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ABSTRACT
As semi-autonomous cell organelles that contain only limited coding information in their own DNA,
chloroplasts and mitochondria must import the vast majority of their protein constituents from the
cytosol. Respective protein import machineries have been identified that mediate the uptake of
chloroplast and mitochondrial proteins and interact with molecular chaperones of the HEAT-SHOCK
PROTEIN (HSP) 70 family operating as import motors. Recent work identified unexpected new
functions of 2 DnaJ co-chaperones in mitochondrial and chloroplast protein translocation and
suggest a common mechanism of reactive oxygen species (ROS) scavenging that shall be discussed
here.
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Introduction

Chloroplasts and mitochondria are thought to have
arisen from endosymbiosis and as a consequence of
mass gene relocation events lost most of their own
DNA during evolution.1 To sustain their various
functions both chloroplasts and mitochondria depend
on a large number of cytosolic proteins that have to
be imported in a developmentally regulated fashion.
It was thus far believed that chloroplasts and mito-
chondria possess unique protein import machineries
with little or no common components.2,3 An excep-
tion to the rule is provided by molecular chaperones
of the HEAT SHOCK PROTEIN (HSP) 70 family
that, in association with other proteins, operate in
both organelle types and function as import motors.4,5

Here we report on a unique class of co-chaperones
designated DnaJ and DnaJ-like holdases6,7 that act as
key components in both mitochondrial and chloro-
plast protein translocation and accomplish unique
roles in reactive oxygen species (ROS) scavenging and
signaling.

Two distinct DnaJ-like co-chaperones with
conserved structural features operate in
chloroplasts and mitochondria

Chloroplasts and mitochondria need to import over 95%
of their protein constituents from the cytosol and do so
by virtue of specific protein import machineries dubbed
translocases of the outer and inner chloroplast envelope
membranes (TOC and TIC) versus translocases of the
outer and inner mitochondrial membrane (TOM and
TIM), respectively.2,3 To drive the translocation of cyto-
solic precursor proteins across these multi-protein com-
plexes, chloroplasts and mitochondria make use of
import motors that catalyze the unfolding of the
precursors in the cytosol, mediate the translocation step
and assist in the refolding of the imported proteins
inside the organelles. In chloroplasts, the import motor
consists of the ATP-driven HEAT-SHOCK PROTEIN
70 (cpHSP70), its membrane anchor proteins TIC40 and
TIC110, and a not yet identified nucleotide exchange fac-
tor to keep the HSP70 cycle functional.2,6,7 cpDnaJL as a
presumed cpHSP70 co-chaperone is a protein of 258
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amino acids encoded by At5g23040 in Arabidopsis thali-
ana.8 cpDnaJL displays 32.9% sequence homology to the
protein encoded by At3g51140 and 22.4% sequence
homology to the protein encoded by At2g20920.9,10

Homologs of cpDnaJL are present in cyanobacteria,
green algae, mosses, gymnosperms, and angiosperms,9,10

suggesting a link to oxygenic photosynthesis. The J-
domain of cpDnaJL from Arabidopsis and the cyanobac-
terium Synechocyotis sp. PCC6803 are distantly related
to the J-domain of Tid1, a human mitochondrial homo-
log of bacterial DnaJ co-chaperones, and other DnaJ pro-
teins (Fig. 1). Lee et al.9 noted the lack of a highly
conserved tripeptide, His-Pro-Asp (HPD) in the J-
domain of cpDnaJL, which is normally required for the
interaction with HSP70.6,7 This observation suggests
other sequence motives to be involved in CDF1-HSP70
interactions or that the function of cpDnaJL may be fun-
damentally different from that of canonical DnaJ co-
chaperones. Indeed, cpDnaJL was found to accomplish a
role as holdase in chloroplasts and etioplasts.9,10 Hol-
dases are a particular kind of ATP-independent molecu-
lar chaperones that bind to protein folding intermediates
to prevent their aggregation but without directly refold-
ing them (summarized in refs. 9,10).

In mitochondria, the import motor needed for the
uptake of both presequence-containing and prese-
quence-less cytosolic precursors is composed of mito-
chondrial HEAT-SHOCK PROTEIN 70 (mtHSP70), its
membrane anchor protein TIM44, the homodimeric
nucleotide exchange factor GrpE (Mge1), and mtDnaJ
(synonymous with PAM16, the presequence translo-
case-associated motor complex protein of 16 kDa), that
forms hetero-dimers with PAM1811,12 (summarized in
Fig. 2A). mtDnaJ is highly conserved and particularly
shares �85% residue conservation in the J-domain with
related proteins (Fig. 1).13,14

Roles of cpDnaJL and mtDnaJ (PAM16) in protein
import

Chloroplasts and mitochondria import both prese-
quence-containing and presequence-less proteins from
the cytosol. Import of either type of cytosolic precursor
into mitochondria is driven by the Dc and ATP.3

Hereby, the TIM23 subcomplex in the mitochondrial
inner membrane interacts with the presequence translo-
case-associated motor complex including mtDnaJ.11,12 In
chloroplasts, the situation is different. cpDnaJL does not
seem to participate in overall import of presequence-
containing or presequence-less cytosolic precursors;
instead it accomplishes a specific role. cpDnaJL is part of
a unique protein import site through which NADPH:
protochlorophyllide oxidoreductase (POR) A is specifi-
cally imported10 (Fig. 2B). Uptake of the pPORA into
the plastids is unique in requiring protochlorophyllide
(Pchlide) as import trigger.14-17 Time courses over
import revealed that the pPORA sequentially binds the
tetrapyrrole pigment Pchlide10 and thereby lowers its
interactions with molecular oxygen provoking the gener-
ation of singlet oxygen as cytotoxin and cell death
inducer.18,19 The interaction between the translocating
pPORA polypeptide chain and Pchlide is enabled by the
binding of cpDnaJL that operates independently of
cpHSP70 and keeps the pPORA in a state ready to bind
Pchlide9,10 Once pPORA’s transit sequence is removed
by the stromal processing peptidase, the mature pPORA
loaded with Pchlide interacts with PORB and assembles
into larger light-harvesting complexes in the prolamellar
body of etiolated plants.20,21 Lack of cpDnaJL, as found
after RNA interference-induced gene silencing (RNAi),
impaired the establishment of these complexes (Fig. 3)
and led to overaccumulation of free Pchlide acting as
photosensitizer for singlet oxygen formation during

Figure 1. Structural models of cpDnaJL (CDF1)(A) and mtDnaJ (PAM16)(B). The 3D-modeling was performed using I-TASSER, an online
protein structure and function prediction tool,30 with the J-domain of Tid1 as template.31 Despite the limited amino acid sequence iden-
tity of cpDnaJL (CDF1)(A) and mtDnaJ (PAM16), the topology of their J-domains is quite similar.

e1119343-2 J. GRAY ET AL.



greening.10 Measurements with the dansyl-based singlet
oxygen quencher DanePy confirmed mass generation of
ROS in cpDnaJL-depleted RNAi seedlings.10 Accumula-
tion of singlet oxygen and other ROS explains why
young-born sprouts rapidly die during greening.10 Inter-
estingly, similar, essential functions of mtDnaJ in mito-
chondrial biogenesis and function were deduced from
knock-out mutant studies using different PAM16
alleles.12,13 While single mtDnaJ (PAM16) mutants in
Arabidopsis had reduced size, double mutants were
lethal.12,13 Thus, a common link of mtDnaJ and cpDnaJL
function is suggested that shall be discussed here.

Common aspects of DnaJ function in
mitochondria and chloroplasts

cpDnaJL and mtDnaJ are both essential for organelle
biogenesis. In case of cpDnaJL, incapability to seques-
ter Pchlide in a protein-bound form favors generation
of singlet oxygen and other ROS that cause seedling
lethality during greening.10 Because cpDnaJL not only
binds PORA but also its constitutively expressed coun-
terpart PORB, the growth phenotype also manifests in
green plants, as reported by Lee et al.9 who used virus-
induced gene silencing and dexamethasone-induced
gene silencing to pinpoint the role of cpDnaJL in green

plants. In case of mtDnaJ, however, lack of an essential
protein needed for the import of both presequence-
containing and presequence-less cytosolic precursors
would lead to depletions in the mitochondrial prote-
ome and pleiotropic defects in mitochondrial activity.
Huang et al.,13 however, proposed a completely differ-
ent scenario in which mtDnaJ is supposed to play a
specific role in the import of a protein regulating plant
viability and immunity.

Huang et al.13 carried out a feed-forward genetic
screen for mutants of nucleotide-binding and leucine-
rich repeat domain (NB-LRRs) proteins that serve as
immune receptors.22 In a mutant snc1-enhancing
(muse) screen for such NB-LRRs, a component was
identified termed MUSE5 that is an ortholog of
mtDnaJ.13 Interestingly, single mtDnaJ mutants had
enhanced resistance against virulent pathogens, sug-
gesting that mtDnaJ may normally operate to seques-
ter a cell death regulator in the mitochondrial
compartment. Candidate proteins accomplishing such
role could be the heme binding proteins localized in
the different mitochondrial inner membrane com-
plexes and being potential ROS generators.23 If so, this
situation would resemble that seen for cpDnaJL that
by its activity in the Pchlide-dependent plastid import
pathway of PORA lowers the level of potential

Figure 2. Model on the roles of cpDnaJL (CDF1) and mtDnaJ (PAM16) in chloroplasts (A) and mitochondria (B). A, mtDnaJ (PAM16) is
supposed to regulate the translocation of hypothetical protein(s) with functions in ROS scavenging and/or signaling across the inner
mitochondrial membrane (IM). As a consequence, ROS production would be kept low and plant immunity be inhibited. (B), cpDnaJL reg-
ulates the import of PORA through the Pchlide-dependent translocaon (PTC), spanning both the outer and inner plastid envelope (IE)
membrane. Hereby, cpDnaJL’s function is that of a holdase permitting the binding and sequestration of Pchlide in a protein-bound and
thus non-hazardous form, conferring photoprotection onto etiolated seedlings during greening.

COMMUNICATIVE INTEGRATIVE BIOLOGY e1119343-3



photosensitizers for ROS generation and thereby pre-
vents cell death. Other targets of mtDnaJ could be
thus far unknown cell death proteins. Last but not
least, mtDnaJ could be involved in controlling the bio-
genesis and assembly of cytochrome c that has a well-
established role in apoptotic cell death regulation. R
protein-mediated immunity in fact involves the release
of cytochrome c from mitochondria to the cytosol,
triggering cell death and boosting ROS production
(see. ref. 13; for references). In addition, multiple sour-
ces and types of ROS were implicated in the develop-
ment of the hypersensitive response (HR) to deter
pathogens.24

Interestingly, another mutant allele of mtDnaJ
(Atpam16-2, originally named txr1-1) was isolated from
a forward genetic screen for mutants resistant to the phy-
totoxin and herbicide thaxtomin A from the potato scab-
inducing species Streptomyces scabies.25 This mutant was
resistant to exogenously administered thaxtomin A nor-
mally provoking severe growth defects.25 A hypothesis
put forth by Huang et al.13 is that thaxtomin A may be

targeting a mitochondrial matrix protein that, as we pro-
pose here, relies on mtDnaJ for import or may bind and
inactivate mtDnaJ (AtPAM16) itself. It was further
hypothesized that such targeting may serve as a virulence
strategy to release a death signal from mitochondria and
assists the killing of host cells so that the pathogen can
consume the plant’s photosynthates.13

Another, interesting link between mtDnaJ and ROS is
provided by the work of Scheibel et al.26 who noticed dif-
ferential effects of thaxtomin on root growth in seedlings
undergoing photomorphogenesis or skotomorphogenesis.
While root growth was reduced by more than 50% by
100 nM thaxtomin in wild-type seedlings germinating in
white light (photomorphogenesis), root growth was unaf-
fected in seedlings developing in darkness (skotomorpho-
genesis). Because root development in either case was
normal in the thaxtomin-resistant mutant (trx1/Atpam16),
a light-dependent relocation of ROS themselves or ROS-
derived signals controlling root growth was anticipated.26

Alternatively, the insensitivity to the herbicide could be
due to altered ROS perception mechanisms rendered inac-
tive by the mutation. Several studies have demonstrated
that root meristem growth and differentiation are regu-
lated by ROS production and distribution.27-29 Thus, fail-
ure to correctly localize a protein involved in ROS
metabolism would likely affect the root phenotype and
may even restore the correct growth pattern. Huang et al.13

in fact proposed a positive regulatory role of mitochondria
during immune responses through ROS generation and
that this circuit is counteracted by mtDnaJ. As said before,
a possible, mtDnaJ-dependent mechanism could be to
control the import of a nuclear-encoded negative regulator
of plant immunity that may bind and scavenge ROS. Fail-
ure to sequester this factor would lead to enhanced disease
susceptibility. If correct, this scenario would resemble the
mechanism by which cpDnaJL controls ROS homeostasis
in plastids. Proteomics and other approaches are required
to define the exact role of mtDnaJ in the import of such
immune regulators and/or ROS scavengers and to com-
pare it with that of cpDnaJL.
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