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Abstract

Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major
histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC
studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates
inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in
our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I
MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears
to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are
found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from
other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than
balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and
genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor
molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in
classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical
gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a
basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the
beginning of squamate diversification.
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Introduction

Class I major histocompatibility complex (MHC) molecules are

well known for their pivotal role in the recognition of altered self

cells (e.g. virus-infected cells) by T cytotoxic (TC) cells. In this

process, short peptide fragments derived from pathogens within the

host cell are bound to class I receptor structures and transported to

the cell surface. Here, the paired receptor/antigen complex is

recognized by CD8+ TC cells, initiating a sequence of events that

ultimately leads to the lysis of the infected host cell [1,2].

Since class I antigen presentation is essential for the cell-

mediated clearance of intracellular pathogens, it is not surprising

that these molecules are expressed on most somatic cells and in the

majority of host tissue types [3]. An additional characteristic of the

genes encoding class I receptors is a high level of polymorphism,

which enables the host to recognize and bind a wide array of

foreign peptides [4]. However, as the number of descriptions of

vertebrate MHC loci has increased, it has become clear that many

class I genes do not possess the features described above.

The classification of vertebrate class I loci has been divided into

two general categories: classical (or class Ia) and nonclassical (or

class Ib). Classical genes are those found within the MHC region,

possessing high polymorphism, strong and wide expression, and

are involved in the presentation of endogenous antigens to TC

cells. Classical loci have been well characterized in humans (HLA-

A, -B, and -C) and mice (H-2K, D, and L) but are also well

described in some other mammals and in fish, and to a lesser to

degree in amphibians, birds, and non-avian reptiles.

Nonclassical genes can be located inside or outside of the MHC

and typically possess little or no polymorphism and weak

expression that is often limited to specific tissue types. Class Ib

molecules are known to perform a diverse array of functions which

include the recognition of antigenic lipids (human and mouse

CD1) [5], the binding and transportation of classical class I

molecules within the host cell (human HLA-E and mouse Qa-1b)

[6], and the targeting of evolutionarily conserved protein epitopes

of pathogens (mouse H2-M3) [7]. There are even nonclassical loci

whose functions are not related to immunity. For example, the

human HFE molecule is known to play an important role in iron

metabolism [6].

Phylogenetic studies depict an extremely complex evolutionary

history of class I genes, where both classical and nonclassical loci

exhibit little orthology across mammals as well as among

vertebrates in general [8]. Since particular species, or closely
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related taxa, often possess exclusive sets of paralogous genes, it

appears that class I lineages have undergone repeated, indepen-

dent expansion and diversification events over the course of

vertebrate evolution. This pattern has been shown to be congruent

with a birth-and-death model of evolution, where loci are

frequently duplicated and lost, even over short timescales [9].

However, concerted evolution is also thought to contribute to the

close relationship of class I genes within species by the

homogenization of even divergent lineages through inter-locus

gene conversion [10,11]. Although the function of most nonclas-

sical genes is not well understood, their presence within these

independently expanded class I clades is a testament to their

importance in vertebrate immunity.

Since class I evolution is known to be highly erratic, large

taxonomic gaps in MHC characterization prevent the examina-

tion of the events and processes which have led to class I

diversification. Therefore, a comparative phylogenetic approach

may serve as an important tool for understanding class I history.

This was recently demonstrated in the gray short-tailed opossum

(Monodelphis domestica) where 11 class I loci were shown to have

diverged after the split of marsupials from other mammals,

yielding insight into the timing and breadth of class I differenti-

ation within this lineage [12].

Among vertebrates, non-avian reptiles are the most poorly

represented taxon in terms of MHC data. For example, the order

Squamata, which includes lizards and snakes, contains over 7,000

species that have been independently evolving for over 200 million

years [13–15]. Yet, only a single study characterizing full-length

class I genes has been published in the last 15 years [16].

Squamates, together with the only two extant species in the order

Sphenodontia, make up the superorder Lepidosauria, which is the

other main lineage of amniotes in addition to archosaurs (birds

and crocodilians) and mammals. Given the vast differences in the

organization of mammalian and avian MHC regions [11,17], the

description of squamate class I genes can therefore provide a

firmer phylogenetic basis upon which to reconstruct the

characteristics of the ancestral amniote MHC, an important

launching point for understanding how the mode of MHC

evolution differs among major vertebrate lineages.

In this study, we use both cDNA and genomic sequence data to

characterize a class I gene from the Galápagos marine iguana

(Amblyrhynchus cristatus), a member of the squamate subfamily

Iguaninae. We also present partial fragments of a similar gene

from other iguanine species. The marine iguana sequence

possesses several hallmarks of a nonclassical locus and can serve

as the basis for more detailed functional studies of class I genes in

this group. We compare this sequence to the few others available

from squamates, including those from a recent study of class Ia

genes from marine iguanas and two other iguanines, the

Galápagos land iguana (Conolophus subcristatus) and the common

green iguana (Iguana iguana) [16]. The information provided here

will hopefully aid in the collection of additional class I data from

squamates and fill in the vast phylogenetic gap that is missing in

our understanding of amniote MHC evolution.

Materials and Methods

RNA isolation and cDNA synthesis
Total RNA was isolated from the blood of a single marine

iguana from the island of Santa Cruz, Galápagos, using the Tri

Reagent BD kit (Molecular Research Center, Cincinnati, OH,

USA) and the protocol provided. Complementary DNA (cDNA)

was synthesized using the SuperScript III RT enzyme and

reagents provided in the GeneRacer kit (Invitrogen, Carlsbad,

CA, USA). The complete kit protocol was followed for generating

first-strand cDNA pools with intact 59 ends except that both

random hexamers and the oligo dT primer provided in the kit

were used in a single reverse transcription reaction to obtain full-

length cDNA fragments.

59 and 39 RACE of marine iguana cDNA
In order to design gene-specific primers for 39 RACE, a small

fragment (201 base pairs [bp]) in the class I a-2 domain was

amplified by PCR using a forward primer described in Radtkey et

al. [18] and a degenerate primer (MHCI-R3) designed from an

alignment of a range of vertebrate class I sequences (see Table 1

for primer list and sequences; see Figure 1 for primer locations).

Sequences derived from the small, amplified fragment were used

to design two forward-facing gene-specific primers for use in 39

RACE (IgNC-F1 and IgNC-F2).

For the 39 RACE, nested PCR was performed on marine

iguana first-strand cDNA. The first round of PCR utilized the

oligo dT adaptor-specific primer provided in the GeneRacer kit

and the primer Ig-NC-F1. The PCR was performed with the

following reagents and concentrations: 1U Phusion High Fidelity

DNA Polymerase (Finnzymes, Espoo, Finland), 200 mM of each

Table 1. Gene-specific primers used in this study.

Primer Name Sequence (59 to 39) Target Region

(1) MHCI-R3 ASGTAYYTCBBCAGCCACT Initial exon 3 genomic amplification

(2) IgNC-F1 TGYGAGCTGAGGAAAGATGGGAGCATAG 39 RACE

(3) IgNC-F2 TTACCARTGTGCTTATGATGGGAGGGAC 39 RACE (Nested)

(4) MHC17H3-5R-R1 TTCATGCAGTCCAAAGGCAGCAG 59 RACE; Genomic fragment

(5) MHC17H3-5R-R2 TCTTCTGCCTTGCTTCTGTCAAATATGGAG 59 RACE (Nested)

(6) MHC1-Gr2-F1 ACCGAGAGGGTTGAGCTGGAGAG Genomic fragment

(7) MHCI-Int-R1 TGAGGCTGASAGAGTGTAATCCTCCC Iguaninae exon3/intron3 fragment

(8) MHC1-Int2-F2 AGRTGTRTGTAATATATCATCCAGG Intron3/exon4 fragment (All Iguaninae)

(9) MHC1-R4 CAGRCYGGYRTGMTCCACRCGSCAC Intron3/exon4 fragment (Amcr; Cosu)

(10) MHC1-R6 TCTCCTTGGGGTAGAAGCCRTC Intron3/exon4 fragment (Cyco; Ctde; Cyca; Ctcl; Cyri)

Numbers before primer refer to location in the gene as indicated by arrows in Figure 1.
Footnote: See Materials and methods for Iguaninae taxa abbreviations.
doi:10.1371/journal.pone.0002859.t001
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dNTP, 0.5 mM gene-specific primer, 16Phusion HF Buffer with

MgCl2. Because the melting temperature of the gene-specific

primer was .72uC, a two-step PCR was carried out with an initial

denaturation (denat) of 98uC for 30 s followed by 30 cycles of

98uC for 10 s and 72uC for 60 s, and a final extension (ext) of

72uC for 10 min. Nested 39 RACE was carried out under the same

conditions as the initial PCR using the gene-specific primer Ig-

NC-F2, the nested oligo dT adaptor primer provided, and 1 ml of

PCR product from the initial 39 RACE.

Sequence data derived from 39 RACE products were then used

to design two gene-specific reverse primers (MHC17H3-5R-R1

and MHC17H3-5R-R2) in the 39 UTR for use in 59 RACE. In the

first round of PCR, an adaptor-specific primer provided by the kit

was used in combination with the gene-specific primer

MHC17H3-5R-R1. PCR was performed in a 50 ml reaction with

the following reagents and concentrations: 2.5 U Platinum Taq

DNA Polymerase High Fidelity (Invitrogen), 200 mM of each

dNTP, 0.2 mM gene-specific primer, 2 mM MgSO4, 16 High

Fidelity PCR Buffer. Cycling conditions were as follows: initial

denat at 94uC for 2 min followed by 5 cycles of 94uC for 30 s and

72uC for 2 min; 5 cycles of 94uC for 30 s and 70uC for 2 min; 23

cycles of 94uC for 30 s, 59uC for 30 s, and 68uC for 2 min; and a

final ext for 10 min at 68uC. The nested 59 RACE step was carried

out with the nested 59 adaptor primer and the primer MHC17H3-

5R-R2 under the following conditions: initial denat at 94uC for

2 min; 25 cycles with 30 s of denat at 94uC, 30 s of annealing at

61uC, 2 min ext at 68uC; and a final ext of 68uC for 20 min.

The nested RACE products from both the 59 and 39 procedures

were ligated into the pCR4-TOPO vector, transformed, and

grown overnight on LB plates following the manufacturer’s

protocol for the TOPO TA Cloning Kit for Sequencing

(Invitrogen). Approximately ten clones each from 59 and 39

RACE were added to 25 ml of water and heated at 94uC for

10 min to lyse cells. 1 ml of this solution was added to a 25 ml PCR

reaction containing 1.5 U AmpliTaq Gold DNA Polymerase

(Applied Biosystems, Foster City, CA, USA), 200 mM of each

dNTP, 1 mM standard T3 and T7 primers, 1.5 mM MgCl2, and

16 PCR Buffer without MgCl2. Cycling conditions were as

follows: initial denat at 94uC for 10 min, followed by 30 cycles

with 30 s of denat at 94uC, 30 s of annealing at 55uC, and 90 s ext

at 72uC; and a final ext of 72uC for 10 min. PCR products were

purified by filtration using either the QIAquick PCR purification

kit (Qiagen; Valencia, CA, USA) or Millipore (Billerica, MA,

USA) filter plate and sequenced using a 3730 DNA Analyzer

(Applied Biosystems).

PCR amplification of Amcr-UA from genomic DNA
RACE products yielded a complete coding class I sequence

designated Amcr-UA. (see Results). In order to amplify this gene from

genomic DNA, total DNA was extracted from the whole blood of a

single marine iguana using standard phenol-chloroform extraction

[19]. Primers designed in the 59 and 39 UTR of the marine iguana

cDNA sequence were used to amplify the corresponding genomic

fragment from the total DNA (Table 1). This individual was not the

same as the one used in RNA extraction and RACE but did come

from the same population (Santa Cruz) and is likely to be closely

related. PCR conditions were similar to those used in 39 RACE with

the Phusion enzyme, except that the two-step ext time was increased

to 4 min. Due to the large size of the resultant fragment (,8 kb),

numerous internal primers (available upon request) had to be

designed in addition to the original PCR primers in order to obtain

the complete sequence.

Population-level data of Amcr-UA
PCR targeting a portion of exon 3, which corresponds to the a-2

domain, and intron 3 was performed on genomic DNA from 65

marine iguanas representing three different islands in the Galápagos

archipelago: Santa Cruz, N = 31; Isabela, N = 18; Fernandina,

N = 16. Exon 3 was targeted because it is known to be highly

variable in class Ia genes and contains sites that are involved in

antigen recognition [20]. Therefore, we felt that the presence or

absence of nucleotide variation here would be satisfactory for

determining whether this gene is polymorphic or not. The forward

primer described in Radtkey et al. [18] was used in combination

with the primer MHCI-Int-R1 in a 25 ml PCR reaction with the

following reagents and conditions: 2.5 U AmpliTaq DNA Poly-

merase (Applied Biosystems), 200 mM of each dNTP, 1 mM of each

primer, 1.5 mM MgCl2, and 16 PCR Buffer without MgCl2.

Cycling conditions were as follows: initial denat at 94uC for 5 min,

followed by 33 cycles with 30 s of denat at 94uC, 30 s of annealing

at 59uC, and 60 s ext at 72uC; and a final ext of 72uC for 10 min.

PCR products were purified and sequenced as described above.

Iguaninae species data collection
A genomic fragment homologous to the Amcr-UA sequence was

targeted in six other species in the same subfamily as Amblyrhynchus

(Iguaninae): Conolophus subcristatus, Cyclura carinata, Cyclura cornuta,

Cyclura rileyi, Ctenosaura defensor, and Ctenosaura clarki (for all table and

figures, taxa are labeled with the following abbreviations:

Amcr = Amblyrhynchus cristatus; Cosu = Conolophus subcristatus; Cyco = -

Cyclura cornuta; Cyca = Cyclura carinata; Cyri = Cyclura rileyi; Ctde = Cte-

Figure 1. Map of the Amcr-UA class I gene based on genomic and cDNA data. All exons are scaled relative to each other. Introns are also
scaled relative to each other, but are more condensed than exons. Asterisk in the a-3 amino acid sequence represents the termination signal.
Numbers above arrows show the position of primers used in this study and correspond to the numbering scheme in Table 1 – except for primer 11,
which has been published elsewhere [18].
doi:10.1371/journal.pone.0002859.g001
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nosaura defensor; Ctcl = Ctenosaura clarki). This fragment corresponds

to the majority of exon 3, the entire intron 3, and a small portion

of exon 4 in the Amcr-UA sequence, and was amplified in two

separate but overlapping fragments. The first fragment, which

spans exon 3 and the first part of intron 3, is identical to the one

amplified in the population sample of Amblyrhynchus, and was

generated using the same PCR protocol described above. The

second fragment covers the second part of intron 3 and the very

beginning of exon 4. The forward primer used to amplify this

fragment was the same for all taxa (MHC1-Int-F2), but a different

reverse primer (MHC1-R4) was used to amplify Amblyrhynchus and

Conolophus specimens than for the other species (MHC1-R6). The

PCR reagent concentrations for both primer pairs were the same

as for the exon 3/intron 3 fragment, but the cycling conditions for

the MHC1-Int-F2/MHC1-R4 primer combination were as

follows: initial denat at 94uC for 5 min, followed by 35 cycles

with 40 s of denat at 94uC, 40 s of annealing at 60uC, and 2 min

30 s ext at 72uC; and a final ext of 72uC for 15 min. The PCR

cycling conditions for the MHC1-Int-F2/MHC1-R6 primer

combination were 94uC for 5 min for initial denat, followed by

35 cycles with 45 s of denat at 94uC, 45 s of annealing at 55uC,

and 60 s ext at 72uC; and a final ext of 72uC for 10 min.

Data analysis
Sequences from the Amcr-UA genomic fragment were aligned in

the program SEQUENCHER 4.2.2 (Gene Codes Corporation,

Ann Arbor, MI, USA). Comparison of the genomic and cDNA

sequences was used to identify the exon/intron structure of Amcr-

UA.

The program MUSCLE v3.6 [21] was used to produce full-

length amino acid and exon 4 (a-3 domain) nucleotide alignments

for Amcr-UA and the following vertebrate class I sequences from

GenBank: Galápagos marine iguana (A. cristatus), Amcr-UB*01

EU604308, Amcr-UB*02 EU604309, Amcr-UB*03 EU604310,

Amcr-UB*0401 EU604311, Amcr-UB*0402 EU604312; Galápagos

land iguana (C. subcristatus), Cosu-UB*0101 EU604313, Cosu-

UB*0102 EU604314, Cosu-UB*02 EU604315, Cosu-UB*03

EU604316; Green iguana (Iguana iguana), Igig-UB*0101

EU604317, Igig-UB*0102 EU604318, Igig-UB*02 EU604319;

Ameiva lizard, LC5 M81095, LC25 M91097; Northern water

snake (Nerodia sipedon), SC1 M81099; Chinese soft-shelled turtle

(Pelodiscus sinensis), AB185243; Chicken (Gallus gallus), B-F10

X12780; Mallard (Anas platyrhynchos), Du2 AB115242; Great reed

warbler (Acrocephalus arundinaceus), cN3 AJ005503; Axolotl (Ambys-

toma mexicanum), Amme-3 U83137; African clawed frog (Xenopus

laevis), UAA-1f L20733; Mouse (Mus musculus), H2K L36312, H2-D1

NM_010380, H2-Q1 NM_010390, H2-Q10 NM_010391; Walla-

by (Macropus rufogriseus), Maru-UB*01 L04952; Platypus (Ornithor-

hynchus anatinus), Oran2-1 AY112715; Possum (Trichosurus vulpecula),

Trvu-UB AF359509; Rainbow trout (Oncorhynchus mykiss), Onmy-

UBA AF287487; Zebrafish (Danio rerio), Dare-UBA NM131471;

Human, HLA-B7 U29057, HLA-Cw D50852. This set of sequences

is similar to the one used in a study of tuatara class I genes by

Miller et al. [22] as well as the recent study of iguanine class Ia loci

[16], and was chosen for consistency. For the protein data, percent

identity between Amcr-UA and other vertebrate class I genes was

derived from p-distance values calculated separately for each

structural domain in the program MEGA 4.0 [23]. Conserved

vertebrate class I amino acid positions were identified following

Kaufman et al. [24].

The exon 4 alignment provided the basis for Bayesian,

maximum likelihood (ML), and neighbor-joining (NJ) phylogenetic

reconstruction. The program MRMODELTEST v2 [25], which is

based on code from the MODELTEST software [26], was used to

compare the fit of different nucleotide substitution models to the

vertebrate dataset. The general time reversible model (GTR) with

additional parameters for gamma distribution and fraction of

invariable sites provided the best fit to the data according to both

the hierarchical likelihood ratio test and the Akaike information

criterion. This model was implemented in a Bayesian framework

using the program MRBAYES [27] as well as in ML

reconstruction using the TREEFINDER software [28]. For

Bayesian analysis, the default software settings were used, and

the search was run for 2,000,000 generations with the first 10% of

parameter samples discarded as burn-in. In the ML analysis, 1,000

bootstrap replicates were run to assess support for specific nodes.

NJ search and bootstrap analysis were carried out in PAUP using

the GTR substitution model with 500 replicates.

Sequence fragments spanning the majority of exon 3 and all of

intron 3 in the seven iguanine species were aligned in MEGA, and

p-distance values were calculated separately for the exon and

intron.

Sequences generated in this study were deposited in GenBank

under the following accession numbers.: EU839663 (full-length

Amcr-UA cDNA); EU839664 (Amcr-UA genomic fragment);

EU839665-EU839670 (Iguaninae exon 3/intron 3).

Results

Characterization of cDNA sequences from Amblyrhynchus
cristatus

Multiple clones were sequenced from PCR products generated

by both 59and 39 RACE of marine iguana cDNA. For 39 RACE,

resulting clones carried two unique class I-like sequences. One of

these became the subjected of another study [16], while the other

was the focus of this paper, and was used to design specific 59

RACE primers. The sequence of this 39 RACE clone was identical

in the area of overlap with the single class I fragment obtained

from 59 RACE. When aligned, these sequences comprised a

1,294 bp fragment which spanned the complete coding sequence

(CDS) as well as the 59 and 39 UTRs of a single class I sequence

type (Figure 1). This gene was labeled Amcr-UA based on

established nomenclature rules [29]. Although the 39 UTR

sequence reaches the site of polyadenylation, neither of the

canonical polyadenylation signals (AATAAA or ATTAAA) were

found. However, there are several alternative motifs at a range of

positions in the 39 UTR that are known to be involved in

polyadenylation, including AATACA, AATATA, GATAAA or

ATAAA, and AAGAAA, which are located 64, 101, 131, and

150 bp upstream of the poly(A) region respectively (Figure 2; see

[30–34] for characterization of alternative polyadenylation sites).

One of the most striking features of the Amcr-UA sequence is the

absence of the transmembrane (Tm) and cytoplasmic (Cyt)

domains that are characteristic of most classical and nonclassical

class I MHC genes. The CDS extends only 11 amino acid residues

downstream from the expected end of the a-3 domain. The first

three of these residues (EEP) are identical to the first three Tm

domain residues of the classical UB genes from the three iguanine

species as well as the Ameiva lizard (LC1) (Figure 3); but the other

eight residues have no clear homology to any of the other loci.

There was no evidence of a longer 39 RACE fragment that might

contain a full-length version of the truncated Amcr-UA sequence.

While the structure and composition of class I genes are quite

variable within and between vertebrate groups, the Amcr-UA

sequence possesses many of the conserved amino acid residues that

are characteristic of class I genes, and even some residues that are

common in classical class I genes (indicated by asterisks in

Figure 3). For example, there are nine class I a chain residues

Marine Iguana Class I
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which are highly conserved across vertebrates and are known to be

involved in the binding of N- and C-termini of antigenic peptides

[24,35,36]. Seven of these residues are shared between the Amcr-

UA sequence (positions in Amcr-UA: Y9, Y62, Y124, T144, W148,

Y160, and Y175) and the common reference type found in the

classical Human HLA-A, -B, and -C, molecules. Moreover, one of

the two remaining positions (R87) matches the predominant

character state in non-mammalian vertebrates, including lizard,

fish, birds, tuatara, and amphibians. Several studies have used the

presence of these conserved peptide-binding residues in different

species to distinguish classical antigen-presenting class I genes from

nonclassical class I genes with alternative functions [36–38].

Other features that are shared between the marine iguana

sequence and nearly all class I genes of other vertebrates include

four cysteine residues at positions 103, 165, 204, and 260, which

are involved in intradomain disulfide bridge formation, two salt

bridges at positions H5-D31 and H95-D120, and the highly

conserved FYP motif at positions 209–211 in the a-3 domain.

Class I genes of most species contain a NQS or NQT glycosylation

site near the end of the a1 domain; however, the Amcr-UA

sequence contains a histidine (H) rather than a glutamine (Q) at

position 90, which is not the case in other vertebrates, including

the classical sequences from the three iguanine species as well as

the Ameiva lizard. But this residue is not known to be important

for N-linked glycan formation. The amino acid residues which

correspond to the CD8 binding site of the HLA-A locus are at

positions 224–230 in the Amcr-UA fragment, but three of the seven

residues are non-polar, which would be unexpected at these sites

for a classical class I gene; however this region is known to be

highly variable among species, and the coevolution of the CD8

ligand and its class I binding site is not well understood [24].

Genomic sequence of Amcr-UA
Amplification of the Amcr-UA gene was carried out on marine

iguana genomic DNA using specific primers designed in the 59 and

39 UTR of the cDNA sequence. The resulting PCR product was

approximately 8 kb and was identical to the cDNA in all areas of

overlap, except for a single nucleotide position in the expected

signal peptide. Some degree of mismatch between the cDNA and

genomic sequences was anticipated since these fragments were

derived from different individuals. A small portion (,100 bp) of

intron 1 in the amplified genomic fragment could not be

sequenced from either direction after several attempts. Secondary

structure analysis revealed that the ,80 bp before and after the

unsequenced region are highly complementary (,80%) and could

form a secondary loop. However, even after addition of DMSO,

which is known to relax secondary structure during cycle

sequencing, there was still a consistent and steep drop-off of

chromatogram peaks in this region.

The structure of the genomic fragment is shown in Figure 1.

This sequence revealed that the 11 amino acid residues (plus stop

codon) that extend from the expected end of the a-3 domain are

encoded in the same exon as the a-3 domain itself (Figure 1). In

other vertebrates, separate exons usually code for the Tm/Cyt and

a-3 domains. Yet the ‘‘EEP’’ amino acid motif, which marks the

beginning of the Tm/Cyt domain in the classical class I sequences

from the three iguanine species and the Ameiva lizard, is part of

the a-3 encoding exon in Amcr-UA, and might be the result of some

type of genomic rearrangement.

Besides the missing Tm/Cyt domains, the position of exons and

introns are the same as in the majority of class I genes, where the

signal peptide and each of the three extracellular domains (a-1, a-

2, and a-3) are encoded by separate exons with intervening

introns. The missing fragment from intron 1 was estimated to be

,100 bp by comparing the band size to a DNA ladder on an

agarose gel.

Relationship of Amcr-UA to Class I sequences of other
vertebrates

Over the three extracellular domains, the amino acid identity

between the Amcr-UA sequence and other published vertebrate

class I genes ranges from 33% in the Rainbow trout (Oncorhynchus

mykiss) to between 56.2% and 60.0% for the iguanine UB

sequences (Table 2). Considered separately, the a-2 and a-3

domains are most similar to the classical iguanine sequences, but

the a-1 domain is approximately as close to the tuatara (45.5%–

50.0%) and Ameiva lizard (46.7%) as it is to the iguanine UB

sequences (43.5%–50%).

Phylogenetic reconstruction was carried out on exon 4

nucleotide sequences from a similar set of taxa as in Miller et al.

[22]. In this previous study, bootstrap values supporting many of

the class I gene clusters among vertebrates were low, as is the case

in our study when the Amcr-UA and iguanine UB fragments are

included (Figure 4). However, there is strong nodal support for the

monophyly of all squamate class I sequences (A. cristatus, C.

subcristatus, I. iguana, A. ameiva, and N. sipedon) included in the

Figure 2. 39 sequence map of the Amcr-UA fragment generated from cDNA. Possible polyadenylation sites are labeled with a solid underline.
The asterisk marks the termination signal at the end of exon 4 (a-3 domain). The eleven amino acid residues that mark the unusual extension of the a-
3 domain are labeled above their respective coding nucleotide sequences. The sequence of primer MHC17H3-5R-R1 is labeled with a broken
underline; this was the reverse primer used to generate the genomic DNA sequence and shows how far the genomic sequence stretches downstream
relative to the cDNA.
doi:10.1371/journal.pone.0002859.g002
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analysis, suggesting that these genes derive from a common

ancestral locus whose descendant lineages have not been identified

in any other vertebrate group including Sphenodon, which is also a

member of the Lepidosauria superorder. However, within

squamates, there is moderate support for the basal position of

Amcr-UA relative to all other published class I sequences.

Figure 3. Amino acid alignment of Amcr-UA with other vertebrate class I sequences. Coding domains are separated according to Koller and
Orr [52] and exon/intron information from the Amcr-UA genomic sequence. Numerical labels in the alignment refer to amino acid positions in the
Amcr-UA sequence, not in the alignment itself. Shaded columns indicate amino acid positions that are conserved or have expected functions. These
amino acid positions also contain the following additional labels: ‘‘asterisks’’ = conserved peptide-binding residues of antigen N- and C- termini;
‘‘diamonds’’ = salt bridge-forming residues; ‘‘circles’’ = disulfide bridge-forming cysteines; ‘‘squares’’ = N-glycosylation site; ‘‘CD8’’ = expected CD8
binding site. The boxed sequence from Amcr-UA represents the 11 amino acid extension that is encoded in exon 4, which corresponds to the a-3
domain. Information and accession numbers of other vertebrate class I sequences can be found in the methods section.
doi:10.1371/journal.pone.0002859.g003
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Polymorphism of Amcr-UA in Amblyrhynchus cristatus
populations

The majority of exon 3 (248 bp) and the first 235 bp of intron 3

were amplified from 65 marine iguanas from three separate islands

representing distinct parts of the Galápagos archipelago. Direct

sequencing of PCR products for 62 of these individuals generated

a single sequence with no double peaks, which is identical to the

full-length genomic fragment. Due to the limited polymorphism

exhibited at the population level, these data are not displayed

graphically. But it is worth noting that two individuals possess a

double peak at a single nucleotide position in exon 3, where one

base matches the main Amcr-UA type and the other results in a

nonsynonymous amino acid change (from threonine to serine at

amino acid position 133). Another individual possesses double

peaks at two nucleotide positions, one site in exon 3 and another in

intron 3; here also, the change in the exon is nonsynonymous

(from isoleucine to valine at amino acid position 168)

Patterns of variation between Iguana species
Primers designed on the Amcr-UA sequence successfully

amplified the majority of exon 3 (248 bp) and the entire intron

3 (,1,030 bp) of six other species from the Iguaninae subfamily,

including a representative of Conolophus (Galápagos land iguana),

which is thought to be the sister genus of the monospecific

Amblyhrynchus [39,40]. No stop codons were found in the amino

acid sequence of any of the species examined. Uncorrected

pairwise genetic distance (p-distance) between species was

calculated separately for the exon and intron (Table 3). With the

exception of Conolophus and Ctenosaura clarki, the p-distance was

lower in exon 3 than in intron 3 for all pairwise comparisons, even

though the a-2 domain is known to be polymorphic and under

strong diversifying selection in classical class I genes [20].

There were 19 polymorphic nucleotide positions in the

alignment of iguanine UA exon 3 sequences, but only five of

these variable sites contributed to nonsynonymous differences

between one or more species (Figure 5). As a result, only three of

the 82 amino acid positions were polymorphic. While the low

divergence of exon 3 compared to intron 3 suggests that the

structure of this gene may be conserved, there was insufficient

exon variation to carry out dN/dS-based analyses as a means of

detecting purifying selection acting on this locus.

Discussion

The basic structure of class I loci is highly conserved across

vertebrates. Typically, a single gene encodes a large a chain that

contains separate exons for the two membrane-distal peptide-binding

domains (a-1 and a-2), a third exon for the membrane-proximal Ig-

like domain (a-3), and a number of additional, smaller exons that are

responsible for the transmembrane (Tm) and cytoplasmic (Cyt)

domains [1]. The Tm/Cyt domains are essential for the standard

antigen presentation function of class I molecules because they

anchor the receptor structure into the cell membrane of altered self-

cells where they can be recognized by CD8+ TC cells [1,2]. However,

in the Amcr-UA cDNA sequence, the Tm/Cyt domains are largely

missing, except for an 11 amino acid extension of the a-3 domain that

is followed by a stop codon. The first three residues of this extension

are identical to the start of the Tm domain identified in iguanine UB

and Ameiva lizard class I sequences, but the other eight residues show

no apparent match between these sequences.

Interestingly, the genomic data did not reveal the presence of a

Tm/Cyt coding region in between the unexpected early stop codon

and the downstream 39 UTR sequence, and there is no evidence of

a cryptic, hidden, or vestigial splice site in the 39 end of the gene.

Therefore, the lack of these domains in the cDNA is not likely to be

a result of incomplete transcription or a splicing event. Rather, it

seems apparent that the Tm/Cyt region is simply absent at this

locus. One possible explanation for the match between the Amcr-UA

a-3 extension and the start of the iguanine UB and Ameiva lizard

Tm sequences (the ‘‘EEP’’ motif) is that the ancestor of Amcr-UA

underwent a genomic rearrangement in which a small portion of the

Tm-containing exon was transferred to the end of the a-3 encoding

exon. Characterization and comparison of similar genes across

other squamates may reveal the pattern and timing of such a

modification. In particular, it would be interesting to obtain full-

length sequences of Amcr-UA orthologues from the other closely

related iguana species used in this study to determine whether they

possess the same truncation at the 39 end of the CDS.

However, it is also conceivable that intact exons coding for Tm/

Cyt domains do exist downstream of the available genomic sequence

and simply are not transcribed, at least not at easily detectable levels

in the blood. Therefore, future work should involve the use of large

insert vectors to explore adjacent stretches of genomic DNA in order

to rule out this possibility. In addition, it is equally important to

measure expression levels of Amcr-UA in different tissues, and

perform a more exhaustive search for a full-length version of this

molecule containing a membrane-spanning domain.

Despite the apparent lack of Tm/Cyt domains, which are

necessary for classical MHC antigen presentation, the results

presented here suggest that the Amcr-UA sequence represents a

functional class I gene and not a pseudogene. The presence of the

gene in the cDNA pool shows that it is expressed at some level in

the blood. In addition, both the genomic and cDNA sequences do

not contain any additional stop codons in the CDS, as might be

Table 2. Percent amino acid identities between Amcr-UA and
class I sequences from other vertebrates.

Species Percent Identity with Amcr-UA

a1 a2 a3 a1, a2, a3

Marine iguana (Amcr-UB) 43.5–46.7 74.7–75.8 52.2 56.2–57.8

Land iguana (Cosu-UB) 45.7–50.0 68.1–75.8 56.5 57.8–60.0

Green iguana (Igig-UB) 46.7–48.9 73.6–76.7 53.3 57.8–59.5

Ameiva Lizard (LC1) 46.7 64.8 48.4 53.3

Tuatara (Sppu-U) 45.5–50.0 50.5 36.3 44.1–45.6

Chicken (Gaga-B-F10) 40.9 52.2 36.3 43.1

Mallard (Anpl-Du2) 45.5 56.0 40.7 47.4

Warbler (Acar-cN3) 43.2 46.2 44.0 44.4

Axolotl (Amme-3) 43.2 54.9 34.8 44.4

Xenopus (Xela-UAA-1f) 44.3 44.0 37.4 41.9

Human (Hosa-HLA-A) 43.7 53.8 38.0 45.2

Mouse (Mumu-Q10) 44.8 57.8 34.8 45.7

Mouse (Mumu-H2K) 43.7 52.2 31.5 42.4

Wallaby (Maru-UB*01) 40.0 54.9 38.0 44.3

Platypus (Oran-2-1) 40.9 56.0 32.6 43.2

Possum (Trvu-UB) 46.7 56.0 34.8 45.8

Nurse Shark (Gici-UAA) 41.4 44.0 32.2 39.2

Rainbow Trout (Onmy-UBA) 33.3 40.7 24.7 33.0

Zebrafish (Dare-UBA) 27.6 51.6 24.7 34.8

Values were calculated for each extracellular domain separately and for all three
domains combined.
doi:10.1371/journal.pone.0002859.t002
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found in a pseudogene. There are also no stop codons in any of the

exon 3 UA sequences from other iguanine species.

The presence of a polyadenylation signal in the 39 UTR is

essential for the transcription of a functional gene. While neither of

the canonical polyadenylation signals (AATAAA or ATTAAA)

were found in the Amcr-UA cDNA sequence, several alternative

sites were identified, including ATAAA, which is known from fish

[41], and AAGAAA, from humans [31]. Moreover, Beaudoing et

al. [30] showed that the signal sequence and its position from the

poly(A) region vary greatly within the human genome.

Figure 4. Class I phylogenetic reconstruction using a-3 (exon 4) sequence data from the major vertebrate groups. The top number at
each node is the Bayesian posterior distribution value supporting the topology displayed. The middle and bottom numbers are bootstrap values
from maximum likelihood and neighbor joining searches respectively. Branch lengths are represented as expected number of substitutions per site
and were inferred along with topology in the Bayesian analysis.
doi:10.1371/journal.pone.0002859.g004
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The higher divergence in intron 3 compared to exon 3 among

the iguanine UA sequences suggests that this gene is conserved and

under some degree of purifying selection, or at least is not evolving

neutrally as would be expected for a nonfunctional pseudogene.

However, other physiological and molecular data, including

expression at the protein level, must be collected in order to

confirm the functionality of Amcr-UA. But for the purpose of

discussion, we will proceed with the assumption that this gene is

functional in order to explore its characteristics and relationship

with other vertebrate class I genes.

Despite the absence of a Tm/Cyt region, the Amcr-UA sequence

shares many of the conserved peptide-binding residues that are

suggestive of classical class I function (Figure 3). However, the

comparison of UA exon 3 sequences between Iguaninae taxa

shows that there is little adaptive divergence in the antigen-binding

region between species, suggesting that this gene is under purifying

selection, rather than balancing-selection, and has a conserved

function. Thus, it is possible that the product of this gene is

involved in antigen binding, but not in the classical sense.

Although Kaufman et al. [24] interpreted the presence of

certain conserved residues at peptide-binding sites as preliminary

evidence of classical function, many of these amino acid character

states are maintained in nonclassical genes such as the human

HLA-E, -F, and -G loci, as well as the mouse H2-M3 gene. None

of these loci differ from the classical mammalian type by more

than three out of the nine residues [36]. Thus, it is not at all

unprecedented that Amcr-UA displays several nonclassical features

while still showing signs of peptide-binding ability.

Since a lack of polymorphism is an important criterion for

describing nonclassical loci, sequence data was collected from exon

3 and intron 3 of Amcr-UA for three marine iguana populations.

The near absence of exon 3 variability in these samples seems to

support the pattern of purifying selection indicating a conserved

function. However, the simultaneous lack of diversity in the

adjacent intron indicates either strong linkage to the conserved

exon or perhaps that an insufficient amount of time has passed for

a large number of substitutions to accumulate in the intron. The

latter pattern would not be surprising since mitochondrial DNA

Table 3. Uncorrected pairwise distances (p-distance) between Amcr-UA and similar sequences from other iguanine species.

1 2 3 4 5 6 7

1 Ctde 0.04435 0.03226 0.02823 0.03226 0.04435 0.04839

2 Ctcl 0.04546 0.03629 0.03226 0.03629 0.06048 0.05645

3 Cyco 0.04789 0.05722 0.00403 0.00806 0.03226 0.02823

4 Cyca 0.04693 0.05822 0.01975 0.00403 0.02823 0.02419

5 Cyri 0.04791 0.05430 0.02073 0.00988 0.03226 0.02823

6 Cosu 0.04671 0.05694 0.03846 0.03552 0.03850 0.01210

7 Amcr-UA 0.05366 0.06577 0.04924 0.04633 0.05120 0.02650

Distances were calculated separately for exon 3 (above the diagonal) and intron 3 (below the diagonal). See methods for Iguaninae taxa abbreviations. Pairwise values
between Ctcl and Cosu are italicized because they deviate from the otherwise typical pattern of higher divergence in intron 3 versus exon 3.
doi:10.1371/journal.pone.0002859.t003

Figure 5. (a) Nucleotide and (b) amino-acid alignments of iguanine exon 3 (a-2 domain) sequences. The lower-case letters and shaded
boxes represent specific codon positions that show variation in amino acid residues between species. Species abbreviations are described in the
Materials and methods section.
doi:10.1371/journal.pone.0002859.g005
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evidence suggests that marine iguana populations are not

genetically diverse and may have recently expanded in the

Galápagos archipelago [42]. Therefore, the unclear evolutionary

history of this species makes it difficult to attribute the dearth of

polymorphism in Amcr-UA to its nonclassical function.

While rare, several truncated class I molecules are known to lack

Tm/Cyt regions in humans and mice. For example, the mouse

Q10 gene contains a 13 bp deletion in the exon encoding the Tm

domain, causing a frame shift and the introduction of a premature

termination signal downstream in the same exon. In addition, the

remaining transcribed portion of the Tm domain has numerous

polar amino acid residues that would likely prevent its insertion

into the cell membrane. Therefore, it seems clear that the Q10

molecule is not involved in classical antigen presentation. It also

possesses several other nonclassical features, including a lack of

polymorphism and expression that is almost exclusive to mouse

liver cells [43–45]. Several studies have shown that Q10 is likely

secreted and can bind a wide array of non-self peptides in a similar

manner to classical molecules, but its function is still not well

understood [44,46]. While there is no phylogenetic similarity

between Amcr-UA and the mouse Q10, the characteristics of the

latter gene demonstrate that truncated, soluble, secreted class I

molecules can exist which lack genetic variation and maintain

protein binding capabilities.

Numerous other classical and nonclassical class I molecules are

known to exist in soluble form for secretion. For example, the

human HLA-G locus possesses all of the coding features of a

membrane-bound class I receptor, but is sometimes subjected to

alternative transcription where the Tm/Cyt domains are deleted.

This molecule is expressed specifically in placental tissue and is

secreted during pregnancy [47]. The role of this gene is also not

well understood, but is thought to be involved in inducing

apoptosis in activated maternal CD8+ T cells [48]. Classical

human class I genes (HLA-A, -B, and -C) are also known to exist in

soluble forms and to play a role in cell death of activated T cells

[49]. Nevertheless, a unique feature of the Amcr-UA sequence

which distinguishes it from the Q10 and HLA-G loci, as well as

other soluble class I molecules, is that there does not appear be any

sign of a Tm/Cyt coding sequence in the genomic DNA,

regardless of whether it is transcribed or not; but again, additional

support for this conclusion must come from further collection of

sequence data in the 39 region of the gene.

Some truncated class Ib molecules, such as those in the mouse

Qa-2 family, are not necessarily secreted, but are rather linked to

the cell membrane through a glycosylphosphatidylinositol (GPI)

anchor that is added to the carboxyl terminus of the protein during

posttranslational modification [50,51]. Therefore, the apparent

lack of a membrane-spanning domain in Amcr-UA doesn’t rule out

its expression on the cell surface or its involvement in the primary

T cell response.

Overall, the Amcr-UA CDS showed the highest similarity with

iguanine UB and Ameiva lizard sequences. In addition, phyloge-

netic reconstruction supported the monophyly of all available

squamate class I sequences. The basal position of Amcr-UA relative

to all other squamate class I sequences suggests that this gene

diverged very early in the evolution of this reptilian order. The

most recent common ancestor of iguanines and the two groups

represented by the Ameiva lizard (Family: Teiidae) and northern

water snake (Suborder: Serpentes) is estimated to have existed

between 179–206 million years ago [14], providing a minimum

time for the split of Amcr-UA from class Ia genes in squamates.

Outside of the squamate grouping, the tree topology is not well

supported, suggesting that class I sequences are highly divergent

among vertebrate groups.

In summary, the Amcr-UA sequence possesses several charac-

teristics of a functional, non-classical class I gene with a conserved

protein structure. Additional work must be conducted to

understand whether it is expressed at the level of the protein

and what its position is in the genome relative to published

classical loci [16]. While Amcr-UA is most closely related to the

other published squamate sequences, it does not cluster with class

Ia sequences from the same species, suggesting that it has long

been on a separate evolutionary trajectory. Further characteriza-

tion of UA-like sequences from other squamates will reveal

whether this gene is part of a lineage that has maintained a non-

classical function over the course of squamate evolution.
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