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Natural language processing (NLP) is a field of computer science concerned with automated text and lan-
guage analysis. In recent years, following a series of breakthroughs in deep and machine learning, NLP
methods have shown overwhelming progress. Here, we review the success, promise and pitfalls of apply-
ing NLP algorithms to the study of proteins. Proteins, which can be represented as strings of amino-acid
letters, are a natural fit to many NLP methods. We explore the conceptual similarities and differences
between proteins and language, and review a range of protein-related tasks amenable to machine learn-
ing. We present methods for encoding the information of proteins as text and analyzing it with NLP meth-
ods, reviewing classic concepts such as bag-of-words, k-mers/n-grams and text search, as well as modern
techniques such as word embedding, contextualized embedding, deep learning and neural language
models. In particular, we focus on recent innovations such as masked language modeling, self-
supervised learning and attention-based models. Finally, we discuss trends and challenges in the inter-
section of NLP and protein research.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Proteins and natural language

Like human language, protein sequences can be naturally repre-
sented as strings of letters (Fig. 1A). The protein alphabet consists
of 20 common amino acids (AAs) (excluding unconventional and
rare amino acids). Furthermore, like natural language, naturally
evolved proteins are typically composed of reused modular ele-
ments exhibiting slight variations that can be rearranged and
assembled in a hierarchical fashion. By this analogy, common pro-
tein motifs and domains, which are the basic functional building
blocks of proteins, are akin to words, phrases and sentences in
human language [96,102,98,93,117].

Another central feature shared by proteins and human language
is information completeness. Even though a protein is much more
than a mere sequence of amino acids – it is also a three-
dimensional machine with a determined structure and function –
these other aspects are all predetermined by its amino-acid
Fig. 1. Computational analysis of natural language and proteins (A) Texts and proteins ca
and global properties. (B) A common preprocessing step in NLP is the tokenization of text
There are many different ways to tokenize text, e.g. as letters, words, or other substring
count unique tokens in a text, turning every input text into a fixed-size vector. Subsequ
algorithm.
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sequence. While protein structure and function is dynamic and
context-dependent (e.g. on cellular state, other molecules and
PTMs), it is still defined by the underlying amino-acid sequence.
This means that from an information-theory perspective, the pro-
tein’s information (e.g. its structure) is contained within its
sequence [74].

Given these similarities in shape and substance, it seems
natural to apply natural language processing (NLP) methods to
protein sequences. Although the term NLP refers to natural
languages, the same computational methods are also used to study
non-natural languages such as programming code [96,49,30]. Past
decades have seen a continuous trickle of statistical and machine-
learning algorithms from the field of NLP into bioinformatics
[67,117,66,6,34,60,88,109,117,105].

It should be kept in mind that the analogies between proteins
and human language only go so far. Most importantly, we can read
and understand human languages. Additionally, unlike proteins,
n be represented as strings of letters and processed with NLP methods to study local
or protein sequences into distinct tokens, which are the atomic units of information.
pieces of equal or unequal length. (C) Bag-of-words representation can be used to
ently, these vector representations can be analyzed through any machine-learning
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most human languages include uniform punctuation and stop
words, with clearly separable structures such as words, sentences
and paragraphs. With proteins, we do not always know whether
a sequence of amino-acids is part of a functional unit (e.g. a
domain). There is no clear analogy between the building blocks
of language and those of proteins. For example, considering protein
domains as being equivalent to words is often misleading. Further-
more, protein functional units often overlap. As a result, while nat-
ural languages have a well-defined vocabulary (with ~ million
words in English), proteins lack a clear vocabulary. From an
information-theory perspective, the entropy of sequences within
protein domains was shown to be lower than the English language,
while still being significantly different from a random distribution
[117]. Proteins also exhibit high variability in length, which in
human ranges over three orders of magnitudes (from less than
20 AAs for peptide hormones to tens of thousands of AAs in some
structural proteins). Such a wide range of protein sequence lengths
is prevalent in all domains of life, from viruses to humans [17]. In
NLP, specific words might have critical influence (e.g. ‘‘I love you”
vs. ‘‘I loved you”), while in proteins, effects may be more aggregate
(e.g. hydrophilic chains in intermembrane sequences). Finally, nat-
ural languages typically have fewer distant interactions, while pro-
teins, due to their 3D structure, commonly form interactions
between residues that are far away on the linear sequence.

In this review, we present a modern view on applications of NLP
methods to the study of protein sequences. We begin by exempli-
fying the types of prediction tasks that one might be interested in
when studying proteins at a global or local level. We then discuss
the concept of tokenization, namely the choosing of a discrete set
of tokens for representing given text or protein sequences, which
is typically the first preprocessing step in NLP tasks. Next, we pre-
sent classical NLP methods such as bag-of-words and k-mer, which
provide a strong baseline for many applications. We also mention
other classic searching and text-similarity methods such as BLAST
and hashing. We then move to more modern approaches, focusing
on word embedding, contextualized embedding and deep-learning
methods. We concentrate on deep language models (especially
protein-language models). We end by reflecting on some limita-
tions of deep-learning models and current trends in the field.

The aim of this review is to introduce readers to applications of
NLP methods to protein research, and to inform them about recent
developments in the field. While aimed at a broad audience, we
assume familiarity with basic concepts in biology (e.g. amino acids,
phosphorylation) and machine learning (e.g. feature extraction,
deep learning). To assist the reader with this background knowl-
edge, we provide a short glossary with some important terms.
2. Sequence-based prediction tasks: Global vs. Local

NLP methods have been used to address a large spectrum of
sequence-based prediction tasks in text and proteins. At the most
fundamental level, sequence-based tasks are either global or local
(Fig. 1A). Global tasks output predictions for the entire sequence.
For example, in classic NLP, the sentiment of a movie review (e.g.
‘‘It was excellent”: +1, ‘‘It was terrible”: �1) is a global property
of the text. Local tasks, on the other hand, attempt to make a pre-
diction over every element of a given sequence. Part-of-speech tag-
ging, namely the categorization of the grammatical role of every
word in a text (e.g. noun, verb), is a classic example of a local
NLP task.

When dealing with global protein tasks, we are interested in
making some inference or predictions about the protein sequence
as a whole. For example, we may want to determine what type of
protein we are dealing with (e.g. an enzyme, a receptor or a struc-
tural protein) [52,51], or where it is expressed in the cell (e.g. in the
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nucleus, cytoplasm or extracellular space) [37,5,88]. Other global
properties include thermal stability, source organism, and func-
tional protein annotations (e.g. gene ontology, GO) such as antiviral
activity [79,64,41,84,5,25].

With local protein tasks, on the other hand, the goal is to make
claims about specific residues in the protein sequence, potentially
about all of them. For example, a common task is the prediction of
2D and 3D structure from an AA sequence (which, as mentioned, in
theory contains all the necessary information). The output of this
task would be the 2D structure for each residue in the protein
(e.g. helix, turn, beta strand). In the case of 3D structure, the output
might be the exact 3D coordinates of each residue [91,14] or its
location relative to other residues (contact-map prediction).
Another local task is the prediction of post-translational modifica-
tions (PTMs) such as phosphorylation or cleavage sites [90,18].

Sequence-based predictions can also include other inputs (that
could be collected experimentally or computed) in addition to the
sequence itself, such as publication date, organism, protein annota-
tions (e.g. PTMs) and domains [41,88].
3. The atomic unit of information: Tokenization

Computational text analysis requires tokenization, i.e. splitting
the text into individual tokens, which are the atomic units of infor-
mation in a chosen language representation (Fig. 1B). English NLP
models typically use words as tokens, although some approaches
use individual characters. Individual-character tokens offer greater
flexibility, especially for out-of-vocabulary or misspelled words, or
for languages without clear separation between words such as
Mandarin. Character-level tokenization also entails smaller vocab-
ulary, which often results in lower memory requirement. However,
more tokens must be used to form a sentence, leading to more
long-distance dependencies. A middle-ground approach between
words and characters is subword segmentation. Common exam-
ples are WordPiece, SentencePiece and Byte Pair Encoding (BPE)
[92,48], where a vocabulary is initialized to individual characters,
and the most frequent combinations of symbols in the vocabulary
are iteratively merged into the vocabulary. For example, the fre-
quently co-occurring ‘‘i” and ”t” would be merged into a token
‘‘it”, while ‘‘ending” might be represented by the two tokens ‘‘end”
and ‘‘ing”. This approach offers good coverage of words (including
rare and out-of-vocabulary words), while still limiting the vocabu-
lary size.

In proteins, the simplest and most common tokenization
method is to regard individual AAs as character-level tokens. Since
proteins do not have a well-defined vocabulary of words, word-
level tokenization is not a well-defined option in the case of pro-
teins. Subword segmentation, on the other hand, does not require
any predefined knowledge of words in the target language, making
it a potentially interesting approach for discovering ‘‘words’’ or
motifs in proteins [107,8,12,53].
4. Counting: bag-of-words and k-mers

Most machine-learning algorithms (e.g. logistic regression,
SVM, random forest) require a fixed-size input vector of features.
Bag-of-words (BoW) is the simplest and most popular feature
extraction method in text. In BoW, a text is split into its constituent
parts (tokens), which are then counted without regard to their
original order (Fig. 1C). The assumption is that texts using similar
words are also similar in other ways (e.g. topic, author, sentiment).
BoW can normalize the resulting vector with respect to the total
number of tokens in the same text to produce token frequencies,
or with respect to their normalized counts in all texts in a dataset
to produce Term Frequency–Inverse Document Frequency (TF-IDF)
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vectors [87]. BoW can also be encoded as binary features marking
the occurrence of tokens in a text (instead of counts). In addition to
counting individual tokens, BoW can also count multi-token com-
binations, with overlap (k-mers) or without (n-grams). Since they
are largely the same, we refer to n-grams and k-mers interchange-
ably. BoW is fast, efficient, simple and suited for large texts of vary-
ing lengths. On the other hand, since the order of tokens in the
input text is lost in BoW representation, this approach might be
too simplistic for many tasks (yet it still often succeeds surprisingly
well) [33,63,111].

BoW has been used in many bioinformatics studies on proteins
[66,18,64,11,62,103,51]. Protein BoW commonly count character-
level tokens (i.e. AAs). However, one can go beyond AAs and extract
BoW features from other sequence representations such as 2D
structure or reduced AA alphabets (e.g. hydrophobic/polar binary
tokens) [66,108]. An advantage of the latter is a smaller alphabet,
allowing for longer k-mers or n-grams. For example, AA-level 4-
grams would result in 160,000 (20^4) features, whereas 7-grams
over a 3-state alphabet (e.g. for the major classes of secondary
structure) would result in only 2187 (3^7) features. The latter
would be more discriminative in capturing longer patterns, while
maintaining lower sparsity (i.e. less zeros) in the feature space.
Another possible variation is k-mer mirror symmetry, meaning
that AA k-mers such as ‘‘PG” and ‘‘GP” are treated as the same fea-
ture, yielding a more compact feature space [64,66]. Ideally, we
would count 3D protein topologies, domains or motifs instead of
letters to characterize protein function [20]. However, we lack reli-
able annotations for most proteins [17]. Despite its simplicity, BoW
is an effective method for many protein-related tasks
[42,113,79,66,64,69,86].
5. Searching by similarity

A common task in NLP and bioinformatics is finding similar
strings and sequences. In bioinformatics, the most common algo-
rithm for sequence searching is BLAST. Another option is
Locality-Sensitive Hashing (LSH), a popular method for indexing
and finding texts at scale. In brief, a document is represented as
a BoW vector. The vector is then hashed multiple times using a
hash function that encourages ‘‘collisions’’ between similar docu-
ment vectors. Retrieval of documents from a hash bucket can be
done in O(1), as items within the same bucket will be similar to
one another. This can be adapted to bioinformatics sequence data-
bases to complement existing slow sequence-similarity methods
such as BLAST, whose speed (~O(mn)) is adversely affected by
the exponential growth in sequences [100]. A common application
of fast approximate search is the identification of short peptides in
mass-spectrometry proteomic databases [75,1,28]. Sequence simi-
larity metrics are also useful for machine-learning methods. For
example, support vector machines (SVMs) with string kernels com-
pare proteins or texts by sub-sequence similarity [51,52,12].
Another method to index and search protein sequences is through
AA k-mers. For example, HHblits, HHsuite and Pep2Pro use k-mers
to rapidly find similar proteins, peptides and domains [82,97,10].
6. Word embeddings

Word embeddings are a family of algorithms that represent
tokens (e.g. words) with fixed-size dense vectors (‘‘embeddings”),
such that similar words obtain similar vector representations
[32]. Word similarity is usually based on neighbouring words,
meaning that different words with a related use (e.g. ‘‘spoon”
and ”fork”) will obtain similar representations, while unrelated
words that rarely appear together (e.g. ‘‘Darth Vader” and ‘‘mRNA”)
are expected to obtain distinct embeddings. Word embeddings
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provide useful low-dimensional representations (compared to the
sparse, high-dimensional BoW representations) that still preserve
semantic information about the input sequence. For example, tak-
ing the average embedding over all words in a text often leads to
strong results with downstream supervised or clustering algo-
rithms 7,9].

The method has been popularized with efficient algorithms
such as word2vec [59,70,42,16]. These popular algorithms are all
fundamentally ‘‘vector space models”, and conceptually similar to
decomposition of the co-occurrence matrix, which captures the
probabilities of tokens to occur next to each other in the text
[32]. Word2vec has two model architectures: continuous bag-of-
words or skip-grams. In the bag-of-words architecture, the model
predicts the current word from a window of surrounding context
words (while the order of context words is ignored). The skip-
gram architecture is exactly the opposite: the model uses the cur-
rent word to predict the surrounding window of context words.
FastText combines words with subword information when learn-
ing representations, to better handle unknown or syntactically
similar words.

Low-dimensional embeddings are popular in NLP due to the
huge vocabulary (often >100 k of words) of natural languages. In
proteins we have only ~20 AAs. While we can embed AAs onto a
lower-dimensional space, it is not as clearly beneficial [8]. While
dimensionality reduction is of limited use when working on single
AAs, it can provide useful compact representations when consider-
ing extended AA combinations. For example, ProtVec used word2-
vec on AA 3-mers to extract a 300-dimensional vector
representation instead of 8 k distinct trigrams [9]. It is interesting
to note that AA embeddings learned by machine-learning models
closely resemble those resulting from decomposing AA substitu-
tion matrices in terms of the functional clusters they induce
[83,65,61,72].
7. Contextualized embeddings & deep learning

Word2vec & similar methods do not take local word order into
account. When representing words as embeddings (after training),
they also do not consider the surrounding context of words. For
example, in the sentences ‘‘man bites dog”, ‘‘dog bites man” and
‘‘love bites”, the vector representation of ‘‘bites’’ will always be
the same, regardless of its context. Contextualized embeddings,
on the other hand, are aware of the surrounding word context (in-
cluding order), yielding different representations for the same
word in different contexts [95,57]. While more complex and com-
putationally expensive, contextualized embedding models yielded
state-of-the-art results (at the time) on a number of benchmarks
[57,71].

Contextualized embeddings are typically based on neural net-
works. Popular deep-learning architectures are long short-term
memory (LSTM) [36], sequence-to-sequence (seq2seq) [101] and
attention [104]. In seq2seq models, a text is transformed using
an encoder component, then a separate decoder uses the encoded
representation to solve some task (e.g. translating between English
and French). Attention models use attention layers (also called
attention heads) that allow the network to concentrate on specific
tokens in the text [104]. For example, in the sentence ‘‘The law will
never be perfect, but its application should be just”, when the net-
work analyzes the word ‘‘its” we expect its attention heads to con-
centrate on the words ‘‘The law”. Deep-learning architectures
commonly rely on transfer learning, where a model is trained on
one problem and then fine-tuned (transferred) to another problem
in a similar domain, for which data is often scarce.

Early contextualized embedding models included ELMO [71]
and CoVe [57]. ELMO uses representations derived from the hidden
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states of bidirectional LSTMs. CoVe is a seq2seq model with atten-
tion, originally developed for language translation. A CoVe model
pretrained on translation was then used on other NLP tasks. There
have been works using contextualized embedding models (e.g.
ELMO) on proteins for supervised-learning tasks (such as GO anno-
tation, subcellular localization or structure prediction), as well as
clustering sequences based on the learned representations
[15,29,54,34].
8. Deep language models

Many fields hope for an ‘‘Imagenet moment” [85] – namely, a
model, dataset and pretraining tasks that provide strong off-the-
shelf performance for most tasks, even with little data. Arguably,
the field of NLP has recently reached this milestone, thanks to deep
language models such as ULMFiT, BERT, XLNet and a range of other
BERT variations (e.g. ALBERT, RoBERTA) [30,27,114,77,50,55,38]. In
language modelling, a model is trained to predict tokens in a text,
based on their surrounding context (Fig. 2). For example, an Eng-
lish language model might be given a masked sentence such as
‘‘The ____ sat on the mat” and be tasked to predict what English
words are plausible candidates for the mask token (e.g. ‘‘cat” or
‘‘dog”). While language modeling problems may not have unique
solutions (e.g. both cats and dogs are plausible mat-sitting enti-
ties), it serves as an excellent generalizable proxy for understand-
ing general language structures. A good English language model
should score the sentence ‘‘Moriarty on Cthulhu sat” as less prob-
able than (the grammatically correct) ‘‘The cat sat on the mat”
(Cthulhu being a Lovecraftian entity larger than mountains). A cru-
cial advantage of language models for pretraining is that they are
self-supervised (as in the masked language task): the model pre-
dicts an explicit ground truth, but it doesn’t require labelled data,
making it usable on any corpus, at potentially massive scale
[77,21].

BERT [27] uses bidirectional masked language modelling, where
a fraction of words are masked out and have to be predicted by the
model. In bidirectional language modelling, the model looks at all
surrounding context of a masked token, instead of just at the
tokens preceding it. ELECTRA [24] (a BERT variant) predicts which
Fig. 2. Language models (A) Language models are trained on self-supervised tasks over
fraction of the tokens in the original text are masked at random, and the language m
commonly fine-tuned on downstream tasks over labeled text, through a standard super
performance than training a model from scratch, especially when labeled data is scarce
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tokens have been replaced with adversarially-generated tokens.
This pretraining task was demonstrated as more efficient than
masked language modeling, presumably because the task is
defined over all input tokens (which might have been replaced
by the adversarial model) rather than just a subset of mask tokens.
ELECTRA was shown to yield comparable results to BERT with less
than 10% of the compute time. Effectively all state-of-the-art neu-
ral language models are attention-based, typically using the Trans-
former architecture [27]. Research into why deep language models
work so well is ongoing. These models share the following charac-
teristics: 1) state-of-the-art performance on a wide variety of
benchmarks [106]; 2) self-supervised language modelling pretrain-
ing on large text corpuses [27]; 3) huge, deep neural networks,
with continued improvement from ever larger, deeper models
and datasets [21].

Deep language models have started to show promise in protein
and genomic research [119,45,83,79,29,107,34,40]. Successful
architectures used in protein language modeling include LSTM
and attention [104] (in particular BERT). Examples of LSTM-based
protein language models include UDSMProt [99] and Unirep
(which is based on ULMFiT) [3]. Downstream tasks for protein lan-
guage models include the detection of the taxonomic origin of pro-
teins, or scoring the likelihood or stability of natural or
synthetically-designed sequences. For example, protein language
models trained on different taxa could be used to identify viral pro-
tein sequences in metagenomic samples (e.g. from mass spectrom-
etry) [34,56].

Progress in the development of protein models is dependent on
representative evaluation benchmarks encompassing a variety of
protein-related tasks, such as the TAPE collection of benchmarks
(Tasks Assessing Protein Embeddings) [79]. TAPE combined a
diverse set of tasks in a convenient, standardized format, and eval-
uated different models. For each model, they showed the benefit of
language-model pretraining. Evaluated models included a BERT-
like Transformer pretrained on ~30 M Pfam domains, deep convo-
lutional networks pretrained on 3D-structure contact prediction
[13,116], LSTM language models [3], as well as non-deep-
learning methods which excelled at some tasks (specifically sec-
ondary structure prediction). A recent work sought to interpret
huge corpuses of unlabeled text. For example, in the masked language task, some
odel attempts to predict the original text. (B) (Pre-)trained language models are
vised-learning approach. Fine-tuning is typically much faster and provides superior
.
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how attention-based models work in proteins, and the parts of pro-
teins that attention heads focus on across different tasks (e.g.
which residues are most relevant in predicting which AAs interact
in a protein’s 3D structure) [105]. Facebook’s Evolutionary Scale
Model is currently the largest developed protein language model,
with 36 layers and over 700 million parameters [83]. This
attention-based model was pretrained on 250 M protein sequences
with a masked language task. Like in NLP, ever larger models and
protein datasets yield consistent improvement on TAPE’s bench-
mark tasks, while languagemodelling performance is not saturated
even with the largest models.

Some pretraining methods add additional tasks, such as sub-
sequence order prediction (e.g. in NLP, which of two sentence
comes first). Pretraining tasks that are relevant to the final task
are usually more helpful than generic tasks such as sentence order
prediction [73], but should be weighed against the amount, quality
and representativeness of data available. For example, a pretrain-
ing task of predicting whether one Wikipedia article links to
another is relevant to a downstream task of link prediction
between entities in knowledge graphs, and indeed improves per-
formance [78,115]. In protein research, an analogous task of pre-
training on protein–protein interactions is more problematic due
to the far smaller, sparser and more biased data [94,89].

9. Language generation

Natural language generation is a challenging NLP task, where a
model generates realistic-looking text (e.g. article writing, chat-
bots). Language generation based on deep language models has
shown great improvement, with increasingly massive models such
as OpenAI’s GPT-2 and GPT-3 often fooling humans. These models
demonstrate the trend of increased parameter size and larger data-
sets resulting in improved performance, with GPT-3 having over
170 billion parameters. Generated texts can be controlled to match
user-defined styles, task-specific behaviour and other attributes
[76,19,43].

Language models have been used to understand and predict
viral mutations that evade neutralizing antibodies [35]. Language
generation models can also be applied to synthetic protein design,
as in ProGen and other works [56,110,4]. For example we might
generate peptides with the gene-ontology attribute ‘‘defense
response to virus” and an initial primer sequence amenable to
binding a sequence of interest, such as the ACE2 receptor targeted
by SARS-CoV-2 [112].

10. No (deep) silver bullet

Deep-learning models are not a magical panacea, and have a
number of disadvantages. They are slow to train, and can under-
perform simpler methods (such as BLAST-based nearest-
neighbour search or logistic regression over BoW representation
[79,58,2]. In particular, simpler methods are more suitable for
small datasets, noisy data, or when the underlying signal follows
simple rules (e.g. an exact motif). Deep learning is also sensitive
to the lengths of the texts or sequences involved – a dataset con-
taining protein sequence lengths ranging from 10 to 10,000 AAs
can be challenging to process. The high memory and computation
requirements of large, deep models (such as BERT) make process-
ing long sequences, or pairs of sequences (e.g. for predicting inter-
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actions between proteins) challenging [23]. Deep-learning models
also easily overfit (even on random noise), and may not necessarily
generalize to new, unseen data [120,118]. Another major disadvan-
tage of deep learning is its sensitivity to hyperparameters (such as
the optimizer or learning rate) and other choices. A related prob-
lem is its lack of stability, as opposed to more robust algorithms
such as logistic regression or random forests. Deep-learning mod-
els are also hard to interpret, even by experienced practitioners.
Even with deep models, the incorporation of expert knowledge
and feature engineering can improve performance more than
sophisticated models, especially with features that are not directly
derived from the sequence, such as protein post-translational mod-
ifications or evolutionary information [80].
11. Where are we heading?

NLP methods are becoming an important inspiration for bioin-
formatics. Deep learning and NLP methods are making inroads into
protein research, and the recent successes of AlphaFold in practi-
cally solving the protein structure prediction problem may well
be considered an ‘‘imagenet moment” for the field [26]. The trend
in NLP is towards deeper and larger language models such as GPT-
3. In particular, unsupervised and self-supervised learning on huge
datasets are an important feature of state-of-the-art methods. For
how long this trend will last and how far it will enable us to push
the boundaries of NLP and protein research – only time will tell. As
of the present day, fine-tuning of pretrained deep models have
shown considerable promise for improving our ability to solve
problems, even on small data [79,83,19].

Exciting as recent progress may have been, the impressive per-
formance of state-of-the-art models should not lead us to neglect
more mundane but crucially important efforts in the field. Above
all, abundant and high-quality data plays a major role in the pro-
gress of any domain of machine learning, and especially so in pro-
tein research. High-throughput molecular assays and data curation
in resources such as UniProt [17] are the field’s engine. Open, stan-
dardized data and methods (including the open-source Keras [22]
and Pytorch [68] libraries) are valuable research catalyzers.

Competitions such as CAFA (GO annotations and protein func-
tion prediction) [31,41], CASP (3D structure prediction) [47] and
CAPRI (protein–protein docking prediction) [39] provide the pro-
tein research community with rigorous tests for evaluating and
comparing prediction algorithms, with new, unseen test sets on
every competition cycle. The protein research community excels
in coordinating such competitions, and is considered an inspiration
for other fields. According to DeepMind, this was one of the pri-
mary factors pushing them to develop AlphaFold and participate
in CASP13 and CASP14 (2020), which ultimately led to what
appears as one of the major scientific breakthroughs of recent
years [26]. In terms of open benchmarks, on the other hand, the
field of computational protein research is still behind compared
to NLP and other machine-learning domains, where datasets such
as Imagenet and GLUE are de-facto standards for model evaluation
[46,106]. Benchmarks, unlike competitions, are instantaneously
accessible at any given point in time and, as a result, are crucial
for continuous research work and publication. The existence of
standardized, objective yardsticks for comparing methods is cru-
cial to focusing efforts on the most promising methods and ideas.
Glossary



D. Ofer, N. Brandes and M. Linial Computational and Structural Biotechnology Journal 19 (2021) 1750–1758
Term
 Definition
Artificial neural
networks
Artificial neural networks are a class
of machine-learning models that can
fit nonlinear, complex data.
Attention layer
 A type of layer used in deep learning
that allows the network to
concentrate on specific elements in
the input sequence [104].
Deep learning
 Neural networks with many hidden
layers are commonly referred to as
‘‘deep learning”. Deep-learning
architectures include convolutional,
recurrent and attention layers.
Features
 Input properties fed into machine-
learning algorithms (e.g. the length of
a sequence) are commonly referred to
as ‘‘features”.
Feature engineering
 The creation and selection of features
to extract from data, which is
considered a crucial part of machine-
learning projects.
Low-dimensional
embedding
A mathematical mapping from a high-
dimensional space of inputs to a
lower-dimensional space of
representations.
Post-translational
modification (PTM)
Chemical enzymatic alterations of
amino-acid residues in proteins which
often lead to functional changes.
Major PTMs include phosphorylation,
glycosylation and proteolytic
cleavage.
Protein domain
 An evolutionary-conserved protein
region with independent, well-
defined 3D structure and function.
Many proteins contain multiple
domains.
Protein motif
 A short, conserved segment of amino
acids in a protein associated with
some function such as binding
properties.
Self-supervised
learning
A machine-learning paradigm for
training supervised models over
unsupervised (namely unlabeled)
datasets by automatically generating
labels. With text, this might be the
prediction of the next word in a text
[38,27].
Transfer learning
 Taking a model trained to solve one
problem, and fine-tuning its
parameters to solve another, related
task. For example, training a
computer-vision model to recognize
cars, and then teaching it to recognize
trucks [81].
Transformers
 A deep-learning architecture
consisting of attention-based layers
that is particularly suited for sequence
inputs and outputs ([27,104,44].
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