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Abstract
Acinetobacter baumannii has emerged as one of major nosocomial pathogen and global emergence of multidrug-resistant 
strains has become a challenge for developing effective treatment options. A. baumannii has developed resistance to almost 
all the antibiotics viz. beta-lactams, carbapenems, tigecycline and now colistin, a last resort of antibiotics. The world is 
on the cusp of post antibiotic era and the evolution of multi-, extreme- and pan–drug-resistant A. baumannii strains is its 
obvious harbinger. Various combinations of antibiotics have been investigated but no successful treatment option is avail-
able. All these failed efforts have led researchers to develop and implement prophylactic vaccination for the prevention of 
infections caused by this pathogen. In this review, the advantages and disadvantages of active and passive immunization, 
the types of sub-unit and multi-component vaccine candidates investigated against A. baumannii viz. whole cell organism, 
outer membrane vesicles, outer membrane complexes, conjugate vaccines and sub-unit vaccines have been discussed. In 
addition, the benefits of Reverse vaccinology are emphasized here in which the potential vaccine candidates are predicted 
using bioinformatic online tools prior to in vivo validations.
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Introduction

Acinetobacter baumannii (A. baumannii) is associated with a 
number of nosocomial infections, such as pneumonia, blood-
stream infections, meningitis, skin and urinary tract infec-
tions in hospitals and intensive care units(Peleg et al. 2008; 
Moubareck and Halat 2020). Multidrug resistance (Abdi et al. 
2020; López-Durán et al. 2020), biofilm formation ability 
(Espinal et al. 2012; Yang et al. 2012) and desiccation toler-
ance (Espinal et al. 2012; Wang et al. 2020) are the foremost 
characteristics making it a critical priority pathogen. Patients 
requiring mechanical ventilation in hospitals are major tar-
gets of A. baumannii causing ventilator-associated pneumo-
nia (VAP) (Brotfain et al. 2017; Čiginskienė et al. 2019). It 

is a common pathogen found in patients of burn injuries and 
military personnel injured in war. In these critical conditions, 
vaccination may emerge as solution and it can prevent the 
initial bacterial invasion to avoid the massive colonization of 
bacteria which causes infection. Vaccine development against 
A. baumannii infections is being explored extensively and 
multiple potential vaccine candidates have been identified 
(Garg et al. 2016; Singh et al. 2016b, 2017; Fereshteh et al. 
2020). Patients who tend to be admitted in hospital intensive 
care units (ICUs) may be vaccinated with enough time to 
allow for the generation of an immune response to make them 
ready for exposure to A. baumannii. Method of immuniza-
tion could be selected by analyzing the potential targets of A. 
baumannii. For example, patients admitted in the hospitals 
for longer duration can be actively immunized and they will 
get enough time to develop immunity against A. bauman-
nii. On the other hand, passive immunization may serve the 
patients for whom the risk of infection is not foreseen, such 
as in traumatic injuries, severe burn injuries or in emergent 
surgery. Although passive immunization is therapeutic and 
has the potential to provide instantaneous protective immu-
nity, active immunization is safe and cost effective against 
bacterial infections.
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Future treatment of A. baumannii infections may be 
through an effective vaccine that augments host responses 
and results in limiting the bacterial infections. Preparing the 
host for invading nosocomial pathogens appears to be most 
promising treatment option as adaptive immune response 
(Antigen presenting cells, B cells and T cells) leads to pro-
tection through cellular or humoral immunity. Vaccination 
with modified or inactivated pathogens or components 
derived from these pathogens stimulates adaptive immune 
response in an antigen-specific manner.

Prevalence of A. baumannii in global 
and Indian context

A. baumannii has established itself as one of the most 
prominent nosocomial pathogens in hospitals and its anti-
microbial-resistant clinical strains have been documented 
at alarming rate worldwide (Holt et al. 2016; Meumann 
et al. 2019; Brink 2019; Pormohammad et al. 2020). In 
certain European, South American and Asian hospitals, A. 
baumannii has shown extensive drug resistance pattern as 
compared to clinical strains isolated from the patients in 
ICUs in the Nordic countries, the Netherlands and The USA 
(Falagas and Karveli 2007). Pormohammad et al. (2020) 
have reported the global prevalence of colistin resistance at 
increased rate in South–East Asia and East Mediterranean 
than any other region in world. The highest and the lowest 
rates of resistance were observed for cefotaxime (99%) in 
Africa and colistin (1.1%) in Western Pacific. The rate of 
colistin resistance was highest in Lebanon (17.5%) followed 
by China (12%) and was lowest in Germany (0.2%). A. bau-
mannii has become highly prominent and has been found all 
over the regions of India. In 2001, Sengupta et al. reported 
the incidence of A. baumannii in wound infections of burn 
patients. These infections led to septicemia and in few cases, 
death. When characterized, these bacteria were found mul-
tidrug resistant (Sengupta et al. 2001). The prevalence of 
metallo-β-lactamases (MBLs) among A. baumannii clini-
cal isolates obtained from South Indian tertiary care hos-
pitals has been reported and the strains were characterized 
for their antimicrobial susceptibility (Karthika et al. 2009). 
Most of the isolates showed resistance to imipenem (100%), 
meropenem (89%), amikacin (80%), cefotaxime (89%) and 
ciprofloxacin (72%). In addition, prevalence of A. bauman-
nii in patients is of great concern. Azim et al. reported A. 
baumannii colonization in 37 out of 96 patients included in 
the study conducted in Lucknow in India. They found simul-
taneous colonization of A. baumannii and P. aeruginosa in 
12 patients and all were extended-spectrum β-lactamase 
(ESBL)- and metallo-β-lactamase (MBL)-producing 
isolates(Azim et al. 2010). Srirangaraj et al (2015) described 
an antibiotic-resistant A. baumannii clinical isolate from a 

70-year-old patient who developed urinary tract infection 
caused due to indwelling urinary catheter, prolonged stay in 
ICU and exposure to broad spectrum antibiotics. This isolate 
was found resistant to all the drugs used for urinary tract 
infections (UTI), such as amikacin, ceftriaxone, co-trimox-
azole, nalidixic acid, nitrofurantoin and norfloxacin. Further 
analysis of this isolate showed resistance to aminoglycosides 
(gentamycin and tobramycin), fluroquinolones (ciprofloxacin 
and levofloxacin), piperacillin (tazobactum) and imipenem. 
This MDR isolate was found sensitive to polymyxin B and 
colistin only (Srirangaraj et al. 2015). Vijayakumar et al. 
described the prevalence of carbapenem resistance among 
the A. baumannii isolates from tertiary care hospital in 
South India. They found blaOXA-51 and blaOXA-23 genes 
in all the 103 isolates and 94 were carbapenemase produc-
ers. blaNDM and blaVIM genes were predominant among 
metallo-β-lactamases and 80% of the isolates had ISAba1 
upstream blaOXA-23 gene which suggests that this inser-
tion element acts as a promoter and facilitates its increased 
expression(Vijayakumar et al. 2016).

Antibiotic monotherapy has shown limited effect on 
these bacteria hence antibiotic combinations have been 
tried against them. Muthusamy et al. demonstrated in vitro 
activities of rifampicin and polymyxins against carbapenem-
resistant A. baumannii in a tertiary care hospital from South 
India. They screened 20,282 clinical isolates obtained from 
various specimens, such as tracheal aspirate, broncho-alveo-
lar lavage fluid, blood, endotracheal tube tip, sputum, ascitic 
fluid and wound swabs. All the isolates were found sensitive 
to polymyxin B and 80% were resistant to rifampicin. Only 
carbapenem-resistant strains were included in further study 
and 78% were found sensitive, 12% intermediate sensitive 
and 10% resistant to colistin. The increasing emergence of 
MDR A. baumannii in all parts of India is alarming and anti-
microbial stewardship programs are needed to prevent the 
emergence and spread of antibiotic resistance (Vijayakumar 
et al. 2016; Banerjee et al. 2018; Odsbu et al. 2018; Kalal 
et al. 2020; Nguyen and Joshi 2021).

The need for vaccine against A. baumannii

A. baumannii is an important nosocomial pathogen caus-
ing various human infections in critically ill patients (Dijk-
shoorn et al. 2007) and is highly resistant to many antimicro-
bials (Peleg et al. 2008; Kempf and Rolain 2012; Abdi et al. 
2020). Acquired resistance to broad-spectrum β-lactams in 
A. baumannii is mainly due to enzymatic degradation by 
β-lactamases and resistance to broad-spectrum cephalospor-
ins usually results from overexpression of the chromosomal 
AmpC-type cephalosporinase (Corvec et al. 2003; Rod-
ríguez-Martínez et al. 2010; Nasr 2020) and from acquisition 
of extended-spectrum β-lactamases (ESBLs) (Naas et al. 
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2007). β-Lactamases with carbapenemase activity are most 
concerning, because the antibiotic resistance determinants 
may be found on plasmids and/or transposons that could 
be laterally transferred among bacteria. The rapid world-
wide emergence of β-lactams and carbapenem-resistant A. 
baumannii strains shows the adaptation of this bacterium to 
selective environmental pressure (Peleg et al. 2008; Kempf 
and Rolain 2012; López-Durán et al. 2020). The emergence 
of MDR A. baumannii has increased the use of antibiotic 
colistin (Li et al. 2006; Tan et al. 2007; Kempf and Rolain 
2012) and has unfortunately led to the discovery of colistin-
resistant strains (Kempf and Rolain 2012; Cai et al. 2012; 
Papathanakos et al. 2020).

In general, this bacterium is considered as a low virulence 
pathogen, but several virulence factors (Table 1), includ-
ing adherence and invasion in host cells and host cell death 
(Choi et al. 2005, 2008), biofilm formation (Eze et al. 2018), 
capsular polysaccharides (Russo et al. 2013), phospholipase 
D (Zadeh Hosseingholi et al. 2014), serum resistance (Kim 
et al. 2009; Bolourchi et al. 2019) and iron acquisition (Zim-
bler et al. 2009) have been identified which make it a serious 
pathogen (Fig. 1). These virulence factors along with mul-
tidrug resistance trait make this pathogen create havoc, at 
least in hospitals and it is the emerging cause of nosocomial 
respiratory and urinary tract infections. Despite studies on 
several vaccine candidates to confer partial immunoprotec-
tion, there is no efficacious vaccine available to prevent A. 
baumannii infections at present.

Development of vaccines against A. baumannii is neces-
sary to provide prophylactic protection for susceptible popu-
lation of immunocompromised and patients in hospitals. As 
this is a nosocomial pathogen, every individual admitted in 
hospitals or undergoing antibiotic treatment has the potential 
risk to acquire infection. The incidence of chronic and per-
sistent infections can be reduced through vaccination. The 
treatment of A. baumannii infections is very difficult due to 

the inherent resistance of A. baumannii to multiple antibi-
otics as various efflux pumps efficiently remove antibiotics 
from the bacterial cell that results in multidrug property of 
the A. baumannii. Another reason for antibiotic resistance 
is biofilm forming ability. In biofilms, the contact between 
antibiotics and surface of bacteria is hindered resulting in 
antibiotic failure. In addition, there are changes in the cell 
envelope reducing the permeability of the cell membrane to 
the antibiotics. In addition, the range of infections caused 
by Acinetobacter spp. and the potential to develop severe 
chronic infections in the immunocompromised individuals 
through the persistence ability make the need for vaccine 
crucial (Kaur et al. 2018).

Active immunization

Although A. baumannii causes nosocomial infections and 
it may not be suitable to immunize acute patients urgently 
requiring the protective treatment, but active immunization 
can evoke immunity and delay the onset of bacteremia to 
enhance the efficacy of antibiotic treatment in individuals 
at high risk (Table 2).

Whole cell vaccines

Whole cell vaccines (first generation), either live attenuated 
or killed, induce the immune system. Due to their ability to 
elicit a broad range of immune responses, these vaccines are 
considered ideal. They have been widely used against dread-
ful infectious diseases, such as cholera, mumps, measles and 
tuberculosis (Moyle 2015). Pathogenic strains are weakened 
by multiple passages in laboratory conditions or immuno-
logically related microorganisms are used that do not use 
human as the target host. Live attenuated microbes do not 
cause any pathological or lethal effects in human body but 
they replicate and are recognized by human immune system 

Table 1   Important virulence factors which can be used in vaccine development and their role in the pathogenesis of A. baumannii 

S. no Virulence factor Role References

1 OmpA Acts as porin, induces host cell apoptosis, antimicrobial 
resistance and biofilm formation

Moon et al. 2012; Kwon et al. 2017; Nie et al. 2020a)

2 Biofilm associ-
ated protein 
(BAP)

In biofilm formation and involved in intercellular adhesion 
within the mature biofilm

(Loehfelm et al. 2008; Brossard and Campagnari 2012)

3 AdeABC Multidrug efflux complex involved in multidrug resistance 
and biofilm formation

(Subhadra et al. 2019; Xu et al. 2019)

4 Pili A type IV pili system required for twitching motility (Harding et al. 2013; Geisinger et al. 2019)
5 CsuA/BABCDE Usher-chaperone fimbriae required for pili biogenesis and 

biofilm formation
(Tomaras et al. 2003; Longo et al. 2014)

6 PNAG A surface polysaccharide involved in biofilm formation, (Bentancor et al. 2012a; Geisinger et al. 2019)
7 Capsule Provides protection desiccation and disinfection regimes as 

well as host immune responses
(Russo et al. 2010; Geisinger et al. 2019; Hu et al. 2020)
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as foreign invaders. By knocking out the virulence genes 
essential for pathogenesis, well defined weakened or attenu-
ated live vaccines can be developed (Robbins and Robbins 
1986; Nascimento and Leite 2012; Lin et al. 2015; Morais 
et al. 2019).

Killed whole cell vaccines consist of non-living patho-
gens that are unable to replicate and yet remain immuno-
genic in host which makes them extremely safe. This type 
of vaccine has been successfully used against anthrax, Q 
fever and whooping cough (Ada 2005). These vaccines elicit 
humoral immune response resulting in high concentration 
of neutralizing antibodies. Although killed whole cell vac-
cines are known to not stimulating the strong cell mediated 
immunity, resulting in multiple doses of vaccination for long 
lasting protection but they induce a broad immune response 
against multiple surface antigens. In case of A. baumannii, 
McConnell and Pachon reported high immunogenicity of 
whole cell vaccine inactivated by formalin as it produced 
significant antibody titer against multiple outer membrane 
proteins. Although this vaccine had contamination of high 
levels of LPS but it generated strong immune response 
resulting in reduction of bacterial loads in organs and 
reduced serum pro-inflammatory cytokine levels compared 
to unimmunized mice and protected mice from A. bauman-
nii ATTC 19,606 and two clinical strains (McConnell and 
Pachón 2010). KuoLee et al. used inactivated whole cell 
vaccination approach against A. baumannii. In this study, a 

clinical isolate of A. baumannii, LAC-4, causing 100% mor-
tality in mice by acute pneumonia and bacteremia, was used 
for bacterial challenge. Intranasal immunization with forma-
lin-killed A. baumannii LAC-4 cells resulted in high levels 
of IgG1 and IgG2 responses and ultimately clearing bacteria 
from lungs and serum (KuoLee et al. 2015). An inactivated 
whole-cell vaccine derived from antibiotic-exposed MDR A. 
baumannii (I-M28-47–114) (Shu et al. 2016) and radiation 
inactivated cells were found to be protective(Dollery et al. 
2021).

Single sub‑unit vaccines

Sub-unit vaccines contains minimal microbial components 
necessary to stimulate long lasting specific protective and/or 
therapeutic immune responses against the pathogen (Moyle 
and Toth 2013). However, preparation of subunit compo-
nents as vaccines requires extremely stringent safety proto-
cols as their preparation involves cultivation of live patho-
genic bacteria in large scale culture.

Protein candidates

A. baumannii immunogenic proteins used are mostly extra-
cellular or surface exposed proteins, such as outer membrane 
proteins (OMPs), porins, receptors, channels and other func-
tional and structural components on the bacterial surface. 

Fig. 1   A schematic illustration of virulence factors of A. bauman-
nii with their roles. AdeABC RND efflux superfamily, BamA outer 
membrane protein assembly factor, OmpA outer membrane protein A, 

CarO carbapenem associated resistance protein, PNAG polysaccha-
ride poly-N-acetylglucosamine, BAP biofilm associated protein, Csu 
Csu operon
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OmpA (Luo et al. 2012), Ata (Bentancor et al. 2012b), 
BamA (Singh et al. 2017), NucAb (Garg et al. 2016), FilF 
(Singh et al. 2016b), Bap (Fattahian et al. 2011), OmpW 
(Huang et al. 2015) and Omp22 (Huang et al. 2016) are the 
major outer membrane proteins that are antigenically con-
served and surface exposed in sequenced strains and clinical 
isolates and immunization with these Omps as immunogens 
elicited opsonizing, cross reactive and protective antibodies 
in mouse pneumonia or sepsis model. Moreover, A. bau-
mannii outer membrane proteins are highly conserved as 
compared to high heterogeneity of outer membrane vesicles 
or outer membrane complexes.

OmpA is most studied A. baumannii outer membrane 
protein and potential therapeutic target for A. baumannii 
infections(Choi et al. 2008; Gaddy et al. 2009; Park et al. 
2012; Moon et al. 2012; Confer and Ayalew 2013; Samsudin 
et al. 2016; Jahangiri et al. 2017; Nie et al. 2020). Amount 
of vaccine candidate administered affects its immunology 
in the host. OmpA is well explored protein in A. baumannii 
and variations in its immunization doses was found to affect 
the antibody titer and immune responses. Larger vaccine 
doses (30–100 µg) as compared to lower (3 µg) was found 
to induce higher IgG and IgG subtypes, epitope restriction 
for IFN gamma producing lymphocytes, a polarized IL-4/
type 2 response, while lower doses induced lower antibody 
response and a balanced IFN-γ-IL-4 immune response (Lin 
et al. 2013). ompA gene was sequenced in six clinical strains 
of A. baumannii and found 99% identical. Immunization 
with recombinant outer membrane protein A resulted in high 
antibody titer, protected mice from infection and reduced 
bacterial load in various organs (Luo et al. 2012). Acineto-
bacter trimeric autotransporter or Ata protein plays a role in 
A. baumannii infections by acting as adhesion immobilizing 
collagen type IV and promotes biofilm formation. Immuni-
zation with Ata significantly reduced bacterial load in dif-
ferent organs of mice 24 h postinfection (Bentancor et al. 
2012b). Chiang et al. analyzed whole proteome of A. bau-
mannii, cloned 3 candidate proteins viz. OmpK, Ompp1 and 
FKIB in E. coli. Mice were immunized with these recombi-
nant proteins along with complete/incomplete Freund’s adju-
vant and significant antibody titer was observed resulting in 
partial mice survival (60%) after lethal bacterial challenge 
(Chiang et al. 2015). Similarly, OmpW protected mice from 
lethal bacterial challenge with 100% survival rates (Huang 
et al. 2015). A 22-kDa outer membrane protein of A. bau-
mannii was found as a novel and safe antigen for developing 
antisera or effective vaccine to control A. baumannii infec-
tions (Huang et al. 2016). Omp22 was found more than 95% 
conserved in 851 reported A. baumannii strains. Recom-
binant Omp22 elicited significant titers of specific IgG in 
mice. Both active and passive immunizations with Omp22 
suppressed the bacterial burdens in the organs, increased 
the survival rates of mice (100%) and reduced the levels of 

serum cytokines and chemokines. In addition, Omp22 anti-
serum had efficient bactericidal activities against clinical A. 
baumannii isolates. In addition, high dose of purified protein 
(500 μg) did not cause pathological changes in mice. BamA 
showed its immunoprotective potential against lethal doses 
of MDR A. baumannii and promising candidate for active 
and passive immunization (Singh et al. 2017). Recently, 
Omp87 showed significant immunoprotective potential 
against A. baumannii in sepsis model (Rasooli et al. 2020). 
The development of protein-based vaccine shows promising 
results as it relies on the identification of safe and effec-
tive vaccine candidates for the prevention of A. baumannii 
infections.

Non‑protein candidates

Capsular polysaccharide is a well explored virulence factor, 
major component of the outer complex of A. baumannii and 
due to its surface accessibility, it has remained the widely 
characterized and tested vaccine candidate(Geisinger and 
Isberg 2015; Singh et al. 2019; Geisinger et al. 2019; Mou-
bareck and Halat 2020). Russo et al. studied the effect of 
monoclonal antibodies against K1 capsular polysaccharide 
of A. baumannii in rat model. These monoclonal antibodies 
promoted in vitro neutrophil-mediated bactericidal activity 
and reduced post infection bacterial loads in various organs 
of rat. In addition, these monoclonal antibodies reacted to 13 
out of 100 A. baumannii strains isolated from body sites and 
different geographic locations (Russo et al. 2013). However, 
capsule may interfere with the antiOMP antibodies (Wang-
Lin et al. 2017) but CPS-induced antibodies have been found 
to provide 55% protection against A. baumannii challenge in 
mouse (Yang et al. 2017).

Outer membrane vesicles

A. baumannii secrete outer membrane vesicles (OMVs) 
during growth (Jin et  al. 2011). They are composed of 
phospholipids, proteins and lipopolysaccharides (LPS) 
forming spherical vesicles with diameter ranging from 20 
to 300 nm (Ellis and Kuehn 2010). OMVs play role in the 
delivery of virulence factors to the host cells thus initiating 
the infection (Alaniz et al. 2007). The production of OMVs 
increases under stress and harsh conditions, such as infection 
(McBroom and Kuehn 2007). Exact mechanism of OMV 
formation is unknown but Deatherage et al. proposed and 
explained a model of OMV formation in Salmonella spe-
cies (Deatherage et al. 2009). They described that OMVs 
are produced in cell envelope regions, where the density of 
outer membrane–peptidoglycan associations is temporarily 
decreased. They also found that outer membrane proteins 
present in OMVs have specific domains that could interact 
with peptidoglycan and could modulate OMV production. In 
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addition, Salmonella mutants lacking few outer membrane 
proteins, such as OmpA, LppAb, and Pal, were able to pro-
duce more OMVs than wild type. In case of A. baumannii, 
OmpA was found to play important role in biogenesis of 
OMVs and protein composition (Moon et al. 2012).

OMVs have been tried as vaccine candidates against 
infections caused by A. baumannii. Jun et  al. proposed 
OMVs as potent stimulators of innate immune response 
with membrane proteins in OMVs playing critical role in 
it. Immunization with OMVs successfully stimulated the 
pro-inflammatory response, recruitment of neutrophils 
and exudates in the lungs of neutropenic mice (Jun et al. 
2013). Huang et al. studied immunoprotective efficacy of 
OMVs of a clinical isolate against MDR A. baumannii in 
both sepsis and pneumonia mice model. Immunization with 
these OMVs resulted in significant IgG antibody (64,000 
titer, 21 days after 2nd booster) response in female ICR 
mice. These OMVs were found effective in providing 100% 
mice survival due to decreased bacterial burden in organs, 
decreased pro-inflammatory cytokines and less damage to 
the organs after bacterial challenge (Huang et al. 2014). 
McConnell et  al. have shown that OMV immunization 
reduced post-infection organ burden loads and increased 
survival after lethal challenge (McConnell et al. 2011b). 
Badmasti et al. isolated OMVs from A. baumannii express-
ing lipid A deacylase PagL and combined them with two 
other A. baumannii proteins viz. Bap and AbOmpA. These 
formulations induced robustly antibodies, Th1 and Th2 
responses and protected mice from bacterial challenge (Bad-
masti et al. 2015). Recently, OMVs isolated from an Acine-
tobacter strain deficient in lipopolysaccharide (LPS) due to 
mutation in lpxD elicited immunity against infection and 
elicited antibody titers (IgG, IgG1, IgG2c and IgM) similar 
to the wild type (Pulido et al. 2018, 2020). These OMVs 
were highly immunogenic and their immunization resulted 
in significantly reduced post-infection spleen bacterial loads, 
serum IL-1beta and IL-6 levels and provided 75% mice pro-
tection from bacterial challenge.

Outer membrane complexes

McConnell et al. analyzed the proteome of outer membrane 
complex of A. baumannii ATCC 19,606 and found 41 pro-
teins associated with the cell surface. They used antibodies 
generated against multiple proteins in OMCs to recognize 
the surface proteins from clinical isolates (McConnell et al. 
2011a). Immunization with OMCs reduced the bacterial load 
in organs and reduced the pro-inflammatory cytokines viz. 
IL-1β, IL-6 and TNF-α. Immunized mice showed increased 
survival rate after infection with ATCC 19,606 as well as 
with a pan–drug-resistant strain. Passive immunization with 
antisera raised against OMCs rescued the infected mice indi-
cating the potential of OMC vaccines. However, preparation 

of vaccine using OMCs is tricky due to difficulties in stand-
ardization of levels of the multiple components of OMCs.

Conjugate vaccines

There are few reports of conjugate vaccines against A. 
baumannii. Gening et al. targeted Poly-N-Acetyl-β-(1–6)-
Glucosamine (PNAG), which is produced by several patho-
gens including A. baumannii, and prepared a conjugate of 
oligoglucosamines containing either 5- or 9-mer fully acet-
ylated monosaccharides (5GlcNAc or 9GlcNAc) or 5- or 
9-mer fully non acetylated monosaccharides (5GlcNH2 or 9 
GlcNH2) and tetanus toxoid. This conjugate produced sig-
nificant antibody titer which protected mice from S. aureus 
in skin abscesses murine model and from E. coli in lethal 
peritonitis model (Gening et al. 2010). Bentacor et al. dem-
onstrated the efficacy of a conjugate of synthetic oligosac-
charide and tetanus toxoid against a high PNAG producing 
A. baumannii strain. Antisera raised in rabbit against this 
conjugate successfully reduced the bacterial load in mice 
lungs resulting in high survival rates after lethal bacterial 
challenge. In addition, antiserum to conjugate showed sig-
nificant opsonophagocytic activity against various A. bau-
mannii clinical isolates (Bentancor et al. 2012a).

Passive immunization

Passive immunization has the potential to provide effective 
and prompt protection. Either in combination with antibi-
otic therapy or alone, antibacterial antibodies could treat the 
A. baumannii infections. Antibody preparations have been 
widely used to delay bacteremia onset by reducing the bacte-
rial count in bronchoalveolar lavage fluid (BALF) or blood.

Several recombinant proteins of A. baumannii have 
been used to produce antisera that were assayed for the 
opsonophagocytic killing. Antisera generated by immuniza-
tion with OMCs of A. baumannii have been shown to effec-
tively rescue the infected mice (McConnell et al. 2011b). 
Inoculation with antisera 1 h after the bacterial infection 
resulted in survival of infected mice. Garg et al. have shown 
improved survival by passive immunization over active 
immunization using antisera raised against an outer mem-
brane nuclease, NucAb. Active immunization with recom-
binant NucAb resulted in significant IgG titer of 1–5 × 105 
resulting in 20% survival which increased to 40% after pas-
sive immunization (Garg et al. 2016).

Antisera against an outer membrane protein Omp22 
exerted specific bactericidal activity at different dilu-
tions  – 39.8% at dilution of 10, 24% at 100 and 11.8% at 
1000-fold dilutions(Huang et al. 2016). The bactericidal 
activity was complement dependent as complement-inac-
tivated antisera showed 22.2% killing by 10X dilutions. 
Removal of phagocytes from serum led to loss of killing 
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activity which proved that opsonophagocytic killing. BamA 
showed 40% mice protection from bacterial lethal challenge 
on passive immunization, mainly by the opsonophagocytic 
activity of serum (Singh et al. 2017).

Reverse vaccinology for treating A. 
baumannii infections

Reverse vaccinology is the use of genomic and proteomic 
information available in databases to predict potential vac-
cine candidate proteins against pathogens. In conventional 
vaccinology, pathogen is first cultured then its immunogenic 
components are identified, isolated and purified by labora-
tory protocols followed by their validation in animal models. 
Due to inability to work upon uncultivable pathogens, time 
consumption in experiments and serious biohazards associ-
ated with highly infectious pathogens, reverse vaccinology 
was discovered as a new approach to identify potential vac-
cine candidates. This technique requires complete proteomes 
of sequenced pathogens and online tools which predict the 
vaccine candidates and screen large number of isolates for 
homology (Rappuoli 2000, 2001; Sette and Rappuoli 2010; 
Singh et al. 2016a; Solanki and Tiwari 2018).

Reverse vaccinology represents a complete and successful 
example of computer-aided biotechnology providing vaccine 
candidates for most complex and difficult to treat infections 
(Vivona et al. 2008). Whole genome and proteome of patho-
gens are available and plethora of computations tools help 
in identification of potential vaccine candidate proteins out 
of them. NERVE (Vivona et al. 2006), Vaxign (He 2010), 
VaxiJen (Doytchinova and Flower 2007), Jenner-Predict 
(Jaiswal et al. 2013), VacSol (Rizwan et al. 2017) and Bow-
man-Heinson (Bowman et al. 2011; Heinson et al. 2017) and 
Vaxgin2 ((Ong et al. 2021)) are the major RV tools to pre-
dict potential vaccine candidates. Due to major limitations 
in conventional vaccinology, RV has become an initial and 
standard approach to search ideal vaccine candidates pos-
sessing certain characteristics (Rappuoli 2000; Singh et al. 
2016a). The underlying principles in this approach are selec-
tion of proteins localized on cell surface as surface expo-
sure of antigens is the most important requirement for the 
host–pathogen interaction. High level of antigen conserva-
tion is another fundamental requirement in this approach, as 
to provide broad spectrum immunity covering all the strains 
of pathogen is necessary. Other than these, vaccine candidate 
should contain minimum number of trans-membrane heli-
ces (less than 2), high adhesion probability, ability to bind 
to the MHC molecules, high conservation among the clini-
cal strains and most important, its dissimilarity with human 
and mouse proteome to avoid the generation of autoimmune 
response by host. These characters can be easily predicted by 
online tools and servers. This approach has successfully led 

to identify antigens capable of eliciting protective immunity 
against N. meningitidis group B (Pizza et al. 2000; Kelly and 
Rappuoli 2005; Masignani et al. 2019).

Reverse vaccinology is highly successful in case of Aci-
netobacter baumannii (Table 3) (Chiang et al. 2015; Singh 
et al. 2016b, 2017; Hassan et al. 2016; Fereshteh et al. 2020). 
Using this approach, Chiang et al. analyzed the whole pro-
teome of A. baumannii that provided several potential vac-
cine candidates. Out of these proteins, three were cloned 
and expressed in E. coli and immunization with these indi-
vidually purified recombinant proteins conferred partial 
survival in A. baumannii mouse pneumonia model (Chiang 
et al. 2015). In silico analysis of several A. baumannii outer 
membrane proteins has highlighted their vaccine potential. 
Biofilm associated proteins present on the bacterial surface 
show high molecular weight, contain a core domain of tan-
dem repeats and play critical role in bacterial infection pro-
cesses. Rahber et al. analyzed these proteins using online 
tools and reported the four functional and conserved regions 
which could be effective antigens. Out of these regions, a 
construct serving as a potential agent for diagnostic test 
based on antigen–antibody interaction was described (Rah-
bar et al. 2010, 2012). BamA (beta barrel assembly machine 
protein) is also a potential vaccine candidate having sev-
eral conserved B cell and T cell epitopes. BamA is an outer 
membrane protein belonging to Omp85 family conserved in 
all the Gram-negative bacteria. The B cell, MHC class I and 
MHC class II epitopes were predicted and docked with the 
HLA molecule to find their affinity towards HLA molecules 
prevalent in north Indian population (Singh et al. 2014).

An outer membrane putative pilus assembly protein, 
FilF, was identified using reverse vaccinology approach and 
FilF immunization significantly decreased bacterial load in 
lungs in A. baumannii pneumonia murine model resulting 
in decrease in pro-inflammatory cytokines, reduced infiltra-
tion of neutrophils in lung alveoli hence, improved survival 
(50%) as compared to unimmunized infected mice (Singh 
et al. 2016b). Similarly, an A. baumannii outer membrane 
protein nuclease, NucAb, was found to possess all the 
attributes of a promising vaccine candidate, such as outer 
membrane localization, one transmembrane helix only, 
high adhesin probability (0.53), non-homology to human 
proteins, totally conserved among all the sequenced A. bau-
mannii strains and presence of B-cell and T-cell epitopes 
binding with high affinity (percentile rank ≤ 1) to HLA 
alleles prevalent in North Indian populations. Recombinant 
NucAb (25 μg) immunization elicited high antibody titer 
(1–5 × 105) and reduced the bacterial load by 5 log cycles 
in lungs, reduced pro-inflammatory cytokines (TNF-α and 
IL-6), whereas anti-inflammatory (IL-10) cytokine increased 
in serum and lungs. Active immunization resulted in 20% 
survival rate in mice which was improved to 40% with pas-
sive immunization (Garg et al. 2016). BamA (Singh et al. 
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2017) and Omp87(Rasooli et al. 2020) are most promising 
vaccine candidates identified by Reverse Vaccinology as 
they elicited high antibody titer in mice, reduced cytokine 
levels and bacterial burden in organs and protected mice 
from lethal bacterial challenge by active and passive immu-
nization. Recently, Fereshteh et al. analyzed A. baumannii 
proteomes using Reverse Vaccinology and predicted putative 
vaccine candidates mostly involved in cell division, pili or 
fimbria assembly and iron acquisition processes (Fereshteh 
et al. 2020).

Epitope based broad spectrum vaccine

Epitopes are the smallest molecular entities recognized by 
the host immune system. Developing epitope-based vaccine 
is challenging due to eminently polymorphic nature of MHC 
molecules and distinct frequencies of human leukocyte anti-
gens (HLAs) (Sette and Fikes 2003; Parvizpour et al. 2020). 
A plethora of online tools are available now to predict T-cell 
epitopes and compare their population coverage in different 
geographical locations. Importantly, epitope-based vaccines 
can be designed to maximize the population coverage and 
minimizing the complexity or variability in human popu-
lation. There is huge genomic and proteomic information 
available because of next generation sequencing that can 
be explored to identify the epitopes which are conserved 
among the strains of A. baumannii or Genus Acinetobac-
ter and can be used to develop as broad-spectrum vaccine. 
Immune-dominant B and T-cell epitopes can generate robust 
immune response in host.

Whole proteomes of pathogens are screened for highly 
conserved surface exposed proteins and then, B cell and T 
cells are predicted using online epitope prediction tools. 
BamA (Singh et al.), Phospholipase D(Zadeh Hosseing-
holi et al. 2014), NucAb (Garg et al. 2016), FilF (Singh 
et al. 2016b), TolB (Song et al. 2018), Omp34 (Jahangiri 
et al. 2018), Ton-B dependent copper receptor (Abdollahi 
et al. 2018), Polysaccharide export outer membrane pro-
tein (Ahmad and Azam 2018), Chaperone-usher pathway 
protein B, CsuB (Ahmad and Azam 2018), Iron regulated 
proteins(Bazmara et al. 2019), Rhs(Ahmad et al. 2019) and 
fimbrial biogenesis outer membrane usher protein, FimD 
(Ahmad et al. 2019) are the A. baumannii proteins used for 
epitope prediction. However, epitope vaccine candidates 
have been designed as chimeric construct containing more 
than one epitope or combination of B or T cell epitopes from 
different proteins. Ahmad et al. investigated a tigecycline-
resistant A. baumannii strain and predicted BamA, FimD and 
Rhs from core proteome as surface proteins, essential, local-
ized at the pathogen surface, non-homologous to humans 
and mice. Epitopes FPLNDKPGD (BamA), FVHAEEAAA 
(FimD) and YVVAGT​AAA​ (Rhs) were predicted which had 
high affinity for the prevalent alleles in human populations. Ta
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These epitopes were linked, attached to an adjuvant to 
enhance its antigenicity and docked with TLR4 recep-
tor showing high affinity (Ahmad et al. 2019). Omp34 is 
present in > 1600A. baumannii strains with > 98% identity 
and its antigen construct was designed as antigen with high 
epitope density in which copies of antigenic peptides were 
increased by replacing non-antigen sequences(Jahangiri 
et  al. 2018). Ren et  al, 2019 constructed multi-epitope 
assembly peptide by linking two B-cell epitopes of Ata, one 
CD4 + T-cell epitope from FilF and two B-cell epitopes and 
one CD + epitope from NucAb and its immunoprotective 
efficacy was investigated in mice and found as promising 
vaccine candidate (Ren et al. 2019). Vaccine candidate pro-
teins obtained by in silico analysis of A. baumannii pro-
teomes are subjected to conservation analysis and sequential 
epitope mapping (Moriel et al. 2013; Chiang et al. 2015; 
Garg et al. 2016; Singh et al. 2016b, 2017; Hassan et al. 
2016; Ren et al. 2019; Fereshteh et al. 2020; Du et al. 2021; 
Shahid et al. 2021).

Conclusion

Vaccine development against fierce infectious microorgan-
isms has remained one of the great human achievements. 
It has primarily focused on the pathogenesis of pathogen 
based on its virulence factors causing the infection. In addi-
tion, constant evolution of multidrug-resistant strains is 
challenging the antibiotic regime and indicating the vac-
cine development as an appropriate and effective treatment 
option. Current recombinant immunization strategies target 
a single or multiple outer membrane proteins which are easy 
to prepare, safe as there is no risk of pathogen reverting back 
to its virulent form and very few adverse effects as com-
pared to other forms of vaccination. Recombinant vaccines 
are designed for broad range of protection by selecting only 
those proteins which are conserved throughout the strains of 
a specific species or species of a particular genus. Conser-
vation analysis of these proteins are performed either by in 
silico analysis using genomic and proteomic information or 
by checking them in clinical isolates using polymerase chain 
reaction (PCR). Completely and partially sequenced strains 
of A. baumannii can be screened for proteins conserved in 
maximum of strains and these candidates can be evaluated 
for their vaccine potential. Moreover, identifying specific 
host immune pathways induced by A. baumannii infection 
or immunization will facilitate the discovery of new and 
potential immunoprotective candidates to help eliminate this 
emerging public health crisis. Multidrug-resistant A. bau-
mannii is a major source of concern and constitutes a serious 
therapeutic problem as use of newer generation antibiotics 
is expensive. Better hygienic conditions and sanitation, rou-
tine microbiological surveillance and proper in vitro testing 

prior to the use of antibiotic may help in control, prevention 
and treatment of these infections. In addition, there is a dire 
need for accurate identification of these pathogens to reduce 
outbreaks.

Future perspective

Vaccine development against multidrug-resistant pathogens 
have shown significant potential to reduce the clinical bur-
den, mortality and morbidity caused by them. Preparing the 
host for incoming nosocomial pathogens may be the most 
promising treatment option as adaptive immune response 
(APCs, B cells and T cells) leads to protection through cel-
lular or humoral immunity. Genomic and proteomic data 
available are being explored to find out broad spectrum 
vaccine candidates by analyzing multiple strains at once. 
The dearth of effective therapeutics to treat multidrug A. 
baumannii has energized the researchers to seek novel 
approaches and ingenious strategies. Reverse vaccinology 
is such a time saving approach to predict potential vaccine 
candidates exploiting huge bioinformatic data. Moreover, 
several vaccine development attempts have provided impor-
tant details about A. baumannii’s antimicrobial resistance 
patterns, diversity, active/passive vaccination and animal 
infection model development that can assist in more potent 
and efficacious vaccine development against A. baumannii.
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