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PURPOSE. To determine the locus of test locations that exhibit statistically similar age-related
decline in sensitivity to light increments and age-corrected contrast sensitivity isocontours
(CSIs) across the central visual field (VF). We compared these CSIs with test point clusters
used by the Glaucoma Hemifield Test (GHT).

METHODS. Sixty healthy observers underwent testing on the Humphrey Field Analyzer 30-2 test
grid using Goldmann (G) stimulus sizes I-V. Age-correction factors for GI-V were determined
using linear regression analysis. Pattern recognition analysis was used to cluster test locations
across the VF exhibiting equal age-related sensitivity decline (age-related CSIs), and points of
equal age-corrected sensitivity (age-corrected CSIs) for GI-V.

RESULTS. There was a small but significant test size–dependent sensitivity decline with age,
with smaller stimuli declining more rapidly. Age-related decline in sensitivity was more rapid
in the periphery. A greater number of unique age-related CSIs was revealed when using
smaller stimuli, particularly in the mid-periphery. Cluster analysis of age-corrected sensitivity
thresholds revealed unique CSIs for GI-V, with smaller stimuli having a greater number of
unique clusters. Zones examined by the GHT consisted of test locations that did not
necessarily belong to the same CSI, particularly in the periphery.

CONCLUSIONS. Cluster analysis reveals statistically significant groups of test locations within the
30-2 test grid exhibiting the same age-related decline. CSIs facilitate pooling of sensitivities to
reduce the variability of individual test locations. These CSIs could guide future structure-
function and alternate hemifield asymmetry analyses by comparing matched areas of similar
sensitivity signatures.

Keywords: Humphrey Visual Field Analyzer, spatial summation, retinal ganglion cells,
hierarchical clustering, retinal nerve fiber layer, structure-function

Visual field (VF) assessment in clinical practice is performed
using a number of techniques, including static (such as

using standard automated perimetry [SAP]) and kinetic
perimetry.1,2 Both techniques use different stimulus character-
istics and psychophysical methods to measure the sensitivity to
light increments across the VF, and thus, their output
measurements are conveyed differently. A recent study3 has
shown that in healthy subjects, sensitivity to static and kinetic
targets are the same when the psychophysical methods are
equated. As such, characteristics of one type of perimetry could
then be applied to the other. For example, kinetic perimetry
produces asymmetric isopters of equal contrast sensitivity,
which are test size–dependent and have unique age-related
changes, reflecting differences in the shapes of the Hill of
Vision (HoV).4–8

Although studies in static perimetry have shown similar
asymmetries in the HoV and age-related changes in sensitivity,9–11

no study to date has sought to group static perimetry thresholds
to form contrast sensitivity isocontours (CSIs) across the VF to
describe groups of test points of statistically similar sensitivity

depicted in a similar way to kinetic perimetry isopters. This
principle is supported by evidence that static perimetry
sensitivity thresholds are not statistically independent, as implied
by the discrete and separate test locations, but are instead
significantly correlated: neighboring points may represent
locations of similar sensitivity, and increasing distance between
points may represent different ‘‘regions’’ of sensitivity (i.e., a
different CSI).12

Potential applications of SAP CSIs include grouping points to
alter a common limiting factor of perimetric results, namely,
noise and variance. Practically, CSIs can potentially group test
locations to reduce variance inherent to perimetric testing by
pooling a greater number of sample sensitivities,10,13–17 guiding
test point density selection,18 enhancement of structure-
function mapping to improve clinical correlations again by
reducing the variability and noise that may be different
between structural and functional (i.e., SAP)-based tech-
niques,19 and reconciliation of static sensitivities and kinetic
isopters. Subjectivity and noise contributing to poor structure-
function relationships could be overcome by highlighting and
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grouping areas exhibiting the same anatomic20 and sensitivity
signatures. An approach to linking structure and function has
been outlined in the past, and, as such, in combination with
recent work showing grouped ganglion cell density signatures,
identification of SAP CSIs may be useful for improved
correlations.21 Furthermore, clinically, asymmetry analyses,
such as the Glaucoma Hemifield Test (GHT), cluster points into
corresponding regions across the midline, according to the
retinal nerve fiber layer (RNFL) anatomy.22 CSIs can identify
clusters of points that can then be compared with those used
by the GHT to determine if the GHT clusters consist of
locations exhibiting the same sensitivity signature.

In the present study, we describe a novel method for
clustering static perimetry sensitivity thresholds across the VF.
As studies in kinetic perimetry have shown differences in age-
related changes in isopters found using different stimulus
sizes,4,8 we first measured the static perimetry sensitivity
thresholds of a large cohort of observers of varying ages to
determine the effect of age on the thresholds measured using
Goldmann sizes I to V (GI–V). We applied two methods of
clustering, pattern recognition and hierarchical cluster analy-
sis, to determine the number of unique rates of age-related
decline in sensitivity across the VF, with clustered locations
representing points with the same age-related change (age-
related CSIs). Using these results, we age-corrected the
sensitivities of all observers into a 50-year-old equivalent
observer to determine the unique age-corrected CSIs for GI–
V using the clustering methods, hypothesizing that these CSIs
reflect the size-specific differences of the HoV. We also tested
the hypothesis that size-specific correction factors produce
similar age-corrected sensitivity thresholds as using a uniform
correction factor (GIII) across all sizes as performed by
previous studies,9,21,23–25 which would be consistent with
the absence of an age effect on photopic spatial summation
characteristics in the VF.9,26 Finally, we examined the
concordance of age-corrected CSIs with test points identified
by the RNFL distributions (i.e., the GHT clusters).

METHODS

Observers

Sixty healthy observers (mean age: 42.5 years, SD: 16.3 years;
29 males, 31 females) underwent VF testing on the 30-2 test
grid of the Humphrey Field Analyzer (HFA) using GI–V in full-
threshold mode (Table 1). Results from these observers have
been reported, in part, in previous studies, in which the
inclusion and exclusion criteria can be found.9,24,25 Ethics
approval was given by the relevant University of New South
Wales Ethics committee. The observers gave written informed
consent before data collection, and the research was conduct-
ed in accordance with the tenets of the Declaration of Helsinki.

Apparatus and Procedures

The HFA was used to measure sensitivity thresholds at the 75
points (including the fovea, and excluding the two points near
the physiological blind spot) of the 30-2 test grid, as per
previously described methods.9,24,25 We report the output
sensitivities of the HFA in dB (despite dB being a measure of
attenuation specific to the instrument), as we wished to
determine the CSIs using a clinically established technique,
which is reflective of clinically obtained data.24,25

Determination of Age-related Changes in
Sensitivity

Output sensitivity thresholds (in dB) were plotted as a function
of age (years), to obtain the slope value signifying the age-
related change in sensitivity at each location. A slope that
deviated from 0 at a P < 0.05 level was considered significant.

Cluster Analysis: Pattern Recognition

Cluster analysis was performed using pattern recognition,
carried out using commercially available satellite imaging
software (PCI Geomatica version 10; PCI Geomatics, Rich-
mond Hill, Ontario, Canada). Principles of clustering analysis
using pattern recognition software have been described
extensively elsewhere in studies of retinal amino acid
labeling.27–29 More recently, its use has been described in
structural measurements of the eye20 and the VFs of both
healthy subjects (Kalloniatis M, et al. 2016 Imaging and
Perimetry Society Abstract, Udine, Italy) and patients with
age-related macular degeneration (Choi A, et al. IOVS

2016;57:ARVO E-Abstract 6104) for clustering ganglion cell
layer thickness and sensitivity thresholds, respectively.

In short, it is an iterative procedure that begins with an
arbitrary initial cluster boundary. The second and third steps of
the procedure involve classification of each pixel to the closest
cluster and then calculation of new cluster mean boundaries.
Steps two and three are repeated, with assignment of new
points and boundaries through the stack of images (N-
dimensional space) until clusters do not significantly change
with subsequent iterations (Supplementary Fig. S1). The
algorithms attempt to minimize the errors between each pixel
value and its assigned cluster center, mathematically the
process of sums of squares distances, which is equivalent to
minimizing the mean squared error. In the present study, the
grayscale pixel value represented different levels of sensitivity.

Images were generated using Adobe Creative Cloud Photo-
shop Version 6 (Adobe Systems Pty Ltd, Victoria, Australia).
Output sensitivity values (in dB) at each test location within
the 30-2 test grid were converted into pixel values ranging
from 0 (lower dB) to 255 (higher dB) (Fig. 1). Each test location
contains pixels with identical pixel values reflective of the
average sensitivity value (dB value). Although the pixel
location is reflected in the final result, the classification is
based on clustering pixel values in N-dimensional space,
irrespective of the location from which the pixel was derived.

The imaging process involves qualitative visual inspection
in red-green-blue triplets to ascertain areas of correlation to
subsequently guide the quantitative assessment.27–29 To
support this process, better separation of the pixel value
range was achieved by applying a multiplication factor of 5.25
to average dB sensitivity values (Fig. 1A). We also tested
different multiplication factors (2 and 4) to determine if integer
scaling had an effect on the final pseudocolor map. The lower
multiplication factors resulted in similar patterns to the 5.25
factor but required the use of a greater number of possible
input classes in the Iterative Self-Organizing Data Analysis

TABLE 1. Characteristics of Study Participants

Healthy Subjects, n ¼ 60

Age, y, 6 SD 42.5 6 16.3

Male:female 29:31

Eye tested, right eye:left eye 37:23

Spherical equivalent refractive error,

Diopters, range

�1.07 (þ2.63 to �6.00)

HFA mean deviation, dB, 6 SD �0.74 6 1.20

HFA pattern SD, dB, 6 SD 1.97 6 0.53

Mean deviation and pattern standard deviation values were those
obtained from the HFA 30-2 full-threshold test paradigm.
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Technique Algorithm (ISODATA) algorithm before converging
to a similar final classification result. Overall, fewer than 4% of
all points exhibited a mismatch between the different
multiplication factors, and therefore the choice of factor did
not contribute to the results (i.e., this was within our defined
criterion of 96% chance of correct classification for different
theme classes). We therefore continue to report results using
the 5.25 scaling.

Unsupervised classification with ISODATA was used for
cluster analysis. ISODATA is a method of K-means (a migrating
means method) that additionally allows for a different number
of clusters to be found, whereas the number of clusters is
known a priori in K-means, particularly when using large data
sets. In ISODATA clustering, there is automatic splitting of high-
variance classes and merging of highly overlapping classes (i.e.,
that class numbers may be reduced or increased within the
range input by the user) (see Supplementary Fig. S1 for
additional details).30 Unlike K-means, in ISODATA, clusters are
merged if the distance between the cluster center (m) is less
than a user-defined threshold, or if the number of pixels within
the cluster is less than that limit.30 The starting values used in
the unsupervised classification method may result in very
different classifications, although the mean squared errors may
be similarly small. The desired number of classes was set at a
high number to prevent artificial constriction of clusters, but
other levels of desired classes were also examined.

The signature separability of these classes was analyzed
using the Transformed Divergence (DT) statistic.31 The DT

statistic assumes that the underlying univariate theme class
signal distributions are largely normal. There have been
empirically defined probabilities of error by DT value, spanning
from DT ¼ 0 (approximately 13% probability of correct
classification) to DT ¼ 2.0, which represents 100% probability
of correct classification.31 Classes that had a DT<1.86 were
merged, until all signatures had a minimum DT>1.86, which
represents a >96% correct classification. After the final
pseudocolor image was obtained, the colors of the classes
were changed for clarity.

N-stacks for Cluster Analysis

Cluster analysis was performed to address two questions. First,
are there location-specific differences in the age-related decline
in sensitivity (i.e., age-related CSIs) across the VF that differ
across GI–V? Second, can age-corrected CSIs be determined
using static perimetry sensitivity thresholds? Correspondingly,
there were two types of N-stacks generated for cluster analysis:
first, threshold data were separated by age groups into five (N¼
5) decade-spanning brackets: 20 to 29 years (n¼19, mean 24.1
years), 30 to 39 years (n¼ 10, mean 33.9 years), 40 to 49 years
(n ¼ 10, mean 44.7 years), 50 to 59 years (n ¼ 10, mean 55.5
years), and 60þ years (n ¼ 10, mean 66.1 years) and by size

FIGURE 1. Method of pattern recognition analysis in the present study. (A) HFA sensitivity thresholds (in dB) were converted into grayscale pixel
values (PVs) to obtain a grayscale map. Each square represented one test location within the 30-2. PVs ranged from 0 (darkest, lower dB) to 255
(lightest, higher dB). The two blind spot locations (crossed out) and the background has a PV of 255. (B) Pattern recognition analysis carried out
using PCI Geomatica 10. The separabilities between classes were determined using the DT statistic: the class means (e.g., m1 and m2) and
distributions were compared across clusters to obtain a DT value, which provides an approximation of the rate of correct classification. (C) Theme
maps were generated once classes had a separability of 1.86 or more (>96% probability of correct classification), and were color coded for clarity.
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(GI–V) for analysis (age-related CSIs); and second, following
age-correction (see below), subjects were then randomly
assigned to generate N groups representing pooled 50-year-
old equivalent data to determine average age-corrected CSIs
across each stimulus size. Because the pooled 50-year-old
equivalent data were not limited by the decade-spanning age
brackets, we tested different combinations of N-stacks to
examine for differences in age-corrected CSIs.

Age Correction of Contrast Sensitivity Thresholds

Previous studies have described methods for age-correcting
sensitivity thresholds to facilitate pooling of threshold data of
an equivalently aged patient.9,21,23–25 In the present study, we
used two methods of age correction: using a size-specific factor
obtained from patients within the present cohort, such as that
performed by Wall et al.,14,32 and alternatively using a single
correction factor (GIII) from a previously published study.10

Previous studies have applied a single-sized correction factor
for thresholds obtained using other stimulus sizes,9,21,23–25 as
spatial summation characteristics are similar for different
ages.26,33–35

Cluster Analysis: Hierarchical Cluster Analysis

Previous studies of the eye have used hierarchical cluster
analysis to determine patterns of progression of disease.36,37

We also used this statistical method to allow comparison with
the results of pattern recognition analysis procedure described
above. Hierarchical cluster analysis was performed using SPSS
Statistics Version 22.0 (IBM Corporation, New York, NY, USA).
The agglomerative technique was used to group thresholds
into subgroups defined by locations (case label), beginning
with each location being its own cluster, and continued until
similar clusters were merged together. Within-groups linkage
method was used. The first branch of the resultant dendrogram
used to establish the initial clusters.

Conventional clustering methods, such as K-means and
hierarchical cluster analysis, present a number of possible
clusters, k. There are a number of methods for determining the
optimum number of clusters.38–40 Due to the small number of
expected clusters in the present study, k was determined by
the separation of each cluster center (mean sensitivity)
calculated by using d’:

d0 ¼ x1 � x2ð Þj j = ð0:5 3 r1
2 þ r2

2
� �0:5

;

where x1 and x2, and r1 and r2 represent the first and second
cluster’s mean and SD, respectively. Pairs of clusters where d’
< 1 were combined systematically, beginning with the lowest
d’ value, until pairs of d’ were all >1. Due to the relatively
lower variability of sensitivity thresholds found using larger
stimuli14,32 (e.g., GIV and GV) compared with smaller
stimuli9,41 (e.g., GI and GII), we used an additional criterion
for separable groups: the mean sensitivity of clusters needed to
be at least 1 dB different, which, in practical terms, is the
minimum threshold difference reported by the HFA instrument
printout. Clusters with mean sensitivity that were within 1 dB
were systematically merged, beginning with the smallest
difference, until all clusters were at least 1 dB different.

Statistical Analysis

Statistical analysis was conducted using GraphPad Prism
Version 6 (La Jolla, CA, USA) and SPSS Statistics Version 22.0
(IBM Corporation). Outlier thresholds were identified and
excluded using the ROUT Method set at Q ¼ 10% (GraphPad
Prism 6).42 A D’Agostino and Pearson omnibus normality test

(a ¼ 0.05) was performed on the normal cohort for each
location, and this did not yield significant results, showing that
the sensitivity data were normally distributed at all locations
within the 30-2 test grid.

After removal of outliers,9,23–25 the normally distributed
thresholds obtained from the present study contrasted with the
results of Heijl et al.,10 who reported skewed data at each 30-2
test location. This study used a similar number of participants
to that of Heijl et al.,10 who used n¼88 with two visits and n¼
74 with three visits (whereby only second- and third-visit
results were used). The reported differences in the present
study may be due to the different inclusion criteria used here:
we recruited patients with significant prior VF testing
experience (to reduce the learning effect), and most patients
had all data collection performed on the same day (to reduce
intervisit variability).43 This ensured that the obtained thresh-
old values in the present study reliably reflected visual
function, as errors due to subject variability were minimized.
Importantly, the removal of outlier thresholds led to normally
distributed data, allowing the application of the pattern
recognition analysis, as class separation statistics is based on
normally distributed data sets.

Data were analyzed using descriptive statistics, paired t-
tests, 1-way ANOVA, and 2-way repeated measures ANOVA, as
sensitivity data were normally distributed. Post hoc analyses
(Tukey’s multiple comparisons with Dunn’s corrections at a¼
0.05) were performed when significant effects were found on
ANOVAs. In addition to reporting statistically significant
differences (P < 0.05), we also describe clinically relevant
differences in sensitivity as equal to or greater than 1 dB (the
minimum difference reported by the HFA printout).

RESULTS

Age-related Changes in the HoV

Figure 2 shows the mean sensitivity for each age group for GI–
V along the horizontal meridian, with significant effects of age
(average F4,40 ¼ 192.5, all sizes: P < 0.0001), and of
eccentricity (average F9,10 ¼ 260.1, all sizes: P < 0.0001),
similar to previous studies.9,23 Qualitatively, there appeared to
be two main ‘‘groups’’ of sensitivity change through age: the 20
to 49 age group, and the 50þ age group. A similar tendency was
evident for the vertical meridian. Post hoc tests showed no
difference within the 20- to 49-year age bracket, and no
difference within the 50þ age bracket along both horizontal
(average P ¼ 0.5166) and vertical (average P ¼ 0.6104)
meridians for GI–V, suggesting two ‘‘groups’’ between which
there is a marked decline in sensitivity: 20 to 49 years and 50þ
years.

Linear Regression Analysis of Sensitivity as a
Function of Age

Per-decade decrease in sensitivity values (in dB) for each
stimulus size was determined at each location within the 30-2
test grid (Fig. 3). These slopes were significantly different to 0
at all locations (P < 0.05), except at three locations in the
superior hemifield for GI (average P ¼ 0.069). The average R

2

value for the fit of these data was 0.27. There was a size-
dependent effect on R

2 values (H5¼ 83.62, P < 0.0001), with
GI having the lowest (0.20) compared with all other sizes. This
was likely due to the greater variability of sensitivity thresholds
measured using smaller stimulus sizes compared with larger
stimuli.9,14,32,41

Slope values were smaller when measured using larger
stimulus sizes (GIV and GV) compared with smaller sizes (GI–
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GIII), reflecting a slower age-related decline. One-way ANOVA
revealed a significant difference in slope values between sizes
(H5 ¼ 103.1, P < 0.0001), with post hoc analysis showing
significant differences (P < 0.05) between all pairings except
for GI/GIII (P > 0.9999), GII/GIII (P¼ 0.0953), and GIV/GV (P
¼ 0.9844). These age-correction factors thus allowed conver-
sion of sensitivity thresholds from all subjects into an
equivalently aged observer.

The 50-Year-Old Equivalent Observer

Both GII (P¼ 0.0138) and GIV (P < 0.0001) correction factors,
but not GI, GIII, or GV (P value range: 0.1677–0.6766),
produced statistically significant differences in sensitivity to
those provided by Heijl et al.10; however, the magnitude of
difference was not clinically relevant (i.e., <1 dB, mean [SD]
differences: GII, 0.04 6 0.13 dB; and GIV, �0.08 6 0.13 dB).
Hence, for subsequent analysis, we continued to report age-
corrected sensitivity thresholds using correction factors
provided by Heijl et al.10

We also compared the sensitivities of a subgroup of 10
subjects with a mean age of 50 years (range: 45–54 years) with
the rest of the cohort following linear age correction for each
size. Although there were statistically significant differences in
sensitivity between the two groups (range of P values: 0.0295
to <0.0001), these were not clinically relevant (range: 0.17–

0.48 dB), so we proceeded to use pooled, age-corrected values
for subsequent cluster analysis.

Cluster Analysis: Age-related CSIs

Pattern recognition analysis revealed 8, 9, 8, 7, and 7 resultant
theme classes (age-related CSIs) representing locations that
exhibited the same sensitivity change with age for GI–V
respectively (Fig. 4, column 1; and Table 2). If excluding the
‘‘Extra’’ classes with only a small number of grouped locations
(i.e., those at the very superior edge of the 30-2 test grid), then
there were 7, 7, 7, 6, and 6 classes for GI–V, respectively. Using
GI to GIII, the greater number of age-related CSIs represents
more discrete groups of points with the same age-related
sensitivity decline, particularly in the mid-peripheral region, in
comparison with GIV to V. Within the central 10 to 208, some
CSIs did not form complete ‘‘rings,’’ particularly for GI to III,
due to the relative sparseness of sampling by the 30-2 test grid
(68 spacing). More peripheral CSIs had a greater rate of
sensitivity change compared with more central locations (Fig.
4, column 2).

Restricting the number of classes allowed by the pattern
recognition analysis algorithm resulted in fewer CSIs, but the
concentric configuration was relatively well preserved, as
adjacent regions were forced into groups sharing similar
sensitivities (Fig. 4, columns 3–5). Merging classes, particularly
within the central 10 to 208, formed more ‘‘complete rings’’ by
overcoming the wide test location separation. Hierarchical
cluster analysis revealed a similar number of clusters and a
small number of mismatches (Supplementary Fig. S2; Supple-
mentary Table S1) when compared with the optimal number of
classes (Fig. 4, column 1).

Using the age-related CSIs, test locations were grouped to
determine the age-related sensitivity change across different
theme classes (Table 3). Similar to ungrouped analysis, there
was a tendency for smaller stimuli to have a faster age-related
rate of decline, and peripheral locations also changed more
rapidly compared with central regions.

Cluster Analysis: Age-corrected CSIs

Following age-correction to a 50-year-old equivalent patient,
we applied cluster analysis to determine the age-corrected CSIs
for GI–V within the 30-2 test grid (Fig. 5). For the pooled
analysis, we hypothesized that division of the total cohort (n¼
60) into more groups (greater N-stacks) may result in a greater
number of resultant classes, due to the increased variance with
fewer members per group (i.e., more separation). However, we
found no significant differences in the patterns or number of
clusters with different levels of N (N ¼ 3, 4, 5, 6, 7, 8, 9, 10).
Thus, we divided the cohort into six equal groups of 10
subjects each for subsequent analyses.

Similar to the results from the age analysis, pattern
recognition revealed more age-corrected CSIs when examining
smaller stimulus sizes compared with larger stimuli (Fig. 5,
Table 4). Again, the greater number of theme classes found
using smaller stimuli (GI–III), particularly in the central 10–208,
reflects the more pronounced change in the HoV (i.e.,
‘‘steeper’’) shown in Figure 2, in comparison with larger
stimuli (GIV–V) which have less sensitivity change (i.e., a
‘‘flatter’’ HoV) (Fig. 5, column 2). The similarity between the
theme classes found between the age analysis (Fig. 4) and the
CSIs for the 50-year-old equivalent observer (Fig. 5) reaffirms
that the distinct classes found were driven by differences in
sensitivities across the VF, rather than just purely age-related
effects.

Restricting the number of classes allowed by the pattern
recognition analysis algorithm resulted in fewer CSIs, particu-

FIGURE 2. Age-related changes across the horizontal HoV for GI–V,
plotting sensitivity as a function of eccentricity for each age group. A
negative eccentricity value indicates a nasal test location, whereas a
positive eccentricity indicates a temporal location. Error bars indicate
1 SD.
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FIGURE 3. Sensitivity slope values (6SD) showing the change in dB per decade of the linear regression analysis for GI–V at each location within the
30-2 test pattern. The fovea result is offset in the upper-left corner for clarity. Three locations at which the slope value was not significantly different
from 0 (average: P ¼ 0.069) are highlighted in yellow; all others were significant (P < 0.05).
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larly in the central 10 to 208, representing merging of regions
within the HoV that have smaller differences in sensitivity (Fig.
5, columns 3–5). However, the concentric shape was still
relatively well preserved with greater restriction of classes.
Again, hierarchical clustering showed similar patterns (Supple-
mentary Fig. S3; Supplementary Table S2) to the optimal
classes found in Figure 5, column 1.

Superimposition of the GHT Zones

One current clinically applied index for examining glaucoma-
tous VF defects is the GHT, which groups test locations within
the 24-2 test grid into superior and inferior mirrored zones that
follow the RNFL distribution (i.e., an anatomical basis). The
five zones of the GHT were superimposed on the optimal age-
corrected CSI maps for GIII, and also the two other extreme
stimulus sizes (GI and GV) (Fig. 6, column 1) to examine
whether or not the anatomical basis of the GHT coincided with
groups of points within the same age-related CSI (i.e., a
contrast sensitivity basis of grouping). Corresponding zones of
the GHT mirrored across the horizontal midline consisted of
points from multiple theme classes, particularly in zones 3 to 5.
Thus, these zones consist of more than one distribution of
sensitivities, each with a unique mean and variance value, and
are different to the anatomical grouping method. Restricting

the number of permitted classes (as per Fig. 5) reduced the
amount of discordance in theme classes between correspond-
ing zones, but zones 4 and 5 still exhibited differences in their
sensitivity signature (Fig. 6, columns 2–5).

DISCUSSION

Age-related Changes Across the VF

In the present study, we applied a pattern recognition analysis
technique in a novel manner to VF data, showing CSIs within
the 30-2 test grid to address whether or not there are location-
and size-specific differences in the age-related decline in
sensitivity. Pointwise analysis showing a nonuniform decline
in sensitivity with age across the VF was consistent with
previous studies,10,44 and we have additionally provided, for
the first time, stimulus size-specific regression slopes (Fig. 3).
However, pointwise linear regression analysis of both VF10 and
anatomic data45–47 is confounded by the generally poorly
fitting linear regressions, reflective of variability between
individual points and individual patients.

Grouping points into age-related CSIs potentially reduces
this variability. These age-related CSIs (Fig. 4) predict a
downward shift and narrowing of the profile of the HoV

FIGURE 4. Pseudocolor theme maps of locations exhibiting the same age-related sensitivity threshold decline for GI–V within the 30-2 test grid
following pattern recognition analysis (fovea located in the center). Each color represents a different theme class according to their approximate
spatial location. Column 1: Optimal theme maps (DT values in Table 2). Column 2: Linear regression analyses (sensitivity decline in dB/years) for
each theme class. Error bars indicate 1 SD. Columns 3–5: Results of restricting the number of clusters in pattern recognition analysis using
ISODATA. Fewer classes resulted in gradual merging of the central and peripheral classes.
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(Table 3). In kinetic perimetry in which stimulus contrast and
stimulus size are modulated, this manifests as a greater inward
constriction of isopters in the periphery compared with
central locations.4,5,8 Thus, the pointwise analysis and grouped
age-related CSIs agree with the size- and location-specific
sensitivity changes predicted by kinetic perimetry. Location-
specific age-related sensitivity declines are consistent with
studies suggesting nonuniform loss of retinal detector ele-
ments, whereby the peripheral retina has a faster rate of age-
related retinal ganglion cell (RGC) loss compared with the
macula.48,49

Anatomic studies have further suggested that a biphasic,
rather than linear fit, is a better representation of age-related
RGC changes.48,49 More recently, Yoshioka et al.20 also showed
that a biphasic fit described age-related ganglion cell layer

thickness decline better, compared with a linear regression fit.
This would be consistent with studies showing stable
sensitivity thresholds up until a critical age, with a more rapid
decline thereafter.44,50–53 However, nonlinear regression anal-
ysis in the present study did not show significant improvement
in the quality of the fit over the linear regression fit (F-test of
residuals: average F2,4¼1.487, P > 0.05 at all locations) despite
grouping test locations, which may be due to a number of
previously discussed reasons.50–52 Specifically, the limited
sampling of the 60þ years age bracket reduced the number
of data points with which to fit the second slope of the
nonlinear regression. Further studies with a greater age range
of subjects would be informative.

Interestingly, we showed that age-related sensitivity decline
was greater when using small stimuli compared with large

TABLE 2. DT for Pairwise Comparisons Between Clusters Across GI–V Found Using Pattern Recognition Analysis Across Different Age Groups (as
Per Fig. 4)

GI Fovea Innermost 2nd inner Mid-peripheral 1 Mid-peripheral 2 2nd outer Outermost

Innermost 1.97

2nd inner 2.00 2.00

Mid-peripheral 1 2.00 2.00 1.94

Mid-peripheral 2 2.00 2.00 2.00 1.86

2nd outer 2.00 2.00 2.00 2.00 1.96

Outermost 2.00 2.00 2.00 2.00 2.00 1.97

Extra 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GII Fovea Innermost 2nd inner Mid-peripheral 1 Mid-peripheral 2 2nd outer Outermost Extra 1

Innermost 2.00

2nd inner 2.00 2.00

Mid-peripheral 1 2.00 2.00 2.00

Mid-peripheral 2 2.00 2.00 2.00 2.00

2nd outer 2.00 2.00 2.00 2.00 1.86

Outermost 2.00 2.00 2.00 2.00 2.00 2.00

Extra 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Extra 2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GIII Fovea Innermost 2nd inner Mid-peripheral 1 Mid-peripheral 2 2nd outer Outermost

Innermost 1.99

2nd inner 2.00 2.00

Mid-peripheral 1 2.00 2.00 2.00

Mid-peripheral 2 2.00 2.00 2.00 2.00

2nd outer 2.00 2.00 2.00 2.00 2.00

Outermost 2.00 2.00 2.00 2.00 2.00 2.00

Extra 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GIV Fovea Innermost 2nd inner Mid-peripheral 1 Mid-peripheral 2 2nd outer

Innermost 2.00

2nd inner 2.00 1.98

Mid-peripheral 1 2.00 2.00 1.99

Mid-peripheral 2 2.00 2.00 2.00 1.91

2nd outer 2.00 2.00 2.00 2.00 1.94

Outermost 2.00 2.00 2.00 2.00 2.00 2.00

GV Fovea Innermost 2nd inner Mid-peripheral 2nd outer Outermost

Innermost 2.00

2nd inner 2.00 1.95

Mid-peripheral 2.00 2.00 1.87

2nd outer 2.00 2.00 2.00 1.86

Outermost 2.00 2.00 2.00 2.00 2.00

Extra 1 2.00 2.00 2.00 2.00 2.00 2.00

As these represent clusters of points changing together as a function of age, cluster centers are not shown for clarity. DT values of >1.86
represent a >96% chance of correct classification, as per the empirical values of Swain and King.31 DT are reported to two decimal places, whereby
the two values of 1.86 were greater, but rounded down for clarity.
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stimuli, yet previous studies have suggested no effect of age on
spatial summation characteristics, which would be expected
with size-dependent effects.9,26,33,34 As the two-line spatial
summation function relies on the accuracy of a small number
of thresholds, variability, such as due to small stimuli and age,
can lead to errors in the fit,54,55 and these can mask subtle age-
related changes in spatial summation characteristics that
themselves may have significant variance when estimated
using a two-line fit method (e.g., Fig. 3 of Khuu and Kalloniatis9

and Supplementary Fig. S1 of Phu et al.25). Although the effect
of test size on sensitivity change is generally small, the effect
may be greater when age differences are large.

Age-corrected CSIs Across the VF

Determination of age-related changes facilitated examination of
age-corrected CSIs. Differences in test procedure means that
concordance between static and kinetic perimetry may be
difficult to establish.7 However, in combination with the work
of Phu et al.,3 the present results suggest that kinetic perimetry
performed using stimulus size and contrast levels correspond-

ing to the age-corrected CSIs may result in overlap between the
isopter and theme classes (Fig. 7). The kinetic perimetry
isopters represent the boundary of the ‘‘isocontrast area’’ of
equal sensitivity, which may be analogous to the concept of the
‘‘fusional area’’ (Panum’s area) in binocular vision.56 The age-
corrected CSIs found in the present study should theoretically
fall within the isocontrast area, as shown in the schematic in
Figure 7. Discordance with kinetic perimetry isopters, such as
in the ‘‘broken’’ age-corrected CSIs in the peripheral VF, may
be improved if the 30-2 test grid test point density and extent
are increased. Thus, these age-corrected CSIs could provide
guidance for future studies investigating the concordance of
static and kinetic perimetry predicted by Phu et al.3

Preservation of concentric rings despite restricting the
number of theme classes supports the initial hypothesis that
the optimum theme maps are biologically meaningful. RGC
density and VF sensitivity display concentric contours,
representing the anatomical topography of the RGCs and the
HoV, respectively.21,57 We hypothesize that using theme classes
derived from RGC density and theme classes derived from VF
sensitivity at similar retinal spatial locations may represent

TABLE 3. Linear Regression Slopes Following Grouping of Test Locations Based On Pattern Recognition Analysis Theme Maps in Figure 4. Fovea to
Mid-Peripheral, and 2nd Outer to Extra Points Results Have Been Divided for Clarity

Fovea Innermost 2nd Inner Mid-Peripheral 1 Mid-Peripheral 2

GI

Slope �0.613 (0.128) �0.724 (0.081) �0.718 (0.046) �0.631 (0.047) �0.677 (0.047)

R
2 0.2864 0.2518 0.2446 0.1661 0.1718

GII

Slope �0.531 (0.127) �0.628 (0.060) �0.688 (0.036) �0.640 (0.047) �0.791 (0.041)

R2 0.2446 0.3165 0.3525 0.2205 0.2437

GIII

Slope �0.698 (0.117) �0.552 (0.052) �0.595 (0.038) �0.592 (0.038) �0.665 (0.032)

R
2 0.387 0.327 0.3281 0.2768 0.2533

GIV

Slope �0.402 (0.100) �0.490 (0.048) �0.566 (0.030) �0.563 (0.020)

R
2 0.230 0.318 0.337 0.286

GV

Slope �0.511 (0.052) �0.506 (0.037) �0.502 (0.027) �0.545 (0.026)

R2 0.290 0.307 0.292 0.282

2nd Outer Outermost Extra 1 Extra 2

GI

Slope �0.664 (0.066) �0.744 (0.069) �0.829 (0.173)

R
2 0.1347 0.1535 0.1691

GII

Slope �0.716 (0.060) �0.898 (0.059) �0.855 (0.177) �1.033 (0.178)

R2 0.1968 0.234 0.1656 0.2213

GIII

Slope �0.694 (0.052) �0.806 (0.047) �0.995 (0.179)

R2 0.2311 0.232 0.207

GIV

Slope �0.573 (0.025) �0.724 (0.036) �0.777 (0.091)

R
2 0.284 0.325 0.244

GV

Slope �0.577 (0.027) �0.609 (0.054) �0.803 (0.086)

R2 0.265 0.261 0.269

The slopes (SD) represent the sensitivity change (in dB/decade). All slope P values were significantly different from 0 (P < 0.0001). R2 values are
shown for the linear regression fits at each cluster.
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biologically meaningful areas and hence may provide improved
structure-function correlations. Previous pointwise correla-
tions between structure and function may potentially be
limited by variability or noise that differs between measure-
ment devices (e.g., histology and optical coherence tomogra-
phy for structural measurements, and SAP for functional
measurements), and grouping test locations, in reducing
variability, may provide better correlations. Grouping test
locations may also assist in improving correlations due to the
differences in test grid space between functional (e.g., the 68

spacing on the 30-2 VF test grid) and structural measurements
(e.g., the approximately 38 width of each test point within the
posterior pole analysis grid on the Spectralis OCT; Heidelberg
Engineering, Heidelberg, Germany). Further work is required
to compare pointwise and grouped structure-function correla-
tions.

Age-corrected CSIs Applied to the GHT

Cluster analysis also can test the choice of zones for examining
VF asymmetries, such as the GHT.22 The GHT relies on the
normative distribution of underlying sensitivity thresholds at
each location within the zone (i.e., each test point is
considered separately). Although some of these points exhibit
the same sensitivity signature (and hence distribution), the
present results suggest differences between corresponding

superior and inferior test zones in terms of the overall theme
classes examined. The grouping of different theme classes
within the same zone may account for the asymmetries of the
underlying normative distribution within the zones, as
described by Åsman and Heijl.22 Such a method of grouping
would not be restricted to mirrored zones within the superior
and inferior hemifields, but would still be biologically
meaningful as they represent locations with the same
sensitivity rather than points with different sensitivity signa-
tures that could potentially affect the normative distribution.
Similar to grouping to perform regression analyses as a
function of age, a greater number of pooled locations for
asymmetry analyses may reduce variance and could possibly
increase the sensitivity of defect detection (see Kalloniatis M,
et al., 2017 American Academy of Optometry Conference
Paper Session E354A for preliminary results). Future work
could investigate the significance of these underlying differ-
ences between the zones examined by the GHT and other
available cluster analyses, and those reflected in the pattern
recognition theme maps.

In a similar vein, these CSIs may be used in diseases, either
through clustering of sensitivities to reduce variability or
provide biologically meaningful reference locations, or by
comparison of the theme map. The CSIs in the present study
represent sensitivities from a cohort of healthy subjects: in
patients with disease, reductions in sensitivity across the VF

FIGURE 5. Pseudocolor theme maps of locations exhibiting the same sensitivity signature (i.e., age-corrected CSIs when corrected to a 50-year-old
equivalent patient and pooled) for GI–V within the 30-2 test grid (fovea located in the center), color coded as per Figure 4. Column 1: Optimal
theme maps (DT values in Table 4). Column 2: Average sensitivity (dB) for each of theme classes. Error bars indicate 1 SD. Columns 3–5: Results of
restricting the number of clusters, as per Figure 4.
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TABLE 4. DT for Pairwise Comparisons Between Clusters Across GI–V Found Using Pattern Recognition Analysis for a 50-Year-Old Equivalent Patient

GI

Sensitivity,

dB (6 SD)

Fovea Innermost 2nd inner

Mid-

peripheral 1

Mid-

peripheral 2 2nd outer Outermost

29.3 (1.62) 23.7 (2.00) 21.7 (2.03) 19.1 (2.27) 17.6 (2.40) 15.9 (2.69) 14.7 (2.80)

Innermost 23.7 (2.00) 2.00

2nd inner 21.7 (2.03) 2.00 2.00

Mid-peripheral 1 19.1 (2.27) 2.00 2.00 1.98

Mid-peripheral 2 17.6 (2.40) 2.00 2.00 2.00 1.87

2nd outer 15.9 (2.69) 2.00 2.00 2.00 2.00 1.95

Outermost 14.7 (2.80) 2.00 2.00 2.00 2.00 2.00 1.95

Extra 1 12.0 (3.09) 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GII

Sensitivity,

dB (6 SD)

Fovea Innermost 2nd inner

Mid-

peripheral 1

Mid-

peripheral 2 2nd outer Outermost Extra 1

32.5 (1.60) 28.6 (1.47) 26.9 (1.60) 25.2 (1.98) 23.8 (2.26) 22.4 (2.26) 20.9 (2.64) 19.2 (3.14)

Innermost 28.6 (1.47) 2.00

2nd inner 26.9 (1.60) 2.00 2.00

Mid-peripheral 1 25.2 (1.98) 2.00 2.00 2.00

Mid-peripheral 2 23.8 (2.26) 2.00 2.00 2.00 1.97

2nd outer 22.4 (2.26) 2.00 2.00 2.00 2.00 1.99

Outermost 20.9 (2.64) 2.00 2.00 2.00 2.00 2.00 2.00

Extra 1 19.2 (3.14) 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Extra 2 17.6 (3.15) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GIII

Sensitivity,

dB (6 SD)

Fovea Innermost 2nd inner

Mid-

peripheral 1

Mid-

peripheral 2 2nd outer Outermost Extra 1

34.8 (1.43) 32.0 (1.23) 30.9 (1.36) 29.7 (1.52) 28.4 (1.81) 27.2 (1.99) 26.0 (2.16) 24.3 (2.42)

Innermost 32.0 (1.23) 2.00

2nd inner 30.9 (1.36) 2.00 1.99

Mid-peripheral 1 29.7 (1.52) 2.00 2.00 1.98

Mid-peripheral 2 28.4 (1.81) 2.00 2.00 2.00 1.93

2nd outer 27.2 (1.99) 2.00 2.00 2.00 2.00 1.93

Outermost 26.0 (2.16) 2.00 2.00 2.00 2.00 2.00 1.92

Extra 1 24.3 (2.42) 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Extra 2 23.1 (2.84) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

GIV

Sensitivity,

dB (6 SD)

Fovea Innermost 2nd inner

Mid-

peripheral Outermost

35.9 (1.18) 34.2 (1.25) 33.2 (1.33) 31.3 (1.57) 29.2 (1.86)

Innermost 34.2 (1.25) 2.00

2nd inner 33.2 (1.33) 2.00 2.00

Mid-peripheral 31.3 (1.57) 2.00 2.00 1.95

Outermost 29.2 (1.86) 2.00 2.00 2.00 2.00

Extra 1 27.0 (2.27) 2.00 2.00 2.00 2.00 2.00

GV

Sensitivity,

dB (6 SD)

Fovea Innermost

Mid-

peripheral 2nd outer

36.9 (1.49) 35.6 (1.24) 33.9 (1.49) 32.4 (1.53)

Innermost 35.6 (1.24) 2.00

Mid-peripheral 33.9 (1.49) 2.00 1.93

2nd outer 32.4 (1.53) 2.00 2.00 2.00

Outermost 30.2 (2.57) 2.00 2.00 2.00 2.00

Locations refer to those shown in Figure 5. Mean (6 SD) sensitivities (dB), when individual subjects are considered, of clusters are shown for
each eccentric location and test size. DT values >1.86 represent a >96% chance of correct classification, as per the empirical values of Swain and
King.31
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FIGURE 7. Superimposition of kinetic perimetry isopters (from a single representative healthy subject) found using Goldmann size I and size II
(equivalent to the HFA 24 dB [log Weber contrast 0.103] level of stimulus intensity) and a two-way Method of Limits (peripheral to central ‘‘inner’’
isopter and central to peripheral ‘‘outer’’ isopter) as per Phu et al.3 on the 30-2 spatial map. The colored test locations in the 30-2 test grid reflect
age-specific CSIs found in Figure 5, and show approximate concordance with the isocontrast area bounded by the inner and outer kinetic isopters.

FIGURE 6. The five zones of the GHT superimposed on 50 year-old equivalent age-corrected CSI theme maps of GI, GIII, and GV for optimal classes
(column 1), and following restriction of classes (columns 2–5). Symmetrical zones of the GHT are shown in the bottom right for clarity.
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may result in patterns within theme maps that deviate from
that of healthy subjects, hence providing another means by
which pathologic changes in visual function may be identified.

Pattern Recognition Analysis Versus Hierarchical
Cluster Analysis

The few mismatches between pattern recognition and
hierarchical cluster analysis may reflect slight differences in
separation criteria (DT versus d’); however, pattern recognition
analysis affords two main advantages. First, it is able to manage
large data sets (greater N-dimensions) and complex patterns of
points, which would become increasingly unwieldy when
manually examining cluster centers using hierarchical cluster-
ing. Second, it provides the degree of separability between
clusters with an accompanying P value for correct classifica-
tion without setting additional criteria. The differences in
variability between sensitivity thresholds obtained with GI–V
required the additional criterion of 1-dB separation. Although
this reflects CSIs revealed by conventional static perimetry, the
shapes of the CSIs are likely to change when using different
measurement units and steps. This requires further investiga-
tion with a greater number of stimulus size and contrast
combinations.

CONCLUSIONS

In conclusion, cluster analysis revealed test locations within
the 30-2 test grid with the same age-related and age-corrected
signatures (CSIs). These theme maps could provide a means
with which to average sensitivity thresholds across locations
with the same sensitivity signature for grouped analyses, such
as normative comparison, asymmetry analyses, static and
kinetic perimetry concordance, and structure-function stud-
ies.58,59
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