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Brazil, 6 CIRAD, UMR AGAP, Montpellier, France

¤a Current address: Instituto Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de

Janeiro, Brazil

¤b Current address: Universidade Federal do Sul da Bahia, Teixeira de Freitas, Bahia, Brazil.

* gramachokp@hotmail.com

Abstract

The genus Theobroma comprises several trees species native to the Amazon. Theobroma

cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild

forms are described within the genus. Variations in genome size and chromosome number

have been used for prediction purposes including the frequency of interspecific hybridization

or inference about evolutionary relationships. In this study, the nuclear DNA content, karyo-

type and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma

species were characterized. The nuclear content of DNA for all analyzed Theobroma spe-

cies was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and

only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands).

The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species,

suggesting that the basal lineage of Malvaceae have smaller genomes and that there was

an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR prim-

ers were characterized for related species of Theobroma, in which 12 loci were polymorphic.

The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high

level of information per locus. Combined results of flow cytometry, cytogenetic data and

EST-SSRs markers will contribute to better describe the species and infer about the evolu-

tionary relationships among Theobroma species. In addition, the importance of a core col-

lection for conservation purposes is highlighted.
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Introduction

The 22 species ascribed to the genus Theobroma L. (Malvaceae s.l.) are typically Neotropicals

and distributed in the Amazon Tropical Forest. The genus Theobroma is monophyletic and a

sister group of the Herrania genus, but the monophyly of Theobroma is weakly supported [1–

3]. Molecular systematic studies suggested that the subfamily Sterculioideae (which tradition-

ally included the genus Theobroma) is not monophyletic and it is divided into two clades:

Byttnerioideae (Byttnerieae, Hermannieae, Lasiopetaleae and Theobromeae) and Sterculioi-

deae sensu strictu (e.g., Dombeyeae, Sterculieae) [4, 5].

Nine species of Theobroma are present in the Brazilian Amazon, among them- cupuassu (T.

grandiflorum Schum.) and cacao (T. cacao L.). The latter considered the most important spe-

cies in the genus due to its economic value for providing raw material for production of choco-

late and derivatives, cosmetics and pharmaceuticals [1, 6]. T. grandiflorum, one of the main

tree crops in the Amazon region, has its pulp as the principal product, being used in juices, ice

creams, yogurts and cosmetics. Their seeds can be used for cupulate production, an alternative

to chocolate. [7, 8]. Recent studies also highlight the potential of cupuassu fruit extracts for

medicinal use in gastrointestinal treatments [9].

A major limitation of T. cacao and T. grandiflorum production is witches’ broom disease,

caused by Moniliophthora perniciosa, one of the most devastating diseases of cacao and cupuassu

trees [10]. Several studies on the T. cacao L. vs. M. perniciosa interaction have been carried out to

identify genes and proteins involved in mechanisms of fungus pathogenicity and/or plant resis-

tance [11, 12]. Studies on wild Theobroma species might contribute to important discoveries

regarding genes involved in resistance to various diseases, including witches’ broom, which may

be useful for cacao breeding programs as well as functional guide for genome sequencing strate-

gies, conservation programs or developing ex situ breeding designs [13, 14]. Functional micro-

satellites derived from expressed sequences tags, EST-SSR, can assist such selection. EST-SSRs

have been used for traits characterization, breeding and mapping of quantitative trait loci

(QTL’s) [15–17]. Coming from coding regions, these markers are more conserved among popu-

lations of the same species and congeners, thus, enabling cross-amplification and allowing the

characterization of molecular marker sets for species which have not been well characterized

genetically [18–22]. Several EST-SSR markers have been identified for a diverse range of crops,

such as maize [23] and tomato [24], arboreal crops as coffee [25, 26], cacao [27] and, the first

work involving EST-SSR from T. grandiflorum [28]. Given their high levels of transferability

between species [29, 30], the EST-SSR molecular markers are useful tool for studies of genetic

diversity, functional genomics, and comparative mapping between species [31].

Cytogenetics based on chromosome variation and staining with chromomycin A3 (CMA)

and 4’, 6-diamidino- 2-phenylindole (DAPI) [32] is a useful approach to study variations in

plants. The fluorochrome CMA binds preferentially to GC-rich DNA sequences [33], whereas

DAPI preferentially binds to AT-rich sequences [34]. Chromosome double staining with CMA+/

DAPI− has allowed the identification of AT- and GC-rich heterochromatin fractions in many

plant groups [35]. Furthermore, genome size is a relevant information for understanding funda-

mental mechanisms and processes underlying plant growth, evolutionary, systematic taxonomic

and cell biology studies, as well as detection of aneuploidy and apoptosis processes. In addition, it

provides significant information to sequencing studies and characterization of novel molecular

markers, such as EST-SSR [36–41].

Flow cytometry has been used to address questions related to differences in genome copy

number. Previous studies quantified the 1C-Value (haploid DNA content) in four cacao geno-

types at approximately 0.45 pg [42–44]. A more detailed comparative analysis of mitotic chro-

mosomes of T. cacao and T. grandiflorum revealed small chromosomes (~2 μm), with only one
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pair of terminal heterochromatic bands, co-localized with the single 45S rDNA site and a sin-

gle 5S rDNA site in the proximal region of the other chromosome pair [45]. These data suggest

that the chromosomes of both species are conserved.

Therefore, the objectives of this research were to characterize seven Theobroma species

using flow cytometry combined with cytogenetic and functional molecular markers from

cacao. To our knowledge, this study is pioneer in the analysis of EST-SSRs marker transfer

from cacao to the Theobroma species.

Material and methods

Biological samples

Leaves, seeds, and shoot apexes were obtained from cacao accessions at the Cacao Germplasm

Bank (CGB) of the Cacao Research Center/Executive Commission of the Cacao Farming Plan

—CEPEC/CEPLAC (Ilhéus, Bahia, Brazil). The T. grandiflorum genotypes were collected at

Embrapa CPATU—Empresa Brasileira de Pesquisa Agropecuária (Belém, Pará, Brazil).

Names of the accessions of the individuals used in this study are listed in Table 1.

Chromosome banding

Root tips obtained from seeds or apical meristems were pre-treated with 0.05% colchicine dur-

ing 24 h at 10˚C and fixed in ethanol:acetic acid (3:1; v/v) for 2–24 h at room temperature and

then stored at -20˚C. Afterward, the fixed root tips were washed in distilled water and digested

in a 2% (w/v) cellulase (Onozuka)/20% (v/v) pectinase (Sigma) solution at 37˚C for 90 min.

The apical shoots were macerated in a drop of 45% acetic acid and the coverslip removed in

liquid nitrogen. For CMA+/DAPI− bands double staining, the slides were aged for three days,

stained with 10 μL of CMA 0.1 mg/mL for 30 min, and restained with 10 μL of DAPI 2g/mL

for 60 min [46]. The slides were mounted in glycerol: McIlvaine buffer pH 7.0 (1:1) and aged

for three days before analysis in an epifluorescence Leica DMLB microscope. The images were

captured with a Cohu CCD video camera using the Leica QFISH software and later edited in

Adobe Photoshop CS3 version 10.0.

Flow cytometry

A suspension of nuclei from young leaves was prepared as described by [47] using Tris-MgCl2

(WPB buffer). The genome size was estimated using a CyFlow SL flow cytometer (Partec, Gör-

litz, Germany). For the determination of DNA content, proportionality to fluorescence inten-

sity was assumed and calculated based on at least three different measurements for each

individual sample. The histograms were generated in the FloMax (Partec) software using the

fluorescence pulse area histogram for analysis. The G1 peak of a diploid S. lycopersicum “Stu-

picke” (1.96 pg DNA content), was used as standard sample, and, set to channel 50 in the 1000

channel histogram. The S. lycopersicum seeds were obtained from the Institute of Experimental

Botany, Olomouc, Czech Republic [48]. The genome size in base pair for each species and the

1C value of the genome was estimated based on the genome size of S. lycopersicum. In order to

compare the genome sizes of the different species, a covariance analysis was performed using

the GLM procedure of the SAS software (SAS Institute Inc., 2004). The genome size of S. lyco-
persicum was used as covariate to improve the accuracy of the analysis [49].

DNA extraction

The DNA extraction was performed using healthy leaves in an intermediary stage of matura-

tion with the MATAB protocol [50] slightly modified for Theobroma species other than cacao.
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Approximately, 300 mg of leaves were ground using metal beads [51] in the presence of liquid

nitrogen. Then, 800 μL of extraction buffer (1.4 M NaCl, 100 mM Tris-HCl pH 8.0, 20 mM

EDTA, 10 mM Na2SO3, 1% PEG 6000, 2% MATAB) preheated at 74˚C were added to the mac-

erate, and incubated for 1 h at 65˚C. After, the sample was cooled at room temperature and

800 μL of chloroform:isoamyl alcohol (24:1, v/v) was added to each sample. The samples were

then centrifuged at room temperature for 10 min at 14.000 rpm and the supernatants collected.

Afterwards, 700 μL of cold isopropanol was added to the samples and centrifuged for 10 min

at 14000 rpm. The pellets were collected and transferred to news 2 mL tubes containing 100 μL

of TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) in 40 μg/mL RNAse, The integrity of the DNA

samples was checked on 1% agarose gel stained with 1 ng/μL of gel red. Quantification of the

DNA samples was performed using the Picodrop Microliter UV/Vis Spectrophotometer

Table 1. Accessions used for characterization, transferability of EST-SSR markers, genome size measurement and cytogenetics analyses.

Species Accession Collection sites Place of origin Analysis

T. cacao P4B CGB CEPLAC/CEPEC-Ilhéus, Bahia Peru EST-SSR

T. cacao Na33 CGB CEPLAC/CEPEC-Ilhéus, Bahia Peru EST-SSR

T. cacao CCN51 CGB CEPLAC/CEPEC-Ilhéus, Bahia Ecuador EST-SSR

T. cacao Ma16 CGB CEPLAC/CEPEC-Ilhéus, Bahia Brazil EST-SSR

T. cacao MOQ216 CGB CEPLAC/CEPEC-Ilhéus, Bahia Ecuador EST-SSR

T. cacao CSul3 CGB CEPLAC/CEPEC-Ilhéus, Bahia Brazil EST-SSR

T. cacao OC67 CGB CEPLAC/CEPEC-Ilhéus, Bahia Venezuela Cytometry/ EST-SSR

T. cacao EET399 CGB CEPLAC/CEPEC-Ilhéus, Bahia Ecuador EST-SSR

T. cacao TSH1188 CGB CEPLAC/CEPEC-Ilhéus, Bahia Trinidad/Tobago EST-SSR

T. cacao ICS1 CGB CEPLAC/CEPEC-Ilhéus, Bahia Trinidad/Tobago Cytometry/ EST-SSR

T. cacao SPA12 CGB CEPLAC/CEPEC-Ilhéus, Bahia Colombia EST-SSR

T. cacao RB36 CGB CEPLAC/CEPEC-Ilhéus, Bahia Brazil EST-SSR

T. cacao SCA6 CGB CEPLAC/CEPEC-Ilhéus, Bahia Peru Cytometry/ EST-SSR

T. cacao Catongo CGB CEPLAC/CEPEC-Ilhéus, Bahia Brazil EST-SSR

T. cacao GU171 CGB CEPLAC/CEPEC-Ilhéus, Bahia French Guiana EST-SSR

T. cacao Rosa Maria CGB CEPLAC/CEPEC-Ilhéus, Bahia * EST-SSR

T. cacao MO20 CGB CEPLAC/CEPEC-Ilhéus, Bahia Peru EST-SSR

T. cacao UF 20 CGB CEPLAC/CEPEC-Ilhéus, Bahia Costa Rica Cytometry

T. cacao UF 667 CGB CEPLAC/CEPEC-Ilhéus, Bahia Costa Rica Cytometry

T. cacao RIM 24 CGB CEPLAC/CEPEC-Ilhéus, Bahia México Cytometry

T. cacao Pentagona CGB CEPLAC/CEPEC-Ilhéus, Bahia * Cytometry

T. cacao OC 61 CGB CEPLAC/CEPEC-Ilhéus, Bahia Venezuela Cytometry

T. cacao ICS 100 CGB CEPLAC/CEPEC-Ilhéus, Bahia Trinidad/Tobago Cytometry

T. cacao CEPEC 515 CGB CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry

T. grandiflorum C174 EMBRAPA-CPATU-Belém, Pará Brazil EST-SSR

T. grandiflorum C1074 EMBRAPA-CPATU-Belém, Pará Brazil EST-SSR

T. grandiflorum T. grandiflorum CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry

T. bicolor T. bicolor CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry/ EST-SSR

T. microcarpum T. microcarpum CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry/ EST-SSR

T. obovatum T. obovatum CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry/ EST-SSR

T. speciosum T. speciosum CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry/ EST-SSR

T. subincanum T. subincanum CEPLAC/CEPEC-Ilhéus, Bahia Brazil Cytometry/ EST-SSR

*Unknown information

doi:10.1371/journal.pone.0170799.t001
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(Picodrop Limited, UK). The samples had their concentration adjusted to 1 ng DNA/μL and

stored at -20˚C.

Microsatellite loci, amplification by PCR and genotyping

A total of 55 EST-SSR primers previously developed specifically for cacao [15–16, 27] in our

laboratory, were synthesized and used to test transferability to cupuassu genotypes. From

these, a total of 20 EST-SSR were selected according to the following criteria: a minimum size

of 14 bp or originating from genes or proteins involved in mechanisms of plant resistance, or

both. Seventeen T. cacao accessions representing the diversity of the main genetic T. cacao
groups were analyzed [17, 52], two T. grandiflorum genotypes and five genotypes of wild Theo-
broma (Table 1). These accessions belong to CEPLAC genetic breeding program [17, 21].

After validation on cacao, the markers were tested for transferability on T. grandiflorum geno-

types 174 (Coari) and 1074, resistant and susceptible to witches’ broom disease, respectively.

These genotypes are genitors of several progenies in cupuassu breeding program [28]

(Table 1).

PCR reactions were carried out with 30 ng of DNA, 0.2 mmol/L of each primer, 2.0 mmol/

L of MgCl2, 0.2 mmol/L of each dNTP, 1X buffer and one unit of DNA Taq polymerase (Lud-

wig Biotecnologia Ltda) in a final volume of 20 μL. PCRs were carried out using touchdown

protocol with 10 cycles as follow: denaturation at 94˚C for 4 min, annealing temperature at

60–48˚C /56˚C with 1˚C decrease at each cycle, and extension at 72˚C for 1 min and 30 s, fol-

lowed by 30 cycles at 94˚C for 30 s, 48˚C for one min and 30 s, and final extension of 4 min at

72˚C. Polymorphism evaluation was carried out by electrophoresis on 6% denaturing TBE

acrylamide gel using as running buffer TBE 1X (89 mmol/L Tris, mmol/L boric acid and 2

mmol/L of EDTA). Microsatellite polymorphism was visualized using the silver staining

method [53, 54].

The amplified SSR DNA bands representing different alleles were scored on different geno-

types. A principal component analysis, conducted on the allele frequency data, number of

allele per locus (Na) and average observed heterozygosity (Ho) were determined with the

GENETIX software v. 4.05.2 [55]. The polymorphic information content (PIC) was obtained

for each locus with the CERVUS software version 3.0 [56, 57], and the genetic distance (D)

was calculated according to Nei Genetic Distances [58]. The genetic analyses were carried out

considering three groups: T. cacao, T. grandiflorum and Theobroma wild species.

Results

Chromosome number, chromosome banding and DNA content

All species showed symmetric karyotypes 2n = 20 with small metacentric/submetacentric

chromosomes. In all species, a CMA+/DAPI− band was present on the terminal region of the

long arm of a single chromosome pair. This CMA+ band was frequently heteromorphic in size

and distended in one or both homologues (Fig 1).

The 1C nuclear DNA content and genome size of the plant species are presented in Table 2,

and the histogram of the fluorescence peak are presented in Fig 2.

Nuclear DNA content (1C values) in the studied Theobroma species ranged from 0.41 pg in

T. microcarpum to 0.49 pg in T. speciosum and T. subincanum, with an average of 0.46 pg

(Table 2). Three species (T. bicolor, T. obovatum and T. grandiflorum) showed 1C = 0.48. The

ten T. cacao genotypes analyzed showed 1C values ranging from 0.44 to 0.47 pg, with an aver-

age of 0.45 pg. The coefficient of variation (CV) was low (4.07%), and the estimated genome

sizes of the seven Theobroma species, after adjustment by the genome size of S. lycopersicum
were not statistically different by the F test (p-value = 0.975) (S1 Table).
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Cross amplification and genetic analyses

The 20 EST-SSR markers produced informative results about allelic variation among the culti-

vated and wild species. Twelve of them (60%) were polymorphic and 8 monomorphic (40%)

in T. cacao individuals. The 20 primer pairs tested showed satisfactory cross-amplification

results in 75% of T. grandiflorum and T. subincanum, 90% in T. obovatum, 60% in T. bicolor
and 35% in T. speciosum and T. microcarpum. The annealing temperature of the primer pairs

ranged from 48–60˚C with amplicons varying from 100 to 322 pb (S1 Table).

Considering all 24 sampled individuals and the 20 loci, 16 were polymorphic and 4 were

monomorphic. The analysis using the 16 polymorphic EST-SSRs revealed a total of 24 alleles,

with an amplitude of size ranging from 155–165 (mEstTcCepec13-3) to 250–260 base pairs

(msEstTsh-10) (S2 Table). The number of alleles per locus ranged from two (mEstTcCepec60,

mEstTcCepec16-8, mEstTcCepec24, mEstTcCepec13, mEstTcCepec31, mEstTcCepec20-5) to

seven (mEstTcCepec16-4), and the polymorphic information content (PIC) of each locus, exclud-

ing the monomorphic ones, ranged from 0.08 (mEstTcCepec31) to 0.75 (mEstTcCepec13-4).

Table 2. Genome size of Theobroma species.

Species Genome size (1C value) Number of base pairs

T. cacao 0.4666 456 Mpb

T. grandiflorum 0.4589 448 Mpb

T. microcarpum 0.4624 452 Mpb

T. obovatum 0.4624 452 Mpb

T. speciosum 0.4624 452 Mpb

T. bicolor 0.4624 452 Mpb

T. subincanum 0.4624 452 Mpb

Average 0.46

doi:10.1371/journal.pone.0170799.t002

Fig 1. Cytogenetic analysis of the genus Theobroma. (a-a’) metaphase and caryogram of the T. cacao ssp leicocarpum stained with

CMA (yellow) and DAPI− (blue). (b-b’) Metaphase and caryogram of T. cacao cv. Scavina 6. (c) metaphase of T. bicolor stained with CMA+/

DAPI−. (d) diakinesis of T. bicolor showing the 10 pair sofbivalent. (e) prometaphase of T. grandiflorum, bars = 5 μm. Arrows in a, b, c points

to the CMA+ bands.

doi:10.1371/journal.pone.0170799.g001
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The loci were classified either as moderately polymorphic with 0.25> PIC> 0.5 or highly poly-

morphic with PIC> 0.5 (S2 Table) [53]. The average number of alleles per locus varied among

Fig 2. Histogram of relative nuclear DNA content (genome size). (A) Nuclear DNA content in T. cacao cv. ICS100. (B) S. lycopersicum cells, included as

an internal standard. Nuclei isolated from cocoa leaves were stained with propidium iodide and analyzed by flow cytometry.

doi:10.1371/journal.pone.0170799.g002
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the Theobroma groups, ranging from 2.4 in T. cacao to 1.8 in Theobroma ssp and 1.1 in T. grandi-
florum (Table 3).

The genetic distance also varied among the Theobroma groups. Theobroma cacao group

was more genetically distant from the T. spp group (0.444) and less distant from the T. grandi-
florum group (0.219). Theobroma grandiflorum and T. spp groups had a moderate genetic dis-

tance of 0.378 (Table 4).

Discussion

Genome size and cytogenetics

In general, the genome size among related species is, for the most part, stable and rarely

exceeds values above or below 2 to 5% when using techniques commonly suggested for deter-

mining nuclear DNA content [59]. This trend was also observed in this study, wherein the

genome sizes estimated in this study for species of the Theobroma genus (T. cacao, T. grandi-
florum, T. microcarpum, T. speciosum, T. bicolor, T. subincanum and T. obovatum) did not dif-

fer statistically. For most of these species, there are no previous studies about the genome size,

except for T. cacao. The small differences found in the genome sizes in samples of T. cacao
have been reported in previous studies [42, 43, 60]. Nevertheless, these differences in measure-

ments of DNA content observed between laboratories cannot be interpreted as interspecific

variation, because the measuring tools may present small differences in the alignment along

the time. Regarding the variations among species, small differences in measurements can be

generated by phenolic compounds, which have antioxidant activity, thus conferring protection

against DNA damage to the cells. These compounds are known to inhibit proper DNA staining.

In experiments that aim measuring the size of the genome, any failure in the application of the

protocol may cause variations in the data obtained, in comparison to homogeneous values [61–

64]. However, in this study it was possible to acquire a high resolution of the histograms. Besides

replications of samples, other actions were implemented, like use of S. lycopersicum genome as

control to increase the accuracy of the measurements [65–68]. Besides that, the coefficient of

variation was low (4.07%), suggesting a high precision in the comparisons. Therefore, in the

present case, the homogeneity of the genome sizes of Theobroma species suggests a true unifor-

mity in those sizes.

Table 3. Genetic diversity estimates for individuals of the Theobroma genus.

Groups Na He HO

T. cacao 2.4 0.31 0.12

T. grandiflorum 1.1 0.04 0.00

T. ssp 1.8 0.28 0.06

Average 1.8 0.21 0.06

Na = number of alleles averaged over all loci; HO = unbiased observed heterozygosity (Nei, 1978);

He = unbiased expected heterozygosity (Nei, 1978).

doi:10.1371/journal.pone.0170799.t003

Table 4. Genetic distance matrix between the three groups of individuals of the genus Theobroma.

Groups T. cacao T. grandiflorum T. ssp

T. cacao 0.000 – –

T. grandiflorum 0.219 0.000 –

T. ssp 0.444 0.378 0.000

doi:10.1371/journal.pone.0170799.t004
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Variations in genome size of angiosperms are wide, varying from 1C = 0.06 pg in Genlisea
margaretae to 1C = 152.23 pg in Paris japonica, with an extensive variation occurring within

the genus [68, 69]. Some studies have revealed that chromosome length ranged from 2.00 to

1.19 μm for T. cacao and from 2.21 to 1.15 μm for T. grandiflorum, with most chromosome

pairs similar in morphology and size, corroborating with our findings [45]. Plant species native

from tropical forests tend to have a reduced genome size, which could be influenced by differ-

ences in temperature affecting cellular division and expansion [70]. The process of cellular

division and growth are favored by elevated temperatures as seen in cacao and other species of

the genus [71]. This process can select a more short mitotic cycle and consequently small cells

and small genomes compared to plants of temperate regions [42].

Studies show that probably the ancestral genome size in Angiosperms was reduced, and

that along the evolutionary scale DNA content suffered increases due to polyploidization

events and self-replicating DNA elements. The reduced genome sizes observed in the studied

species may have also a phylogenetic signal. The clade Byttnerioideae (which includes Theo-
broma and Herrania) presents small genomes (~0.43 pg), as well as it is related to the Grewioi-

deae (~0.48 pg) clade [72–74]. Byttnerioideae and Grewioideae form the most basal group of

Malvaceae, suggesting that the small genomes are a plesiomorphyc condition in the family. In

contrast, the most specialized clades within Malvaceae, Sterculioideae (~1.944 pg), Bombacoi-

deae (1.97 pg) and Malvoideae (1.72 pg) have much larger genomes, suggesting that there was

a trend of expansion of the genome size in these lineages [3]. In some cases, this increase in the

genome can be influenced by polyploidy events, such as for Bombacoideae [1, 75].

The small genomes in these species studied here may be correlated with the karyotype stabil-

ity in the genus. Our data support the karyotypes already described for other species in the

genus, that it is a taxon predominantly diploid (2n = 20), with small and symmetric chromo-

somes [44, 76]. The only differences reported in the literature are detectable cytological hetero-

chromatic bands observed on the centromeric/ pericentromeric regions of all 20 chromosomes

of cacao after C-banding stained with either Giemsa or DAPI, whereas never being detected in

T. grandiflorum. The presence of only a couple of bands CMA+/DAPI−in all species, and in dif-

ferent varieties of cacao also confirms the karyotype correlations among them and are in agree-

ment with previous analyses [45].

Characterization and transferability of EST-SSR markers

Adoption of genomic approaches to crop improvement studies and preservation of wild tree

species is severely limited by the lack of sufficient molecular markers. EST-SSRs are codomi-

nant, highly reproducible and polymorphic markers. With these characteristics, they have

been used favorably for population genetic analyses and genetic mapping in several species.

Rate of polymorphism in genomic SSRs is generally high in comparison to SSR from ESTs

[77, 78]. However, EST-SSR shows some advantages, such as higher frequency in the genome

and their link to interesting agronomical traits [79]. From the 20 EST-SSR tested here, 60%

generated polymorphic loci. In previous studies lower rates were found, when 32 EST-SSRs

associated with resistance to M. perniciosa were tested only 26.7% were polymorphic, never-

theless the individuals used in the present study were more heterogeneous [15].

Regarding the genetic diversity found in the sampled individuals, we noted that the highest

polymorphic information content (PIC) was in the T. cacao group, showing the potential cover-

age of these markers. It is worth mentioning that it was not the aim of this study to characterize

the genetic structure of populations in the Theobroma genus, but to test the cross-amplification

to wild species of Theobroma genus and to T. grandiflorum. One of the advantages of EST-SSR

markers is the fact they are easily transferable between species of the same genus, since they are
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derived from commonly conserved transcribed regions of DNA, directly decreasing in the costs

of molecular studies in wild species [80–82]. In the present work, the transferability rate of the-

ses EST-SSRs markers among the Theobroma species ranged from 35% to 90% among samples.

Therefore, based on the premise that EST-SSRs are highly conserved in congeners, the percent

of functional primers to other species of the genus decreased with the increase in genetic dis-

tance, that is, T. microcarpum from the section Telmatocarpus and T. speciosum from the sec-

tion Oreanthes showed the lowest rates of primer transferability (35%). In a work with wheat, it

was reported that this is an expected result due to the insertion of introns in correlated species

[83] that modify the target sequence, however, with rates of amplification normally higher than

50% [31].

Microsatellite markers are especially useful to characterize the genetic diversity and kinship

between species, due the high polymorphism and number of alleles per locus [84]. Theobroma
grandiflorum and T. obovatum species belong to section Glossopetalum, considered the most

ancestral section of the genus, while T. cacao (section Theobroma) suggests a distant evolution-

ary relationship between these species. Nevertheless, there have been reports of hybrids between

T. cacao and T. grandiflorum and T. grandiflorum with T. obovatum meaning closer relationship

between those species [3, 85].

The first sets of molecular markers reported for wild species of Theobroma were RAPD

(Random Amplified Polymorphic DNA) used to elucidate phylogenetic relationships between

species. Patterns of RAPD showed intra and interspecific polymorphism and some bands of

similar lengths between species classified in the same section or correspondents [86].

Previous studies found a transferability rate of SRR markers from T. cacao to T. grandiflorum
of 60.4%, showing similarity between species and highlighting the possibility of using those

markers in association mapping and breeding [87]. In the present study, the transferability rate

of EST-SSRs from T. cacao to T. grandiflorum was slightly higher, around 70%, as expected, con-

sidering that EST-SSRs come from conserved sequences. Regarding T. obovatum, the rate of

cross-amplification was 90%. Until now, there is no previous report of SSR or EST-SSR markers

to this species. These cross-amplification rates are in agreement with previous studies that have

shown that the proportion of cross-amplification studies involving polymorphic SSR loci within

the same plant genus ranged from 20% to 100% [88].

The constancy of the genome size of theses Theobroma species and the high rate of EST-SSR

cross-amplification supports our conclusion that the areas bordering the microsatellites in the

studied species are conserved enough to allow cross-amplification. Additionally, suggesting

that these species have been conserved along the evolution regarding their genomic sequences

and number and size of chromosomes, which are relatively small compared to most angio-

sperms. This information can also be confirmed by the amount of non-coding repetitive DNA,

composed of transposable elements, satellite DNA, introns and pseudo genes, as seen for the

T. cacao genome [89–91]. Preservation of the sequence depends mainly on the evolutionary

relationship between the species of origin. Thus, the more diverse the taxon, the less successful

the cross-amplification will be. Data from this research allows inferences that these Theobroma
species have a certain genomic homology.

The EST-SSR markers evaluated in this study showed a considerable transferability rate

into six related Theobroma species, therefore, these markers are important to closely monitor

the genetic variability. In fact, this is the first report of EST-SSR molecular markers used in

wild species of the Theobroma genus, thus, representing a new set of primers highly informa-

tive that can be used in studies of transferability, paternity, and genetic flow of Amazon spe-

cies. They can also help in studies aiming better strategies of biodiversity conservation and

studies of disease resistance genes in T. grandiflorum [92].
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ceae). Acta amazônica. 2004; 34(4):507–511.

86. Silva FCO, Neto EF, Kodama KR, Figueira A. Avaliação das relações genéticas entre genótipos de
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