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Abstract

Childhood maltreatment may adversely affect brain development and consequently
behavioral, emotional, and psychological patterns during adulthood. In this study, we
propose an analytical pipeline for modeling the altered topological structure of brain
white matter structure in maltreated and typically developing children. We perform
topological data analysis (TDA) to assess the alteration in global topology of the brain
white-matter structural covariance network for child participants. We use persistent
homology, an algebraic technique in TDA, to analyze topological features in the brain
covariance networks constructed from structural magnetic resonance imaging (MRI) and
diffusion tensor imaging (DTI). We develop a novel framework for statistical inference
based on the Wasserstein distance to assess the significance of the observed topological
differences. Using these methods in comparing maltreated children to a typically
developing sample, we find that maltreatment may increase homogeneity in white
matter structures and thus induce higher correlations in the structural covariance; this
is reflected in the topological profile. Our findings strongly demonstrates that TDA can
be used as a baseline framework to model altered topological structures of the brain.

1 Introduction

Child maltreatment can have severe life-long mental, emotional, physical, and sexual
health outcomes [102]. These serious long-term consequences are notable given that the
U.S. Department of Health and Human Services estimates over 680,000 children suffer
different forms of maltreatment, such as child abuse or neglect every year. Many of the
adverse impacts likely emerge through changes in neurobiology such as reducing brain
volumes or brain connectivity [45]. Indeed, a growing body of scientific research finds
altered brain functioning in those who have suffered early childhood abuse and
neglect [41,69,85,103]. For example, multiple studies have found maltreatment in
childhood may cause a decrease in volume of the corpus callosum, the largest white
matter structure in the brain critical for interhemispheric communication [69,103].
Similarly, neglected children have smaller pre-frontal cortex volumes, which helps in
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behavior, emotion, and cognition regulation [70,98]. These neurological changes,
especially in brain connectivity may have a deep influence on children’s emotional,
social and behavioral functioning [47,98].

Both structural- and diffusion-MRI can facilitate studies on the impact of abuse and
neglect on brain development during childhood [40,48,66, 74]. To quantify the variation
in neuroanatomical shapes using tensor-based morphometry (TBM), the spatial
derivatives of deformation fields can be obtained via nonlinear image registration
applied in warping individual structural-MRI to a template [19,95]. The Jacobian
determinant from the warping measures the volumetric changes in brain tissue at the
voxel level [19,24,29,67,96]. At each voxel, a linear model is set up to take the tensor
maps such as the Jacobian determinant as a response variable in order to obtain
voxel-level statistics. Univariate-TBM has been widely used in the field. However, when
we perform hypothesis testing on multiple anatomical brain regions, the univariate
framework may fail to relate how the volume change in one voxel relates to other voxels.
Thus, there is a need to model the Jocobian determinant in a network analysis fashion
and relate variations in one region to another region through structural
covariance [8, 42,43,61,78,104,105].

Graph theory based methods have been frequently used to uncover the topological
properties of brain networks including the investigation of topological alterations in
white matter for neuromyelitis optica [64], exploring abnormal topological organization
in the structure of cortical networks in Alzheimer’s disease (AD) [65], alterations in the
topological properties of the anatomical network in early blindness [86], abnormal
topological changes during AD progression [22,56, 76]. Graph theory also has been used
to measure and evaluate the integration and segregation of the brain network [56,80]. In
the standard graph theory based brain network analysis, graph features such as node
degrees and clustering coefficients are obtained after thresholding connectivity
matrices [12,13,99]. Depending on the choice of these thresholds, the final statistical
results can be drastically different [14,15,59]. Thus, there is a practical need to develop
a multiscale network analysis framework that provides a consistent result and
interpretation regardless of the choice of thresholding. Persistent homology offers one
possible solution to the multiscale problem. Instead of studying networks at a fixed
scale, persistent homology summarizes the changes of topological features over different
scales and finds the most persistent topological features that are robust to
perturbations. This robust performance under different scales is needed for network
models that are parameter and scale dependent. In persistent homology, instead of
building networks at one fixed parameter that may not be optimal, we analyze the
collection of networks over every possible thresholds [58, 59]. It has been shown that the
persistent homology approach can be effectively used to overcome the problem related
to the arbitrariness of thresholding [57]. Persistent homology can detect subtle
topological differences between networks while existing statistical models might fail to
differentiate the differences [75,89,110]. In [63], persistent homology has been applied to
characterize the neuropsychological properties of the brain. In [107], persistent
homology has been used to study the evolution of a spatiotemporal brain network of
Alzheimer’s disease (AD). They have also proposed that persistent homology can be
considered as a framework to assess the neurophysiological properties of image quality.
Topological data analysis has been applied to brain networks to classify altered brain
states [9]. Topological data analysis also has been used to extract the topology of brain
connectomes in attention deficit hyperactivity disorder (ADHD) [37]. One important
application for TDA is facilitating EEG signal analysis using the geometrical and
topological tools such as persistent homology [53,73,100].

To analyze the structural covariance, we propose to use persistent homology, a main
tool in topological data analysis (TDA) [10,14,18,32,34,58,59,87]. Topological data
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analysis has been widely used as a popular method to analyze feature spaces with high
dimensionality without the prerequisite to consider specific modeling assumptions [32].
Persistent homology as a recently developed branch in TDA defines a powerful
mathematical framework for understanding, characterizing and quantifying topology of
networks [18,30,34, 58,59]. Persistent homology provides a general framework based on
algebraic topology, and gives a novel solution to the multi-scale network analysis
challenge [32,101]. In persistent homology, rather than examining networks using
graphs at one fixed scale at a time [30,34], the persistent homology technique identifies
persistent topological features that are robust across different scales. The persistence
diagram (PD) demonstrates the persistence of topological features over various scales
which plays the role of an indicator in displaying the birth and death times of the holes
or cycles as we change the scale. The important topological invariants called the Betti
number counts the number of holes in networks, and can be used to visualize and
quantify underlying topology. Betti curves, which plots the Betti numbers over changing
scales, have been used to detect the abnormal functional brain networks in the study of
the alterations of AD progression [56]. There exists a wide range of quantitative
persistent homology features, such as: persistence landscapes (PL) [6], persistent
entropy (PE) [81], persistence images (PI) [1] which have been used to analyze and
compare brain networks of different patients [9].

In this study, we propose to use TDA tools to assess the topological changes of white
matter structures. The present study aims to explore the variation in topological
features in the structural covariance of brain’s children white matter who experience
maltreatment by applying several techniques in persistent homology. Particularly, we
are interested in characterizing abnormal changes and alteration in maltreated children
brain’s white matter using the Jacobian determinant in the tensor-based morphometry
(TBM) from structural-MRI and fractional anisotropy (FA) values from diffusion-MRI.
Since the changes in one voxel is related to other voxels, and the univariate-TBM might
be unable to characterize these subtle variations across different voxels while the
persistent homology can test more complex network hypotheses across brain regions.
We characterize the topological properties of the networks using the Betti curves. We
apply the Wasserstein distance (WS) between the birth and death values associated
with the Betti curves. Then, we develop a statistical inference procedure in measuring
topological differences between the groups. TDA effectively provides a comprehensive
framework to characterize the persistence of topological structures such as connected
components and cycles at different scales in brain networks of maltreated and typically
developing children. Our results demonstrate significant altered topological structure of
white matter for maltreated children relative to normal controls. In particular, we
observe higher number of connected components in typically developing children. This
indicates more heterogenous white matter structures compared to maltreated children.

2 Methods

Since child maltreatment may affect brain development during adolescent, to track the
trajectories of brain development after damages caused by abuse and neglect, we need
to model the changes happen in local and global structure of brain networks at different
scale. To understand the topological alteration of the structural brain network, we use
mathematical and computational techniques in topological data analysis (TDA) (Figure
1). Within TDA, we can comprehend the variations in topological structure of brain
networks.
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Figure 1. Proposed TDA pipeline for studying structural covariance networks. Studying
the network topology has given rise to developing new frameworks to study the scale
and dimensionality of brain networks. The topological data analysis aims to extract the
topological features of brain network using the tools at the interface of geometry and
topology.

2.1 Birth and death decomposition

We model brain networks as weighted graphs. Suppose we have the weighted graph
G(V,w) where V = {1, 2, . . . , q} defines the node set and w = (wij) defines edge weights.
There are total k = (q2 − q)/2 number of edges. We can treat the weighted graphs as
simplical complexes [31, 111]. A most well known simplical complex is the Rips complex
Rε which is defined as a simplicial complex consisting of k-simplices composed of k + 1
nodes within distance ε [34]. For q number of nodes, a graph includes at most
1-simplices while a Rips complex contains at most (q − 1)-simplices. For a network with
q nodes, the graph will include simplices of dimension zero and one. The following
hierarchical nesting structure called the Rips filtration is induced by the Rips complex:

Rε0 ⊂ Rε1 ⊂ Rε2 ⊂ . . . (1)

where 0 = ε0 < ε1 < ε2 < . . . are called the filtration values. When the number of nodes
becomes large, the Rips complex becomes very dense and often causes serious
computational bottlenecks in tasks such as the permutation test. For this reason, we
propose to use the graph filtration, a special case of reduced Rips filtration [58,59].
Define the binary graph Gε = (V,wε) with binary edge weights wε = (wε,ij) such that

wε,ij =

{
1 for wij > ε,

0 otherwise.
(2)

The binary matrix wε might be interpreted as the adjacency matrix of Gε and defines a
simplicial complex including 0-simplices (nodes) and 1-simplices (edges) only [59]. We
then obtain the graph filtration of G as a sequence of nested multi-scale binary graphs
of form:

Gε0 ⊃ Gε1 ⊃ · · · ⊃ Gεk (3)

with filtration values ε0 < ε1 < ε2 < · · · < εk [58]. We have represented the schematic of
graph filtration of a graph G with four nodes in Figure 2.

4/23



Figure 2. Example of a graph filtration on graph G, which induces a sequence of nested
multiscale binary graphs of the form Gε0 ⊃ Gε1 ⊃ Gε2 ⊃ Gε3 ⊃ Gε4 with filtration values
ε0 < ε1 < ε2 < ε3 < ε4. During the filtration, connected components are born one after
the other. Whereas, loops die one after the other. Thus, the β0-curve is monotonically
non-decreasing while the β1-curve is monotonically non-increasing.

Variation of the filtration value ε may cause appearance or disappearance of
connected components or loops [17]. In a simplical complex, the number of connected
components is the Betti-0 number β0 and the number of independent cycles (or loops) is
the Betti-1 number β1. In graph filtrations, β0 increases while β1 decreases over
filtrations (Figure 2) [17]. During the graph filtration, a connected component that are
born never dies, thus, the death time is infinity. Consequently, we ignore the death
values of connected components and characterize by a set of increasing birth values BG:

BG : εb1 < · · · < εbm0
. (4)

On the other hand, loops are always there in a complete graphs and thus the birth
values of cycles are considered as −∞ and ignored. Then the loops are completely
characterized by the a set of increasing death values DG:

DG : εd1 < · · · < εdm1
. (5)

Then we can decompose edge weights uniquely into the birth set BG and death set
DG through the birth-death decomposition [91]:

Theorem 2.1. The edge weight set w = (wij) of a complete graph can be uniquely
decomposed as

w = BG ∪ DG, BG ∩ DG 6= ∅, (6)

where BG = {εb1 , εb2 , . . . , εbm0
} and DG = {εd1 , εd2 , . . . , εdm1

} with m0 = q − 1 and
m1 = (q − 1)(q − 2)/2. The BG forms the persistent diagram for 0D homology
(connected components) and DG forms the persistent diagram for 1D homology (cycles).

We can show that the birth set BG forms the maximum spanning tree (MST) of G
while the death set DG are edges that do not belong to MST. Subsequently, we compute
the Betti-0 curves by using the Kruskal’s algorithm which works by identifying the
minimum spanning tree to construct Betti-0 curves [59]. Then Betti-1 curves are
identified through the Euler characteristic [16,17]. The computation can be done in
O(q log q) runtime.

5/23



Figure 3. Topological distance between topologically equivalent networks. Group 1
Groups 2 and 3 and 4 are generated by rotating Group 1 networks

2.2 Wasserstein distances between networks

The topological distance between persistent diagrams are often measured using the
2-Wasserstein distance. For graph filtrations, the Wasserstein distance between
persistent diagrams can be computed through the order statistics on edge weights [90].
Suppose we have two networks G1 = (V G1 , wG1) and G2 = (V G2 , wG2) with q number
of nodes. Assume the birth and death sets are

BGi
: εib1 < · · · < εibm0

, (7)

DGi : εid1 < · · · < εidm1
. (8)

Then the 2-Wasserstein distance for connected components is given by

D0D
W (G1, G2) =

m0∑
i=1

[ε1bi − ε
2
bi ]

2. (9)

Similarly, the 2-Wasserstein distance for loops is given by

D1D
W (G1, G2) =

m1∑
i=1

[ε1di − ε
2
di ]

2. (10)

The 2-Wasserstein distance D0D
W measures the topological difference related to the

connected components while D1D
W measures the topological difference related to loops.

By combining D0D
W and D1D

W , we have the overall topological difference

D0,1
W (G1, G2) = D0D

W (G1, G2) +D1D
W (G1, G2). (11)

In application, we used three distances D0D
W , D1D

W , D0,1
W . We will simply denote the

distances in the application as Ltop if there is no ambiguity.
To see the effect of the Wasserstein distance, we generated 4 circular patterns of

identical topology (Figure 3). Along the circles, we uniformly sampled 60 nodes and
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added Gaussian noise N(0, 0.32) on the coordinates. We generated 5 random networks
per group. The Euclidean distance (L2-norm) between randomly generated points are
used to build connectivity matrices. Figures 3 shows the superposition of nodes from 20
networks. Sine they are topologically equivalent, the distance between networks should
show no clustering pattern. In fact the Wasserstein distance D0,1

W shows no discernible
clustering pattern while L2-norm shows the clustering pattern. The L2-norm distance is
particularly large between horizontal (Groups 1 and 2) and vertical patterns (Groups 3
and 4).

Assume we have two groups of networks X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn). If
there is group difference, the topological distances are expected to be relatively small
within groups and relatively large between groups. The average topological distance
within the groups given by

LW (X,Y ) =

∑
i<j Ltop(Xi, Xj) +

∑
i<j Ltop(Yi, Yj)(

m
2

)
+
(
n
2

) .

Similarly the topological distance between the groups is given by

LB(X,Y ) =

∑m
i=1

∑n
j=1 Ltop(Xi, Yj)

mn
.

We then use the ratio statistic

ΦL(X,Y ) = LB(X,Y )
/
LW (X,Y )

for testing the topological difference between the groups of networks. If ΦL is large, the
groups differ significantly in network topology. If ΦL is small, the group difference is
small. Since the distributions of the ratio statistic ΦL is unknown, the permutation test
is used to determine the empirical distributions. Since the permutation test is usually
slow, we adapted a scalable online computation strategy called the transposition test as
follows [20].

We first concatenate two groups X and Y and compute the distance matrix of size
(m+ n)× (m+ n) for every pair of networks. After computing the distance matrix, we
perform the permutation test by rearranging rows and columns based on the permuted
group labels. Since we do not have to recompute the distances in each permutation, it
drastically speed up the computation. To speed up the permutation further, we adapted
the transposition test, the online version of permutation test [90]. The transposition
between k-th and l-th networks between the groups is defined as

πkl(X) = (X1, . . . , Xk−1, Yl, Xk+1, . . . , Xm), (12)

πkl(Y ) = (Y1, . . . , Yl−1, Xk, Yl+1, . . . , Yn), (13)

In transposition procedure, the ratio statistic changes from ΦL(X,Y ) to
ΦL(πkl(X), πkl(Y )) over transposition πkl and involves the following function:

v(X,Y ) =
∑
i<j

Ltop(Xi, Xj) +
∑
i<j

Ltop(Yi, Yj), (14)

w(X,Y ) =

m∑
i=1

n∑
j=1

Ltop(Xi, Yj), (15)

where v defines the total sum of within group distances and w presents the total sum of
between group distances. When Xk and Yl are swapped, the function v changes over the
transposition πkl as the form:

v(πkl(X), πkl(Y )) = v(X,Y ) + δ(X,Y ), (16)
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where

δ(X,Y ) =
∑
i 6=k

Ltop(Yl, Xi)−
∑
i 6=k

Ltop(Xk, Xi)+
∑
i 6=l

Ltop(Xk, Yi)−
∑
i 6=l

Ltop(Yl, Yi). (17)

Similarly, we can find how function w changes iteratively over the transposition πkl as
the form:

w(πkl(X), πkl(Y )) = w(X,Y )− δ(X,Y ) (18)

Finally, the ratio statistics over the transposition is computed as

ΦL(πkl(X), πkl(Y )) =
w(πkl(X), πkl(Y ))

v(πkl(X), πkl(Y ))
×
(
m
2

)
+
(
n
2

)
mn

. (19)

The information about function values v and w for each transposition will be stored and
updated sequentially. For each transposition, 2(m+ n− 2) terms will be manipulated as
opposed to total number of terms over a random permutation,

(
m+n

2

)
.

3 Application

3.1 Imaging data and pre-processing

The study included 23 children who suffered maltreatment in early life, and 31 age
matched typically developing (non-maltreated) comparison children [14,15,39]. All
subjects were scanned at the University of Wisconsin-Madison. The maltreated sample
suffered early childhood neglect as they were initially raised in institutional setting; in
such settings, there is a lack of toys or simulation, unresponsive caregiving, and an
overall dearth of individualized care and attention [82]. These children were, however,
then adopted and then move into normative caregiving environments. For the controls,
we selected children without a history of maltreatment from families with similar ranges
of socioeconomic statuses. The exclusion criteria include, among many others,
congenital abnormalities (e.g., Down syndrome or cerebral palsy) and fetal alcohol
syndrome (FAS). The average age for maltreated children was 11.26 ± 1.71 years while
that of controls was 11.58 ± 1.61 years. This particular age range was selected since this
development period is characterized by major regressive and progressive brain
changes [39,60]. There are 10 boys and 13 girls in the maltreated group and 18 boys
and 13 girls in the control group. Groups did not statistically differ on age, pubertal
stage, sex, or socio-economic status [39]. The average amount of time spent in
institutional care by children was 2.5 years ± 1.4 years, with a range from 3 months to
5.4 years. Children were on average 3.2 years ± 1.9 months when they adopted, with a
range of 3 months to 7.7 years.

T1-weighted MRI were collected using a 3T General Electric SIGNA scanner
(Waukesha, WI) with a quadrature birdcage head coil. DTI were also collected in the
same scanner using a cardiac-gated, diffusion-weighted, spin-echo, single-shot, EPI pulse
sequence [39]. Diffusion tensor encoding was achieved using twelve optimum
non-collinear encoding directions with a diffusion weighting of 1114 s/mm2 and a
non-DW T2-weighted reference image. Other imaging parameters were TE = 78.2 ms, 3
averages (NEX: magnitude averaging), and an image acquisition matrix of 120 × 120
over a field of view of 240 × 240 mm2. The acquired voxel size of 2× 2× 3 mm was
interpolated to 0.9375 mm isotropic dimensions (256 × 256 in plane image matrix). To
minimize field inhomogeneity and image artifacts, high order shimming and field map
images were collected using a pair of non-EPI gradient echo images at two echo times:
TE1 = 8 ms and TE2 = 11 ms.
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Figure 4. 548 uniformly sampled nodes along the white matter surface. The nodes are
sparsely sampled on the template white matter surface to guarantee there is no spurious
high correlation due to proximity between nodes. The same nodes are taken in both
MRI and DTI for comparison between the two modalities.

For MRI, a study specific template was constructed using the diffeomorphic shape
and intensity averaging technique through Advanced Normalization Tools (ANTS) [3].
Image normalization of each individual image to the template was done using symmetric
normalization with cross-correlation as the similarity metric. The 1mm resolution
inverse deformation fields are then smoothed out with a Gaussian kernel of 4mm (full
width at half maximum, FWHM). The Jacobian determinants of the inverse
deformations from the template to individual subjects were computed at each voxel.
The Jacobian determinants measure the amount of voxel-wise change from the template
to the individual subjects [19]. White matter was also segmented into tissue probability
maps using template-based priors, and registered to the template [5].

For diffuwion-MRI, images were corrected for eddy current related distortion and
head motion via FSL software and distortions from field inhomogeneities were corrected
using custom software based on the method given in [50] before performing a non-linear
tensor estimation using CAMINO [7]. Subsequently, we have used iterative tensor image
registration strategy for spatial normalization using DTI-ToolKit [51,108]. Then
fractional anisotropy (FA) were calculated for diffusion tensor volumes diffeomorphically
registered to the study specific template.

We obtained the white matter tissue boundary sampled with 189536 mesh vertices
and the average inter-nodal distance of 0.98mm. Since Jacobian determinant and FA
values at neighboring voxels are highly correlated, 0.3% of the total mesh vertices are
uniformly sampled to produce p = 548 nodes. This gives average inter-nodal distance of
15.7mm, which is large enough to avoid spurious high correlation between two adjacent
nodes (Figure 4). We then computed 548× 548 sample correlation matrices across
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subjects.

3.2 Structural covariance network analysis

We sequentially thresholded correlation matrices and obtained graph filtrations. Figure
5 displays thresholded structural covariance networks at correlation 0.5 (A), 0.6 (B), 0.7
(C) and 0.8 (D). The structural covariance networks show very dense high correlation
edges in maltreated children showing the highly homogenous nature of white matter
structures for maltreated children. If FA and the Jacobian determinants are
homogenous within a group, we should expect much higher correlation values.

Since there are only one correlation matrix per group, we applied the leave-one-out
Jackknife resampling to generate multiple correlation matrices per group as follows.
There are 31 normal controls and 23 maltreated children. For normal controls, we leave
i-th subject out and compute the group level correlation matrix using the remaining 30
subjects. Let such correlation as wNCi . We repeat the process for all subjects and
obtain correlation matrices wNC1 , · · · , wNC31 for the normal controls. For maltreated
children, we also leave i-th subject out and compute the group level correlation using
the remaining 22 subjects. Let such correlation be wMal

i . We repeat the process for all
subjects and obtain correlation matrices wMal

1 , · · · , wMal
23 for the normal controls. The

resampled correlation matrices are used in TDA and confirmatory fractal analysis later.

3.2.1 Topological structural covariance network analysis

Using the resampled correlation matrices of the Jacobian determinants and fractional
anisotropy (FA) values on 548 nodes, we calculated the Betti-0 curves and Betti-1
curves for all subjects (Figure 5). The Betti-0 curves reveal higher values (more
connected components) for the control group (than the maltreated group) at the same
filtration values. This can only happen if brain regions are less correlated across regions
in normal controls, an indication of more heterogeneous anatomical structure. On the
other hand, Betti-1 curves for the maltreated group were higher than the control group
(Figure 5). Hence, we have more loops for maltreated children compared to normal
controls. This can only happen if there are more correlations and dense connections in
structural covariate networks for maltreated children, again demonstrating more
homogeneous nature of the structural covariate networks for maltreated children. Thus,
using Betti-0 curves and Betti-1 curves, we are able to visualize the topological
differences between maltreated and control participants by characterizing the connected
components and loops. Therefore, the Betti curves can be used as a potential biomarker
to distinguish between the maltreated subjects and control group.

To more rigorously quantify the topological differences, we used the Wasserstein
distance based ratio statistic. First, we performed the Jackknife resampling. Then
computed the between-group and within-group Wasserstein distances using D0D

W , D1D
W

and D0,1
W . Figure 6-right displays the distribution of between-group and within-group

Wasserstein distances using D0D
W . We notice a significant distinction between the

Jackknife resampled Betti curves of both groups which is much larger than within-group
variability using all three D0D

W , D1D
W , and D0,1

W distances and reveals the between group
difference is highly significant. Figure 6-right clearly shows that the variability between
groups is far larger than within-group variability. The p-values are very small (p-value
< 0.001) for D0D

W , D1D
W , and D0,1

W for both Jacobian determinants and FA values. We
conclude that there are significant topological differences in the topological structure of
MRI and DTI structural covariance networks. Note our ratio test statistic is global test
procedure over the range of filtration values and space so there in no need for multiple
comparisons.
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Figure 5. Top 4 Rows: 3D network visualization; These networks are obtained by
thresholding structural covariance matrices for Jacobian determinant from MRI and
fractional anisotropy (FA) from DTI at correlation 0.5 (A), 0.6 (B), 0.7 (B) and 0.8 (D).
We have more dense connection patterns in maltreated subjects compared to control
subjects. With increasing the sparsity parameter λ we have less dense network. Bottom
Row: The averaged Betti curves of the brain network data for Jacobian determinant
and Fractional Anisotropy (FA) on 548 node study. The Betti curves could recognize
the difference between control group and maltreated group.

We also performed the rank-sum test on the areas under the continuous curves
Betti-0 and Betti-1 to see whether we can differentiate between the two groups of
normal control and maltreated group [14,15]. Rank-sum test checks the null hypothesis
of no group difference, against the alternative that there is a group difference.
According to our results, there exist statistically significant differences (p-value < 0.001)
between the normal control and maltreated subjects. Therefore, using Betti curves we
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Figure 6. Top: The Betti curves of Jackknife resampled structural covariance networks.
Bottom: The histogram of within- and between group 2-Wasserstein distance D0D

W on
Betti-0 and Betti-1 curves of resulting Jackknife resamples. The histogram clearly shows
the huge variability across the groups relative to within groups.

could distinguish between TDA features in the structure covariance networks for
maltreated children and the normal control.

4 Confirmatory fractal analysis

The human brain, as a complex multi-scale system, has been previously investigated in
terms of its functional complexity using fractals. Fractal geometry is introduced by
Benoit Mandelbrot in the 1980s [68]. Changes in the fractal geometry of biomedical
data has been shown to have important implications in the diagnosis and prevention of
disease [94]. Fractal analysis has been applied to study the spatiotemporal complexity of
cerebral hemodynamics [44,71]. Fractal analysis has been recognized as identifying a
potential biomarker to measure the degree of brain damage in different neural diseases
by estimating the neurological complexity of brain alterations [4, 23, 26, 35, 49,106]. The
complexity in the vascular structure of MRI scans in arteriovenous malformations
(AVMs) disease has been assessed in terms of fractal characterization [28,79]. Since
fractal analysis has revealed less variations and smaller gender effect, it has been
considered to be more robust than conventional volumetric methods in
neurodegenerative disease detection [26,106]. The brain signals of patients with
Alzheimer’s disease show less complexity compared to healthy controls [35,49]. For
patients with dementia, this reduced complexity is correlated with the degree of severity
of disease [4]. Fractal information is also influential in the neural firing rates and
vestibular responses of patients with Parkinson’s disease (PD) and has produced
significant results to differentiate patients with PD from normal controls [23].

Non-linearity at different scales and levels has been deemed to be one of the main
properties of the human brain [21,33,93]. The permanent changes in geometric
complexity of a maltreated child’s brain function during early childhood may be
quantified using the fractal geometry. There exists different methods to estimate the
geometric complexity and fractal or complexity dimension of the brain imaging data.
We show these methods significantly differentiate between different brain structural
covariance networks.

Fractal geometry presents different measures to estimate the fractal dimension of an
irregular set, for example, the well-known Minkowski dimension or box-counting
dimension, among others [62]. Although box-counting methods have been used to
successfully model many complex phenomena in nature, they often fail to determine the
abrupt alterations which can occur in the structure of biomedical data [97]. Numerous
efforts have been made to find more appropriate measure to detect these sudden
changes, such as the Higuchi algorithm, power spectrum analysis, and Katz
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algorithm [36,46,52]. Among all these fractal dimensional analysis approaches, we select
the Higuchi algorithm for brain connectivity matrices. Higuchi’s fractal dimension is a
non-linear statistical measure which we can use to examine and discriminate the
complexity of brain activity by relating complexity to different scales. In particular, we
interpret larger fractal dimension estimates calculated using Higuchi’s algorithm as
corresponding to brain data structures with higher complexity. Higuchi’s algorithm has
been shown to be robust, reliable, and simple to implement [2]. In modeling and
classifying the geometric complexity of neurological disease, fractal dimension
estimation using the Higuchi algorithm provides reliable results [35,77,84]. This
geometric complexity measure of data has been previously used to demonstrate the
changes in dynamics of different brain pathologies [4, 23,26,35,49,106].

To measure the complexity of brain network data, we use the Higuchi method and
apply it on the vectorized connectivity matrices of the brain network data. We extract
the lower triangular portion of the original matrix which includes the main diagonal and
all elements below (above) the diagonal. Next, we vectorize the extracted lower
triangular matrix to convert the triangular matrix to column vectors. We then apply
the Higuchi’s algorithm as follows [46]. Let w(1), w(2), . . . , w(q) to be the the finite set
of observations obtained from the vectorized lower (lower) triangular of the given
connectivity matrix. From this set of observations, we construct a new vector of data,
wmk , in the form:

wmk : w(m), w(m+ k), w(m+ 2k), . . . , w(m+ [
q −m
k

].k) (m = 1, 2, . . . , k) (20)

where [ ] represents the Gauss’ notation, q the number of columns or rows of the
connectivity matrix (number of nodes), m and k are integers and k denotes the number
of sets of new constructed data. We find the length of each set as follows:

Lm(k) =
1

k
(

[ q−m
k ]∑
i=1

|w(m+ ik)− w(m+ (i− 1)k)|)( q − 1

[ q−mk ]k
) (21)

We estimate the fractal dimension by first computing the average length of the sets,
L(k) = average(Lm(k)). Then, given data L(k) ∝ k−HFD, HFD is the Higuchi’s fractal
dimension and can be obtained by calculating the slope of the straight line that fits the
values of logL(k) and log(k), i.e.,

HFD =
logL(k)

log(1/k)
(22)

We calculated the Higuchi fractal dimension (HFD) for each network using the
jackknife resampling technique. The HFD is 1.8940± 0.0006 for normal controls and
1.8719± 0.0031 for the maltreated children. We used the two-sample t-test in
determining the statistical significance. The p-value for the two sided test is smaller
than 0.001 indicating very strong group separation. The fractal analysis indicates a
reduction in the complexity of the brain’s function and geometry in the maltreated
group compared to the control group, consistent with the topological network analysis
result. The homogenous white mater structures in the maltreated children corresponds
to reduced complexity.

Reduced geometric complexity has been previously reported for neurological diseases
such as Alzheimer’s disease and Parkinson’s disease [35,49]. This gives promise that
such geometric complexity measures could be developed as potential biomarkers for
clinical diagnosis. Further studies are needed, ideally using large population sizes, to
report a clinical threshold in diagnosing maltreatment which could give rise to
effectively finding a quantitative measure and clinical value as a biomarker for detecting
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maltreatment. Our fractal analysis revealed statistically significant differences in the
geometric complexity of structural covariate networks in maltreated children. The
results suggest that brains affected by maltreatment in early childhood display lower
complexity as measured by fractal dimension estimates in the white matter structures.
This finding suggests that there is a strong correlation between brain structural
abnormality and maltreatment in children.

Figure 10. Application of Higuchi algorithm to estimate the geometric complexity of a given connectivity matrix of size
100× 100. The lower triangular matrix is vectorized and feed into Higuchi algorithm.

Discussion

The human brain is a dynamic, complex and heterogeneous system which often calls for
use of non-linear techniques for study and and analysis [21,33,93]. The human brain
can be considered as a weighted graph or network, in which brain sites or regions of
interest pare nodes of the network and connections between the sites or regions are
edges of the network [92]. The topology, geometry and complex dynamics of the human
brain can be comprehended using topological data analysis (TDA) and fractal
analysis [27,83]. Changes in topological structure and geometric complexity of brain
networks could be a sign of possible brain disease or damage [26,56,65,106].

Although TDA techniques such as persistent homology highlight the topological
features in global structure [38,83,88] of different brain networks, they do not provide
information about the geometric complexity [25, 27] of brain networks. Fractal geometry
can be used to quantify the complexity in structural and functional patterns of the
human brain [25,27]. The fractal geometry framework presents a mathematical model
to extract the variation in geometric complexity of different brain
networks [26, 54, 55, 109]. Since child maltreatment may affect brain development during
adolescence [11,45], we model the changes in the local and global structure of brain
networks at different scales using the both frameworks, TDA and fractal geometry.

Recent studies have suggested that early life stress, abuse and neglect can cause
alteration in brain development [40, 48, 66, 74] and may increase the risk for poor mental
health in adulthood. These deficits or potential harm to child’s brain may influence the
topological organizations of brain networks. To understand the topological features and
global structure of brain network altered by maltreatment, we applied some frequently
used methods in topological data analysis which helps to learn the impact of
maltreatment on persistent homology features of the structural covariance networks. We
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observed higher number of disconnected components for normal controls compared to
maltreated children who experienced this stress in early childhood (Figure 5). The
maltreated children’s white matter structure had higher correlations associated with
Jacobian determinants across white matter voxels than normal controls, which is
indicative of higher anatomical homogeneity. Thus, when we threshold at a certain
correlation value, more edges will be preserved for maltreated children; this leads to a
smaller number of connected components. Maltreatment in early childhood is therefore,
elated to denser structural covariance patterns at a specific threshold value. Our 3D
network visualization in Figure 5 agreed with this conclusion.

In a study by [39], children who were suffering from neglect demonstrated disrupted
white matter brain organization, which resulted in more diffused connections between
brain regions. The less white matter directional organization seems to cause an increase
in homogeneity of Jacobian determinants and fractional anisotropy (FA) across brain
regions. Our proposed topology-based method was successful to reveal the alteration in
topological pattern of brain white matter structures caused by abuse and neglect during
child’s brain development. We believe TDA could be effectively utilized as a biomarker
to identify neurobiology related to maltreatment and maltreatment-related negative
outcomes. We believe this study may lead to increase knowledge and insights toward
the impact of maltreatment on brain development and most importantly child abuse
and neglect prevention. The method can be applicable to neurological diseases such as
AD and PD [4,23,35,49].

In fractal analysis, we noticed a reduction in fractal or complexity dimension of
maltreated child’s brain white matter compared to control subjects, which indicates
more homogeneous white matter structures in maltreated children. Our finding in using
TDA and fractals are consistent. While there have been many different studies to
quantify the geometric complexity of brain structure through fractals, [26, 54, 55, 109], it
is unclear if fractal analysis can produce consistent results against TDA methods. This
study offers some suggestions that they may produce similar results. The present study
identifies two important altered brain characteristics in those that have suffered
maltreatment, the topology and the geometric complexity, together, these
characteristics provide essential information about the global and local structure of
brain architecture. The altered topological structure of white matter was delineated
using topological data analysis (TDA) methods, while the fractal geometry successfully
detailed the varying geometric complexity of these same structures. This study could
serve as a novel template and perspective for detecting altered topological structure,
geometry and complexity in the brain’s white matter. This study provides
comprehensive models and frameworks to identify the impact of childhood maltreatment
on brain structural covariance networks using rigorous mathematical techniques.

To develop a clinically accurate diagnostic tool, we need to extended our study to a
larger population size, such as the Adolescent Brain Cognitive Development (ABCD)
database, the largest long-term study of brain development and child health in US with
more than 100 psychiatric and 11 cognitive measures. In the ABCD database, youth
(n =11,875) 9-11 years of age were recruited for the study. This age range is important
as it is a period of development critical to an individual’s life trajectory. The incidence
of psychiatric illnesses, such as attention deficit hyperactivity disorder (ADHD), anxiety,
mood disorders, and psychosis, increases through adolescence [72]. The application of
our methods to larger datasets such as the ABCD database is left as a future study.
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