the detection target in which 
IEDs are thought exclusively as ‘spikes’. We reiterate in 
this article the many different types of epileptiform patterns 
including bi- or triphasic sharps, spikes, polyspikes, fast pat-
terns with or without slow waves occurring in isolation or 
prolonged repetitive bursts exceeding conventional window 
segmentation (see Fig. 2) used in DL are common.

In the case of highly active prolonged abnormal EEGs, the 
recording can be trimmed to reduce margin of error for the 
manual annotator instead of using dozens of hours. 
Furthermore, manual review and validation of the auto-
mated spike labels should also be performed to ensure any 
extras detected by the ML are false positives and not detected 
but unlabelled true positive IEDs.

Table 2 Performance metrics commonly used in deep 
and machine learning studies

Metrics of clinical utility for IED detection

• Sensitivity: Proportion of true gold standard IEDs correctly detected

• Precision: The proportion of true marked gold standard IEDs to all 
machine predicted positive labels. (True positives)/(true positives + false 
positives)

• False positive rate: Rate of false positives which were not classified by 
the gold standard as IEDs typically reported in per hour

• F1-score—This takes into account the two most relevant metrics of 
precision and recall.

• AUPRC—Area under the precision–recall curve (AUPRC) which differs 
from the area under the ROC curve. A model achieves perfect score 
when it identifies all epileptiform abnormalities without marking normal 
or benign abnormalities

Metrics of limited clinical utility in isolation

• True negatives, specificity, accuracy and AUROC (area under ROC 
curve)
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Whole EEG classification
In this area of interest, some authors have reported on 
IED-free versus not-free to categorize whole EEG classifica-
tion.19,57,59 This may implement a IED rate threshold to cat-
egorize EEGs into normal versus abnormal which differs 
from criteria used in real-world classification by epileptolo-
gist. Clinically, one unequivocal epileptiform abnormality 
suffices to classify an EEG as abnormal. If EEGs were sorted 
from clinical reports, caution needs to be adopted given 
other EEG features, most notably focal slowing or indeter-
minate findings, can lead to the classification of an EEG as 
abnormal without an epileptiform abnormality. Textual 
mining of reports for data set retrieval should specifically re-
quire the presence of epileptiform abnormalities and the con-
clusion of the report should be ascertained. Sensitivity and 
specificity calculations are easier to calculate for whole 
EEG classification as actual positives and actual negatives 
are easier to define without the challenge of defining win-
dows in relation to IED durations. IRA on whole EEG clas-
sification is higher than for individual IEDs.

Future directions and overcoming the 
IED challenge
In seizure detection, low false alarm rates (<1/h) and high de-
tection rates (70–80%) have been achieved,62 and software 
are operational in some hospitals for seizure alerting, detec-
tion and continuous monitoring.63 On the other hand, des-
pite more than 50 years of study in this study area, 
commercial or open-source software have not become perva-
sive in clinical use for the detection of IEDs on EEG record-
ings despite the immense benefit to time and labour 
challenges in an EEG laboratory. A recent commercialized 
spike detection software trained using DL algorithm, 
Encevis Solutions64 (Austria), sensibly uses clustering to 
overcome the high rate of false detections 112/h for a high 
sensitivity of 89%.54 Persyst 13 has been reported in one 
study as non-inferior in performance to senior EEG technol-
ogists65 at a low-perception predictive setting (high sensitiv-
ity setting) but was found to have much higher false positive 
rates at various perception thresholds compared with board- 
certified EEGers reviewing Epoch-based transients.66 It re-
mains to be seen how well the software will perform on 
more varied, larger and longer unselected EEG data sets 
using a reliable gold standard. There remains significant 
scepticism amongst EEG technicians and clinicians as to 
the benefits of available software accurately guiding the pro-
cess of capturing and labelling spikes on scalp EEGs and sub-
sequently quantifying IEDs let alone precisely making a 
judgement on classification of a scalp EEG into normal or ab-
normal (IED-free versus IED-EEGs).

The scepticism and difficulty in readily available DL algo-
rithms for computer-assisted clinical EEG reporting has been 
due to a great number of barriers. The wide heterogeneity of 
methods, statistical approaches and reporting in current lit-
erature introduces difficulty in comparison of models. The 

models may appear accurate in a single-centre data set but 
their applicability to multiple data sets is more challenging. 
Standardized descriptions of data sets and reporting metrics 
is essential remains a priority in this field.

Proposed hierarchy for gold standard 
epileptiform detection
Given no consensus exists on the gold standard to be used for 
identifying and labelling epileptiform abnormalities for 
training and testing DL models, different approaches can 
be utilized based on extent of clinical support available in 
the centre. In the most reliable situation, epilepsy experts 
(even a few) assess each spike or sharp wave in relevant 
time epochs as an epileptiform abnormality having aware-
ness of the context of the patient’s profile (clinical history 
and imaging) and have access to longer EEG recording or 
at least more than just short epochs, including ictal patterns 
and locations to correlate for concordance. EEG reviewing 
and reporting, especially for inpatient EEGs, eventually con-
siders all clinical comments regarding why the EEG is per-
formed. This criterion may not be practical for big data 
research projects. Second, despite the above-mentioned limi-
tation, few sufficiently trained EEGers utilizing the four or 
five of the six IFCN criteria mentioned above, preferably 
with basic context for the EEG being labelled, would be a va-
lidated method.47 The third method would be epilepsy ex-
perts either marking via ‘experience’ without adequate 
exposure of the entire EEG and clinical context of the re-
spective EEGs. Due to sub-par inter-rater concordance fre-
quently cited in the literature, the third method remains 
controversial in terms of how many people should agree. 
Occasional papers, however, continue to show an adequate 
level of expert agreement, even when this method is 
employed.47,48,67

If there are limitations in obtaining epilepsy experts to an-
notate and determine ground truths, a layered approach can 
be implemented where a less rigorous method is employed to 
annotate the training data set and a more rigorous method 
used to annotate the testing data set. This will ensure that 
the performance results provided in the study have been 
compared against an adequate gold standard in that centre.

Standardizing reporting of methods 
and results
A recent exemplary paper provides details to properly under-
stand a DL publication of IED detection. Adequate descrip-
tion and division of EEG data was provided, epilepsy 
syndrome details, method and algorithmic details and most 
importantly comprehensive performance metrics results.22

For the data set, there should be a clear explanation of the 
recordings being either scalp or intracranial, the environ-
mental setting in which the EEG was performed, and the 
breakdown of the type of EEGs used for both training and 
testing data sets. Additional clinical characteristics of cohort 
can be helpful. Extended labels are preferred to single 
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timestamps during manual labelling otherwise the IED dis-
charge will be assumed to be the window size by the perform-
ance evaluator to enable calculation of relevant metrics. If 
combinations of heterogenous recorded EEG data in differ-
ent inpatient and outpatient settings are used, the proportion 
of different respective EEG types implemented in both the 
training and testing data set should also be described. 
Electrode configurations used and channel derivation from 
electrode montaging should be mentioned as these can intro-
duce some differences in signal characteristics. Average refer-
enced signals can be different depending on vertex or ear 
electrode referencing or all-electrode averaging which can 
be different from bipolar or transverse derived signals. The 
montage ultimately chosen for testing and training may 
introduce some variation in the derivative signal and may 
not translate well into a test data set using a different mon-
tage configuration for signal derivation. As an example, wa-
veforms may appear sharp and phase reversing on bipolar 
whilst not appearing different from the background in an 
average montage. Similarly averaging can sometimes bring 
out waveforms which undergo differential voltage cancella-
tion in bipolar montage due to equal strength amplitudes. 
In a recent study, we found combined training on transverse 
and longitudinal montages simultaneously provided high 
F1-score in a recent GCN convolution model.39

Very few publications provide details on epilepsy type, 
syndromes and nature of discharges and whether the bulk 
of the abnormal discharges or the majority background 
used was derived from awake or sleep state or in what esti-
mated proportion. This can be important as a data set used 
to train a focal epilepsy model may not be appropriate for 
a generalized epilepsy test data set. Furthermore, some mod-
els may work well on awake background but present false 
positives in sleep EEG due to low frequency waveforms being 
confused with slow wave abnormalities.

Evaluation results are frequently present on test data sets 
in a summarized pooled manner. A few outlier EEGs causing 
poor performance may markedly skew the results to show 
the algorithm as inaccurate whereas this may be the case be-
cause of only a few EEGs in which the algorithm failed sig-
nificantly. In our ongoing work evaluating an unpublished 
data set39 implementing a Graph convolution method (view-
ing an EEG montage as a graph theory using electrodes as 
nodes and pair linkage as edges), we found removal of 4 out-
lier EEGs from a test data set of 28 EEGs markedly improved 
precision at a 0.80 detection threshold from 28 to 63% with 
only a 10% drop in sensitivity (errant spike windows pre-
dicted reduced from 781 to 57). Outlier identification ef-
forts, although time-consuming, should therefore be made 
in conjunction with a trained epileptologist to find the rea-
sons why the overall results of an algorithm may be poor.

Standardized metrics should be reported including as 
many performance metrics as possible to provide a holistic 
view rather than a focus on accuracy or AUC. Most import-
antly and invariably clinical useful metrics of false positive 
rates and sensitivity should be reported within abstracts 
and conclusions. Other details on how the analysis and 

performance statistics were calculated should be elaborated 
in forthcoming DL studies. Were brief epochs or entire 
lengths of EEGs evaluated in the test data set to decide on 
prediction accuracy? Accuracy/AUC calculated on IEDs in 
a substantially imbalanced real-world data set of whole 
EEG recordings is different from Accuracy/AUC calculated 
on a data set limited to segmental review or epochs with an 
attempt to balance normal and abnormal segments in the 
test set. Selection bias can also be introduced into the epoch- 
based methods as noise-free segments with better technical 
quality, uncontroversial epileptiform discharges and more 
normative backgrounds with less complexity can be chosen 
by the data set retrieving team. The problem of imbalanced 
data set has to be tackled in this field as epilepsy data will al-
ways have the vast majority >95% or more of its signal to be 
normal background apart from a few outlier intractable 
epilepsy patients who have frequent, near continuous or con-
tinuous epileptiform abnormalities interspersing back-
ground. The benchmarking test data set must therefore be 
an imbalanced data set if any real-world clinical utility is 
to be desired.

Public data sets and source 
code-sharing
Cross-testing is vital and will reveal the actual performance 
of a model. This has only started to be employed in seizure 
detection. False detections of seizures ranged from 0.15 per 
hour to 2.5 per hour depending on different data sets 
used.68 The hospital and locality ethics of sharing EEG 
data makes it complex for potential collaborators seeking 
to implement their model algorithms on external data sets. 
Multi-centre data set collation should nevertheless continue 
to be pursued. Epilepsy centres collaborating will be able to 
reach target numbers reached in imaging classification by 
share loading contributions and be able to allow the DL 
model to be trained on a large amount of morphologic, topo-
graphic and artefactual variation of windows containing 
epileptiform discharges. This cannot be done without a col-
laborative mindset.

Source codes detailing current DL models being experi-
mented and published in the automated IED literature are 
not available for other researchers to replicate on their 
own data set and subsequently critique, improve or even 
compare with their own planned models. This very likely 
may be due to researchers considering that their models 
could be improved to a point of commercialization or alter-
natively suggest a lack of confidence on the generalizability 
of the model and thus keeping model details restricted and 
neural networks architecture explained in a general way. 
Such source code-sharing has been done in seizure detection 
algorithms.69 Any researcher who has published a model 
should avail their source code on a public repository to allow 
people to quickly test and validate the stated model perform-
ance on their respective private data sets. This will allow ro-
bust peer review. Such feedback can be provided back to the 
publishing author who can further fine-tune his model or be 
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made aware of the model’s performance on different data 
sets to his. This would be easier than researchers sharing or 
requesting EEG data from other centres. If source code- 
sharing for cross-testing is not desired the next step would 
be standardized data sets to be made available in the public 
domain against which models from different research groups 
can be tested and compared. This however will not allow 
peer review of performance as model testing is carried out 
by the same authors and selection bias and selective report-
ing can still result. Thus, an open-source, code-sharing, 
mindset is definitely required for progress in this field to 
occur.

A note could be mentioned regarding classifiers being 
trained for whole EEG in contrast to individual IED mark-
ing. Data scientists and research labs interested in this met-
ric should recognize that whole EEG classification will 
foreseeably remain the domain of human experts due to 
several reasons. With the advances in automated detection 
comes an understanding of the limitations of algorithms 
and the ethics surrounding their application.70 Hospital 
ethics committees or medical regulatory bodies will unlikely 
allow computers to make judgements on the labelling of an 
investigation as normal and abnormal which is to be ex-
tended without supervision to clinical care. As a parallel, 
most hospitals and health systems implement automated 
cardiac telemetry to screen for real-time diagnosis of ar-
rhythmia. Even with the longer history of cardiac telemetry, 
its less complex signal characteristics and established role, 
human expertise and oversight is continuously needed so 
that unnecessary treatment is avoided. Despite this, cases 
have been reported of invasive interventions based on er-
rant and artefactual automated telemetry results.71

Governance over automated assessment versus the clini-
cian’s assessment of EEG will thus need to be closely mon-
itored for the potential impact on treatment decisions and 
outcome. The focus instead should be on training, enhan-
cing and improving the performance of IED classifiers to as-
sist in marking and data reduction with a goal to speeding 
up the workflow of EEG laboratory and reviewing staff. It 
would be unwise to provide improved results on whole 
EEG classification, whereas the underlying goal of improve-
ment desired in hospital practices is IED detection and 
automated marking.

Enhancing automation
A great scope of research opportunities presents itself in this 
field. Once a sufficiently accurate or reliable computing mod-
el for a validated detection algorithm has been developed, 
several other opportunities will avail themselves to enhance 
such models. This could incorporate future work into auto-
mated classification of the various abnormal discharges into 
useful subtypes. This variation can be seen, for example, in 
genetic generalized epilepsy or symptomatic generalized epi-
lepsy where several kinds of epileptiform abnormalities can 
present themselves either between or within a single patient’s 
EEG. The range of heterogeneity of discharges can include 

typical 2.5–6 Hz spike/slow wave, fragmented or localized 
spike or sharps, polyspike trains, polyspike/slow waves, par-
oxysmal fast activity72 and also atypical rhythmic or slow 
spike and wave. Similarly, in focal epilepsy, one can get dif-
ferent morphologic, topographic and periodic characteris-
tics, including isolated or repetitive runs (brief and long 
trains), which could be rhythmic or semi-rhythmic and either 
confined to a limited topography unilaterally or could be bi-
lateral or multifocal. All this may be further pursued by an 
upgraded algorithm based on the degree of channel involve-
ment via some quantitative criteria. Voltage topographic 
maps and even more advanced source localization algo-
rithms in high-density EEG could be integrated to easily pre- 
fill quantitative sections of reports for clinicians. Future 
wearable devices for seizure prediction can make use of 
IED burden or spike rate to predict an upcoming seizure. 
In one study, an accuracy of 92% for seizure prediction 
was noted using the spike rate threshold model.73 Predictor 
biomarkers currently being investigated could further allow 
potential predictability of pharmacoresistance in early clinic-
al stages using large automated labelled data sets. Duration 
of epileptiform discharges, epileptiform burden and general-
ized polyspike trains, for example, are recent quantitative 
biomarkers associated with drug resistance.74,75 Persyst76

and the Encevis64/AIT team have been making progress in 
some of these domains and have commercialized their in- 
house AI algorithms. However, a systematic study and exter-
nal validation will be required for more widespread use. This 
is currently being evaluated by the authors on a multi-centre 
data set.

Conclusion
DL algorithms, despite success in seizure detection and clin-
ical use, have so far failed to be implemented routinely for 
epileptiform abnormality detection in clinical care due to 
inconsistent and uncertain performances. Published algo-
rithms remain doubtful as to their generalizability and are 
viewed with scepticism when it comes to clinical integration 
in the real-world setting. Clear protocols need to be devised 
regarding the description of training and testing data sets 
utilized, annotation methods, IED-benchmarking and 
more thorough performance evaluation and reporting of 
metrics. Open sharing of source codes after model publica-
tion should be promoted to allow cross-testing and 
independent validation of algorithms across data sets de-
rived from different research and hospital settings. 
Despite the current stumbling blocks, a new era in clinical 
epilepsy diagnostics with automated IED detection is likely 
to emerge in the near future with DL methods at the 
forefront.
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