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Abstract

A tumour grows when the total division (birth) rate of its cells exceeds their total mortality

(death) rate. The capability for uncontrolled growth within the host tissue is acquired via the

accumulation of driver mutations which enable the tumour to progress through various hall-

marks of cancer. We present a mathematical model of the penultimate stage in such a pro-

gression. We assume the tumour has reached the limit of its present growth potential due

to cell competition that either results in total birth rate reduction or death rate increase. The

tumour can then progress to the final stage by either seeding a metastasis or acquiring a

driver mutation. We influence the ensuing evolutionary dynamics by cytotoxic (increasing

death rate) or cytostatic (decreasing birth rate) therapy while keeping the effect of the ther-

apy on net growth reduction constant. Comparing the treatments head to head we derive

conditions for choosing optimal therapy. We quantify how the choice and the related gain of

optimal therapy depends on driver mutation, metastasis, intrinsic cell birth and death rates,

and the details of cell competition. We show that detailed understanding of the cell popula-

tion dynamics could be exploited in choosing the right mode of treatment with substantial

therapy gains.

Author summary

Cells and organisms evolve to better survive in their environments and to adapt to new

challenges. Such dynamics manifest in a particularly problematic way with the evolution

of drug resistance, which is increasingly recognized as a key challenge for global health.

Thus, developing therapy paradigms that factor in evolutionary dynamics is an important

goal. Using a minimal mathematical model of a cancer cell population we contrast cyto-

toxic (increasing death rate) and cytostatic (decreasing birth rate) treatments while
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keeping the effect of the therapy on the net growth reduction constant. We then quantify

how the choice and the related gain of optimal therapy depends on driver mutation,

metastasis, intrinsic cell birth and death rates and the details of cell competition. Most

importantly, we identify specific cell population dynamics under which a certain treat-

ment could be significantly better than the alternative.

Introduction

Cancer progression is an evolutionary process where cell lineages (clones) acquire somatic

mutations due to exogenous (e.g. UV light) and endogenous (e.g. DNA repair deficiency)

causes [1]. Cancer driver mutations endow a competitive advantage to a cell, which leads to

the corresponding lineage gaining in frequency within the population. The numbers of rate-

limiting driver mutations required for tumour development were originally predicted using

epidemiological age-incidence curves [2] and subsequently confirmed based on protein and

DNA sequence data [3, 4]. For instance, tumours have an estimated four driver substitutions,

with some tumour type specific variability [4]. Allowing for additional events from copy num-

ber and epigenetic drivers, these numbers are consistent with the hallmarks of cancer compris-

ing six biological capabilities acquired during the multistep progression of tumours [5]. The

main hallmarks are sustaining proliferative signaling, evading growth suppressors, resisting

cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion

and metastasis.

Although the big picture of tumour progression is effectively conceptualized by the hall-

marks, important questions about the dynamics are not known and likely depend on cancer

type as well as developmental stage. A temporal view of progression across cancers can be

sought using large cohorts of genomic data [6]. However, genomic data alone offers no direct

measurement of intrinsic birth and death rates, and important ecological variables such as

absolute population sizes or modes of competition within the cell population. As it stands,

there is no consensus on the details of progression dynamics of tumours through the various

stages (see e.g. [7] and its critique). Resolving tumour growth characteristics quantitatively

requires more ecological (phenotypic) data to be collected from growing tumours together

with measurements of birth and death rates of tumour cells at various stages.

Using drugs to treat cancer has a long history coupled with current rapid development.

Classically, effective drug treatment has relied on large enough doses of a cytotoxic agent that

kills rapidly dividing cells, resulting in clear decline of tumour. This is not always attainable,

however, as most such agents are not cancer cell specific, and often cause severe side-effects.

More recently, targeted drugs with cancer cell specificity have been introduced to clinical prac-

tice. Most of these operate primarily as cytostatics, disrupting cell signaling and replication,

but do not lead to an immediate decrease of tumour burden [8]. The distinction between cyto-

toxic and cytostatic drugs is not clear cut in actual medication: cytotoxic compounds can also

induce stasis with low doses and on apoptosis-resistant cells, and cytostatic effects often also

result in cell death on cells in any other than the quiescent phase [9]. However, these two

modes of action have different effects on the underlying cell population dynamics.

Many properties of tumour growth and cancer progression are dependent not only on the

overall growth rate (difference between births and deaths) of cancer cell population, but more

specifically on the birth rate and death rate (hereby denoted as β0 and δ0, respectively) of cells.

Higher rates give rise to faster cell turnover, and their ratio q = δ0/β0 yields the probability that

a population starting from a single cell faces stochastic extinction [10]. Recent research has
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linked turnover to spatial heterogeneity [11] and mutational potential [12] within a tumour.

This suggests that a cytostatic effect reducing cell reproduction, and a cytotoxic effect increas-

ing cell death may have differential impact on cancer progression, even when their effect on

overall cell growth rate is the same.

Here, we construct a model of tumour progression to quantify and understand such a dif-

ferential impact so that it could be exploited in therapy choice. We explicitly factor in different

modes of competition and intrinsic evolutionary regimes within a cell population to acknowl-

edge the uncertainties we currently have about real tumours. In particular, we focus on the

penultimate stage of tumour progression where the malignant cell population is physically

detectable comprising� 106 to 108 cells corresponding to�1 mm to 6 mm diameter tumour

[13]. By this stage, clinical symptoms generally appear, and a tumour reaches its present

growth potential, but has yet to enter the final (fatal) epoch of growth. We consider two alter-

native modes to enter the last epoch of growth (see Fig 1). A driver mutation which, e.g.,

induces angiogenesis for the primary tumour thus increasing its overall growth potential, can

be discovered. Alternatively, the cells in the primary tumour can migrate and seed a metastasis

that similarly leads to an overall growth potential increase. We note that the seeding of metas-

tasis is a complex, incompletely understood, process that can either happen linearly, after the

primary tumour has become malignant, or in parallel with the progression of the primary

tumour. Evidence for both modes has been found across tumour types [14], and our setting is

consistent with the parallel model. Purely mathematically, we study how best to influence two

stochastic processes where one couples to cell births and the other to cell number under differ-

ent population dynamics defined by competition and turnover.

Mathematical study of drug therapies in cancer and beyond is thriving. Considerable prog-

ress has been made at several fronts including drug combinations [15–19], alternative dosing

schedules [20], modifying the objective of therapy from eradication to control when the former

is not attainable [21–23], and highlighting the value of frequent monitoring to guide treatment

[24]. For cancer therapy, some models have already played a role in clinical success, e.g., opti-

mising imatinib dosing schedules to avert resistance in the treatment of chronic myeloid

leukaemia [25], and an application of adaptive therapy to castrate-resistant prostate cancer

patients [26]. Here we show that choosing a specific mode of action, cytostatic or cytotoxic,

leads to a substantial efficacy gain. We quantify how this choice and the related efficacy gain

depends on driver mutation, metastasis, intrinsic cell birth and death rates, and the details of

cell competition.

Results

Mathematical model of tumour progression

The model system consists of cell populations ni,j(t) in patches i and having phenotypes j.
The system evolves through four kinds of reactions: births, deaths, migrations, and mutations
(Table 1). The simulations are initiated with a single (i.e. primary) tumour with a resident

cell population n1,1 at a carrying capacity K. From this initial state the total population size

can increase substantially by either a) successful migrations to new patches, resulting in metas-

tases, or b) finding a (driver) mutation that entails a higher carrying capacity (Fig 1). These

events arise stochastically depending on migration rate μ and mutation probability γ at cell

reproduction.

In a migration event, a single cell is moved from a pre-existing patch into a new empty, pre-

viously uncolonised patch, of which there is an unlimited supply. This cell then initiates a new

metastasis, which may grow in population size, and is subject to stochastic extinction risk.

Migrations occur at a rate μ per cell.
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Fig 1. Modelling cancer progression via metastasis and/or driver mutation events. A Primary tumour is assumed to have reached its present

growth potential (yellow). It can progress to the next epoch of growth via de novo driver mutation that, for example, induces angiogenesis (red),

or via seeding metastasis (blue). B Simulated example trajectories at high (low) cell turnover with β0 = 1.0, δ0 = 0.6, (β0 = 0.42; δ0 = 0.02). Black

line shows total population size. Blue line shows metastatic tumour population sizes and red line shows cell population containing driver

mutation. Tick marks on the time axis show metastasis and mutation events, some of which go extinct due to fluctuations that are stronger in

high turnover tumours. C The simulation experiment setting on a birth rate–death rate plane. The light grey dots marked H and L show the

high turnover and low turnover cases, respectively. The arrows show the changes after applying cytostatic (red) or cytotoxic (blue) medication

with magnitude Δ = 0.2, which keeps the overall growth reduction constant. The net growth rate r (light blue lines) and stochastic extinction risk

q = δ0/β0 (thin black lines) of each scenario is also shown.

https://doi.org/10.1371/journal.pcbi.1007493.g001

Table 1. Model system reactions. The model system evolves through four possible reactions, according to their per cell
propensities. Ci,j denotes an individual cell of phenotype j in patch i. Birth rate β and death rate δ are functions of total

cell population ni,� in a patch.

reaction propensity

birth Ci,j! Ci,j + Ci,j (1 − γ)β (ni,j)
death Ci,j! ; δ(ni,j)
migration Ci,j! Ck,j μ
mutation Ci,j! Ci,j + Ci,l γ β(ni,j)

https://doi.org/10.1371/journal.pcbi.1007493.t001
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The mutation events are tied to birth events such that at each birth there is a probability γ
that the daughter cell is of a different phenotype than its parent. Here, we consider only a sin-

gle kind of driver mutation, with the sole effect that the mutated population has a higher carry-

ing capacity L> K. Although mutations affecting various properties occur in reality, major

steps in tumour progression are reached by driver mutations that overcome the previous limits

to growth. These are most simply represented in our model by changing the carrying capacity

parameter while keeping all else equal.

Note that the products μ K and β γ K are important, since these yield the metastasis and

mutation rates, whereas the actual value of K is of less importance (provided it is large com-

pared to the stochastic extinction barrier at� few tens of cells, a condition which is easily ful-

filled for tumours). In our simulations, the mutated subpopulations face competitive pressure

from the resident population. However, the value of L does not matter for our analysis in so

far it is much bigger that K, which we assume to be the case for an epoch changing event. Eco-

logically interpreted this would mean that these cells can enter a new niche or exploit a new

resource.

Cell population growth is assumed to follow a modified version of logistic growth, following

[27], which allows for adjusting how the carrying capacity is realised. In this formulation, β0

and δ0 denote the intrinsic birth rate and intrinsic death rate, respectively, in an initial small

population. We assume β0 > δ0. The actual birth and death rates are density-dependent as:

bðni;jÞ ¼ b0 � ni;�ðb0 � yÞ=Kj ð1aÞ

dðni;jÞ ¼ d0 þ ni;�ðy � d0Þ=Kj; ð1bÞ

where ni;� denotes the total population in patch i, and a parameter θ, such that β0� θ� δ0,

determines in what proportion the rates are changed with population size.

With θ = β0 the birth rate stays constant and the death rate increases with population den-

sity, and thus the cells have a shortened expected lifetime at carrying capacity. This corre-

sponds to the classical formulations through elementary reactions yielding the logistic growth

model, where the carrying capacity is realised by increasing mortality due to intraspecific com-

petition between the cells. If we set θ = δ0, the death rate stays constant and the birth rate is

reduced. Thus, the expected lifetime of cells stays the same at carrying capacity, while the num-

ber of births, and cell population turnover, are reduced. These two modes to realise the carry-

ing capacity can be linked to the ecology of cancer. Increase of death rate at the carrying

capacity maps onto so called hazards such as immune cells, toxins and the accumulation of

waste products in the tumour micro-environment, whereas reduction of birth rate corre-

sponds to changes in resources such as diminishing of oxygen, glucose, micronutrients and

growth signals [28].

For simplicity, we study these two extreme cases. While both effects probably happen, no

estimates of their proportion exist to our knowledge. Any θ value will yield the same mean

field model for population growth, but will affect the number of births, and thus the opportu-

nities for driver mutations.

Mathematical model of treatments

We study the benefit in targeting either the birth rate or the death rate by medication. To this

end, we assume that either rate can be affected, by some amount Δ, and compare the two

modes, reducing the intrinsic birth rate (β0! β0 − Δ, cytostatic treatment) and increasing

the intrinsic death rate (δ0! δ0 + Δ, cytotoxic treatment), against each other, given that the

change in overall growth rate is the same.

Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression
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We consider two settings in the management of solid tumours and hematological malig-

nancies. First, the treatment reduces cancer cell growth, but the overall rate stays positive so

that the therapy can only (substantially) extend the waiting time until progression. Second,

therapy can cause the primary tumour to decline, but metastatic and mutated cancer cells still

exhibit positive growth.

In the first setting, treatment may change the cell turnover at equilibrium, but not the equi-

librium itself, which remains unchanged at the carrying capacity K. The effect of the treatment

depends on how the carrying capacity is realised (by parameter θ). The birth and death rates

under each treatment combination are listed in Table 2. This first scenario corresponds to con-

tainment strategy [23, 29], where aggressive treatment options are considered undesirable due

to various reasons, and instead the objective is to maintain a low cancer cell population size as

long as possible. We further note that the implementation of the therapy could also affect the

equilibrium carrying capacity itself. For example, this would happen if we assume that the

competition terms (i.e. those multiplied by
ni;�
Kj

) do not change due to treatments (see Table 2).

In such a case, the carrying capacity K would also respond to therapy resulting in a new lower

value K 0 ¼ ðb0 � D� d0Þ

b0 � d0
K. This reduction is the same for all cases considered here so that the

results we present hold for such an implementation of therapy as well (with K replaced by K0).
In the second setting, the resident cancer cell population within the primary tumour

declines exponentially towards zero, and carrying capacity does not affect it. Birth and death

reactions still take place in the population, and are affected by the chosen treatment, despite

negative overall growth. The metastatic and mutated populations express positive growth, and

are treated similarly to the first scenario. This second scenario considers resistance to treat-

ment where the cancer cells escape medication through driver mutations and metastasising to

different tissue [30]. In both settings, we assume that surgical removal is not an option for the

management of solid tumours. This is the case for patients who are inoperable, e.g. due to

other health conditions, or whose primary tumours are unresectable as is often the case in

advanced tumours of the brain, lung, liver or pancreas. Furthermore, we note that technology

for detection is constantly improving so that interventions will happen earlier in the future. As

a consequence, what is a typical first line of therapy might change from invasive surgery to che-

motherapy or immunotherapy.

Analytical waiting times for tumour progression: Case no decline

We first derive approximate waiting times until the last stage of tumour progression for the

cell population model defined above. If effective driver mutation and migration rates are much

smaller than intrinsic birth and death rates, i.e., μ K, γ K⪡ β0 − δ0 − Δ, we can assume time-

scale separation: patch cell populations reach their carrying capacities much faster than driver

mutations and migration events are generated. In this case, the first successful mutation or

migration event, whichever takes place first, leads to treatment failure. Furthermore, in our

Table 2. Treatment effects. The birth and death rates under treatment depend on whether the carrying capacity is

implemented via increasing death rate (θ = β0) or decreasing birth rate (θ = δ0).

model cytostatic (β0! β0 − Δ) cytotoxic (δ0! δ0 + Δ)

θ = δ0 bðni;jÞ ¼ ðb0 � DÞ �
ni;�
Kj
ðb0 � D � d0Þ bðni;jÞ ¼ b0 �

ni;�
Kj
ðb0 � D � d0Þ

δ(ni,j) = δ0 δ(ni,j) = δ0 + Δ

θ = β0 β(ni,j) = β0 − Δ β(ni,j) = β0

dðni;jÞ ¼ d0 þ
ni;�
Kj
ðb0 � D � d0Þ dðni;jÞ ¼ ðd0 þ DÞ þ

ni;�
Kj
ðb0 � D � d0Þ

https://doi.org/10.1371/journal.pcbi.1007493.t002
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mathematical analysis, we neglect the competition between driver mutation and the primary

tumour cell population (we note that competition is taken into account in our simulations). In

this setting, we can measure the efficacy of treatment as the change in expected time until the

first successful mutation or migration.

While at carrying capacity, cells in the primary tumour migrate at rate μ K and acquire

driver mutations at rate γ β (K) K = γ θ K. Thus, the expected time until the first event, either

migration or mutation, is 1/(K(γθ + μ)). The extinction probability of new population is δ0/β0

[10], and the mean number of mutations and migrations until one of them escapes extinction

is β0/(β0 − δ0) (given failure probability p, the mean number of trials until the first success is

1/(1 − p)). The expected time until first successful migration or mutation is thus given by

hTi ¼
1

Kðgyþ mÞ
�

b0

b0 � d0

: ð2Þ

While both cytostatic and cytotoxic treatments lead to identical reduction in net growth

rate, and do not change K, their impact on the tumour dynamics differs depending on driver

mutation, metastasis, intrinsic birth and death rates, and the details of cell competition at the

carrying capacity.

These dependencies can be analysed by comparison of the expected waiting times of pro-

gression. For the scenario where intra population cell competition is due to death rate increas-

ing at the carrying capacity, cytostatic treatment gives

hTy!b0 � D;b0!b0 � D
i ¼

1

Kðgðb0 � DÞ þ mÞ
�

b0 � D

b0 � d0 � D
ð3Þ

and cytotoxic gives

hTy!b0 ;d0!d0þD
i ¼

1

Kðgb0 þ mÞ
�

b0

b0 � d0 � D
: ð4Þ

Similarly, for the scenario where intra population cell competition is due to birth rate

decreasing at the carrying capacity, cytostatic treatment gives

hTy!d0 ;b0!b0 � D
i ¼

1

Kðgd0 þ mÞ
�

b0 � D

b0 � d0 � D
ð5Þ

and cytotoxic gives

hTy!d0þD;d0!d0þD
i ¼

1

Kðgðd0 þ DÞ þ mÞ
�

b0

b0 � d0 � D
: ð6Þ

The ratios of waiting times until progression showing optimal treatment scenarios under

each parameter combination, are derived in Materials and Methods (Eqs 12 and 13). We note

that the analytical waiting time ratios depend on the parameters μ and γ only via μ/γ, and thus

it suffices to estimate their relative magnitudes to optimise therapy.

To build intuition in what follows, we further note that Eqs 3–6 each consist of two

parts, a term related to generation of events of mutation and migration and a term related to

their probability of escaping stochastic extinction. For all cases where metastasis dominates

driver mutation, i.e. μ/γ� 1, the first term is approximately equal whereas the second term

responds better to the cytotoxic therapy. This gives an increase of waiting time until pro-

gression by a factor
b0

b0 � D
for cytotoxic therapy over the cytostatic therapy (Fig 2). In other

words, cytotoxic therapy is always better in suppressing the establishment (i.e. escaping

Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression
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stochastic extinction) of events compared to a cytostatic therapy. However, when mutations

start to play an increasingly important role, i.e. μ/γ ≲ 1, this increased suppression effect

can become less important than how the therapies affect the number of births (Fig 2). We

now consider in detail this trade-off between influencing births at the carrying capacity ver-

sus increasing stochastic extinction for various parameter regimes leading to different opti-

mal treatments.

Treatments versus no treatment. Cytostatic treatment is always better, as it increases

the waiting time to cancer progression, compared to no treatment (Eqs 3 and 5, Fig 2). The

improvement is due to the therapy both reducing the establishment probability of events and

reducing (or keeping constant) the number of births at the carrying capacity when compared

to no therapy. The improvement is independent of μ and γ when the carrying capacity is real-

ised by decreasing birth rate, because then cytostatic therapy does not change the number of

births at K, and vanishes for low turnover tumours (δ0! 0). If carrying capacity is due to

increasing death rate, the improvement depends on the ratio μ/γ as then cytostatic therapy

changes the number of births at K.

For cytotoxic treatment the picture is more delicate (Fig 2). Similarly to cytostatic therapy,

cytotoxic therapy reduces the establishment probability of events compared to no therapy but

the impact in births is varied. If carrying capacity is realised via increasing death rate, cytotoxic

treatment is always better compared to no treatment and the efficacy does not depend on μ
and γ, because then cytotoxic therapy does not change the number of births at K. However,

when the carrying capacity is realised by decreasing birth rate, two qualitatively different

regimes emerge. In high turnover tumours (i.e. δ0� (β0 − Δ)/2) cytotoxic treatment is again

always better compared to no treatment, but for low turnover tumours (δ0 < (β0 − Δ)/2) the

effect can reverse. In these cases cytotoxic treatment harms the patient when μ/γ< (β0 − 2 δ0 −
Δ) (Fig 2D). This effect is due to cytotoxic treatment inadvertently increasing the evolutionary

potential of the tumour by creating more space for births to occur and thus expediting driver

mutation generation.

Cytostatic versus cytotoxic treatment. If carrying capacity is realised via increasing

death rate, cytotoxic treatment is always better or equal than cytostatic treatment (Fig 2A and

2B). This means that the effect of cytotoxic therapy reducing the establishment probability of

Fig 2. Case primary tumour does not decline. Ratios of expected waiting times until progression of cytostatic (red, target β0) and cytotoxic

(blue, target δ0) compared to no therapy, under different migration μ and driver mutation rates γ from Eqs 2–6; black this line denotes equally

long waiting times (i.e the ratio = 1). High turnover cases have (β0 = 1.0, δ0 = 0.6) and low turnover cases (β0 = 0.42, δ0 = 0.02), treatment

strength Δ = 0.2. A,B High and low turnover cases where cell competition at the primary tumour is due to increasing death rates. Both

treatments are better than no treatment, and cytotoxic (blue) is superior to cytostatic (red) treatment. C High turnover case where cell

competition at the primary tumour is due to decreasing birth rates. Both treatments are better than no treatment and cytostatic treatment is

better than cytotoxic when μ/γ< (β0 − δ0 − Δ). D Low turnover case where cell competition at the primary tumour is due to decreasing birth

rates. Cytotoxic treatment is better than cytostatic treatment when μ/γ> (β0 − δ0 − Δ) and better than no treatment if μ/γ> (β0 − 2 δ0 − Δ).

Cytostatic treatment is always better than no treatment. For each case, at least one of the treatments is better than no therapy.

https://doi.org/10.1371/journal.pcbi.1007493.g002
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events can only be matched but not overcome by cytostatic therapy reducing births at the car-

rying capacity.

For tumours where cell competition leads to decreasing birth rate at the carrying capacity,

cytotoxic treatment is better than cytostatic as long as μ/γ> (β0 − δ0 − Δ) (Fig 2C and 2D). We

note that this condition happens before cytotoxic treatment becomes worse than no treatment,

thus for each case, at least one of the treatments is better than no therapy. As discussed earlier,

this subtle behaviour stems from the cytotoxic treatment inadvertently increasing the evolu-

tionary potential of the tumour by creating more space for births to occur.

Analytical waiting times for tumour progression: Case primary tumour

declines

Above, we assumed that while the therapy could reduce the overall growth rate of the primary

tumour, it was not able to force it to regress. As shown in Fig 2, such therapies can increase the

waiting time to tumour progression substantially, even if they do not allow for eradication in

practice. (There is a vanishingly small probability for a large primary tumour to go extinct via

fluctuations when intrinsic growth rate is positive [31]). We now consider how efficacy and

choice of therapy are affected if the primary tumour can be effectively targeted such that it

starts to regress. For a shrinking tumour of size n, the concept of a carrying capacity is not bio-

logically sensible, and we assume that its cell population decays exponentially with a rate r0 <

0 while emitting escape events with rate YðtÞ ¼ ðbprimary
D

gþ mÞð1 � dD=bDÞnðtÞ. Where the

first term contains driver mutation rate and migration rate of the primary, the second the

probability to escape stochastic extinction, and n(t) denotes the time dependent population

size of the declining primary tumour. The birth and death rates will take their under therapy

values depending on the applied therapy, denoted by subindex Δ. As here the primary tumour

will respond to the therapy differently than the driver or metastasis events (so that it can

decline), we further define b
primary
D

to denote the birth rate at the primary tumour under the

applied therapy.

Clearly, if |r0| is large compared to the total rate of escape via metastasis or driver mutation

generation, the tumour essentially always becomes eradicated, and the therapy choice is

between two almost equally good options. Thus we are mostly interested in the case where r0

is negative but small in magnitude. We note that the compound process of successful escape

events is now an inhomogeneous Poisson process in time as the primary tumour has its own

(approximately deterministic) dynamics. The process can be analysed by transforming time by

t0(t) = log(1 + r0t)/r0, which makes it again homogenous, and evaluating the expected time to

first successful event conditioned that one happened

hTi ¼ Z� 1

Ztmax

t0

t0ðsÞYðt0Þexpð� Yðt0ÞsÞds ð7Þ

where Z = 1 − exp(Θ(t0)/r0) is the probability that an escape event did happen before time

tmax = −1/r0. Integration boundary tmax denotes the point after which the waiting time for the

next event diverges and would cause the unconditional expectation value of the waiting time to

diverge as well. The probability that the therapy is successful in eradicating the tumour is then

P ¼ exp
Yðt0Þ
r0

� �

¼ exp
ðb

primary
D

gþ mÞð1 � dD=bDÞK
r0

; ð8Þ

so that when |r0| ≳ Θ(t0) the therapies start to be very effective.
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Comparing the ratios of success probabilities under cytotoxic and cytostatic treatments

reveals that cytotoxic is better than cytostatic when β0γ< μ (Fig 3), where to keep the

relation compact we have assumed the primary tumour to respond to cytostatic therapy by

b
primary
D

! b0 � 2D. Similarly to the containment case, this boundary reflects the trade-off

between suppression of establishment of events where cytotoxic is better versus suppression

of new mutations where cytostatic is better. The difference between the options is biggest for

small |r0| and vanishes when r0� 0 when both treatments are very effective and eradicate the

cancer cell population with probabilities approaching one.

Waiting times for tumour progression via simulation

We tested our analytical results via extensive numerical simulations. The two cases with and

without primary tumour declining were simulated via a hybrid stochastic approach (see Mate-

rials and methods for details). The results confirm our mathematical analysis (Fig 3 and Sup-

plementary S1 Fig). In addition, we simulated the seeding of a metastasis with a cluster of 50

Fig 3. Case primary tumour declines. Isocontours for therapy success (0.2, 0.4, 0.6, 0.8, with upmost contours

representing smallest values) from Eq 8 for cytotoxic treatments (blue) and cytostatic treatments (red). Shown is the

plane in metastasis rate (K μ) and mutation probability (K γ) multiplied by the population size at carrying capacity.

Black thick line shows the transition from cytostatic better (left side) to cytotoxic better (right side) which takes place at

β0γ = μ. Low turnover case (β0 = 0.42, δ0 = 0.02, Δ = 0.2001), simulation data plotted with dashed lines. Primary

tumour decayed with rate r0 = −0.001.

https://doi.org/10.1371/journal.pcbi.1007493.g003
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cells as some cancer metastases can be actually initiated by clusters of 2–50 cells [32]. Seeding a

metastasis with a number of cells at a level where the stochastic extinction risk is all but van-

ished led to loss of efficacy of either treatment against metastatic progression.

Discussion

We contrasted the impact of two most fundamental treatments, cytostatic and cytotoxic, on

tumour progression, while keeping their net effect on tumour growth constant. Based on our

mathematical analysis, choosing a specific mode of action lead to a substantial efficacy gain

(Fig 2) under particular cell population dynamics. The reason for this gain is in the trade-off

between how therapies affect suppression of the establishment of events versus how the thera-

pies affect the number of births.

If the treatment causes the primary tumour to decline, cytotoxic therapy is better than cyto-

static when the rate of generating migrations substantially exceeds that of driver mutations.

The precise boundary to select the optimal treatment depends on how strongly the primary

tumour responds to the therapies (e.g. in Fig 3, where the primary is assumed to be affected by

2Δ, the boundary is at β0γ = μ). The relative advantage disappears when the primary tumour

declines quickly, and both strategies result in effective cancer eradication.

More interesting differences between the strategies arise in the case of moderate growth

reduction, where the tumour cannot be eradicated, either because of lack of efficacy or toxicity

reasons, but where the progression can be substantially delayed. This scenario falls under the

emerging paradigm of tumour containment, or adaptive therapy [22]. The importance of

adaptive therapy could increase with the improvements in early detection of cancers so that

invasive intervention by surgical removal may not be preferable as the first line of therapy.

Again, based on our model, cytotoxic therapy is superior when metastasis is the predominant

mode for progression as measured by waiting times. However, depending on the mode of cell

competition and intensity of cell turnover, cytotoxic therapy can even become harmful, and

cytostatic therapy should be chosen instead. The harmful effect of increasing the number of

cell deaths arises under a low turnover cell population where competition also limits cell repro-

duction. In this scenario, a cytotoxic agent creates space for new cells to be born, and thus

increases the risk of new driver mutations. Similarly, it has been suggested that apoptosis of

cancer cells generates space for more aggressive sub-clones, and therefore promotes tumour

evolution [33].

While many of the mathematically derived control strategies may be difficult to utilise in

clinical practice due to complexity such as time dependent dosaging, our results show clear dif-

ferences that could be readily implemented. However, application would still need characteri-

sation of the underlying cell population dynamics: birth and death rates, relative strength of

driver mutation and metastasis rates, and details of cell competition. Some rough estimates are

available from literature. Božić et al. [34] have suggested a driver mutation probability of� 3.4

� 10−5 per cell division, based on the�34k positions in the human genome that could puta-

tively give rise to a driver mutation, and base point mutation rate of� 5 � 10−10 for colorectal

cancer [35]. However, for a big event, a hallmarks of cancer type of driver mutation, the proba-

bility per cell division is most likely several orders of magnitude smaller. The rate of metastasis

seeding is harder to estimate, since seeded but stochastically extinct metastases are not clini-

cally detectable. Jones et al. [35] estimate an average of 1.8 years between an advanced carci-

noma founder cell and a succeeding liver metastasis founder cell.

Intrinsic cell birth and death rates in cancer have not been systematically measured thus

far. Jones et al. [35] estimated a division rate of approximately 0.25 d−1, in the absence of cell

deaths. A wide range of estimates for the ratio of death to birth rates have been presented,
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ranging from q = 0.99 in early tumours [36] and q = 0.72 in fast growing colorectal cancer

metastases [34] to q between 0.1 and 0.5 in chronic myeloid leukaemia [15]. Together, these

estimates yield death rates between 0.25 d−1 to 0.025 d−1. There are indications that tumours

with a high overall growth rate also experience more cell deaths and a higher turnover [37].

However, this wide range underlines the need for modelling the dynamics at the individual

level and accounting for stochastic effects as done here. This aspect is often overlooked by

analyses focusing on compound growth rates. Finally, presently we can only guess how compe-

tition affects these individual rates as resources become limiting at different stages of tumour

progression. Without more data on rates of birth and death or modes of competition, we

can only say that cytotoxic therapy is superior when metastasis is the predominant mode for

progression.

For simplicity, we have analysed only the pure modes of drug action. While drugs with a

predominant mode of action do exist, many actual drugs display both cytotoxic and cyto-

static qualities in different proportions [9], depending on factors such as dosage and the

cell cycle phase at the time of administration. Mainly cytotoxic drugs often cause cell death

through apoptosis, autophagy, or regulated necrosis [38], and include mitotic poisons,

DNA-reactive drugs, inhibitors of DNA replication, and modulators of DNA topology as

major groups [8]. Platinum-based therapies such as cisplatin and less potent but better toler-

ated carboplatin are examples of cytotoxic drugs, which function by triggering apoptosis

[39]. The use of targeted cytostatic drugs started in the late 1990s for treatment of breast can-

cer [40], against which cytostatics are still commonly used [41]. Currently, cytostatics are

rarer than cytotoxic drugs: a recent high-throughput study found 2327 cytostatic-only

compounds in a total of 388,000 compounds screened [42]. Cytostasis is often achieved by

interference with the signal transduction process, with the largest group of drugs targeting

receptor tyrosine kinases [8]. Rapamycin and its analogs are examples of mainly cytostatic

drugs [43]. In experiments, rapamycin analogs induced tumour regression in renal cancers,

yet the tumours started to regrow when the treatment was discontinued [44]. Dosage and

other factors determine the actual magnitudes of cytotoxic and cytostatic effects of these

drugs (modelled here by parameter Δ, which to contrast the therapies, was chosen to be

equal for both modes of action).

Our results are based on a minimal mathematical model of an evolving cell population and

thus can provide insight beyond cancer. A number of studies emphasize the importance of

accounting for the relationship between cell turnover components and drug type for the clear-

ance of bacterial infections. Coates et al., among others, have suggested that as bacterial extinc-

tion probability is determined by the ratio of the death and growth rates, it can be maximized

by combining bactericidal antibiotics (increasing death rate) with bacteriostatic antibiotics

(decreasing birth rate) [45]. However, bacteriostatic antibiotics (inducing stasis) can cause tol-

erance against bactericidal antibiotics (targeting rapidly growing cells) [46], and such antago-

nism between bactericidal and bacteriostatic antibiotics has been reported to be common

[47]. This suggests that combining the two is not a universal solution, and thereby we need to

understand the conditions determining the efficacy of each drug type.

Our results highlight the need to carefully measure key evolutionary parameters across

cancer types and progression stages in order to utilise therapies effectively. In practice, these

parameters are still largely unknown. As a concrete first step, in addition to net growth, it

would be helpful to track cell deaths, which could be done in vitro cell models via a suitable

marker, and was recently achieved in vivo by using stable isotopic labeling with deuterated

water to measure directly the effects of ibrutinib on leukemia cell proliferation and death in 30

patients with CLL [48]. How to measure modes of cell competition cannot be resolved in an in
vitro assay. As a first step we would need to collect time series data of tumour growth from
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early on while tracking cell death. This could be pursued first in xenograft or 3D tissue models.

For the final parameters of driver mutation and metastasis rates a way forward would be devis-

ing epidemiological studies that keep track of primary vs. metastasis tumour burden. Also high

resolution monitoring of metastasis formation versus primary tumour growth in a model sys-

tem could help. Clearly, to properly quantify these cancer biology parameters requires a sub-

stantial amount of work. Fortunately, vast amounts of data are already being generated by

high-throughput technologies such as sequencing, massively parallel phenotyping assays, line-

age tracing, and high-content imaging. In the future, these and other data streams should be

combined to measure the missing parameters.

Materials and methods

Simulation model

Our simulation model is essentially a patch model where a) the number of patches and b) the

number of different populations within a patch can increase through metastases and muta-

tions, respectively. Each migration event initiates a new patch and patches are considered fully

independent of each other once initiated. In a migration event, a single cell is transferred to

the new patch. Each mutation initiates a new population (i.e. phenotype), and populations

within the same patch face competition and density dependent growth. For simplicity, we con-

sider all mutated populations similar, with carrying capacity L higher than the resident popula-

tions’ carrying capacity K.

Populations smaller than a threshold value of 100 cells are simulated via a stochastic simula-

tion algorithm (SSA) following the reactions listed in Table 1. These undergo individual birth

and death reactions (and may give rise to new metastases and migrations), and are thus sus-

ceptible to stochastic extinction, where the population size hits the zero absorbing boundary.

Populations as well as patches may go extinct. The propensities for discrete reactions are calcu-

lated as follows:

birth

(
1 � gð Þ b0 �

b0 � y

K

P
kni;k

� �
ni;j if b0 � D � d0 > 0

ð1 � gÞb
primary
D

ni;j if b0 � D � d0 � 0

ð9aÞ

death

(
d0 þ

y� d0

K

P
kni;k

� �
ni;j if b0 � D � d0 > 0

d
primary
D

ni;j if b0 � D � d0 � 0

ð9bÞ

migration mni;j ð9cÞ

mutation

(
g b0 �

b0 � y

K

P
kni;k

� �
ni;j if b0 � D � d0 > 0

gb
primary
D

ni;j if b0 � D � d0 � 0 ;

ð9dÞ

where the cases with β0 − Δ − δ0� 0 apply for the primary in primary tumour declines-
scenario.

All populations i, j above the threshold value were simulated by using a system of ODEs:

d
dt

ni;j ¼ b0 � D � d0ð Þni;j �
b0 � D � d0

Kj
ni;j

X

k

ni;k; ð10Þ
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where the competition term is removed for primary tumour in primary tumour declines-
scenario.

Euler’s method of the second degree was used for numerical treatment of Eq 10. Note that

migration and mutation events generated by large populations were still treated as discrete

reactions, handled via the SSA.

The hybrid simulation scheme operates as follows. First, all reaction propensities of all pop-

ulations are calculated according to Eq 9, and their sum is assigned to total propensity λtot(t).
Then, the system of ODEs given by Eq 10 is advanced, while simultaneously updating λtot(t),
until the following condition is reached:

Ztþt

t

ltotðsÞ ds ¼ y; ð11Þ

where y� Exp(1). With time dependent propensities we do not know beforehand the (expo-

nentially distributed) waiting time until the next reaction, but to the same effect we can inte-

grate the propensity sum until we reach a value picked from the unit exponential distribution

[49]. At this point, a single discrete reaction is sampled based on propensities, and resolved.

This scheme is repeated until a stop condition (total population extinction, treatment failure

through ncrit, maximum simulation time) is reached. ncrit defines the total cancer cell popula-

tion size at which we consider a simulation lost through treatment failure. The value used in

simulations was ncrit = 1.5 K.

The simulation scheme is the same as in [49] except that partitioning to discrete and contin-

uous reactions is handled differently. We consider migration and mutation events always

discrete, and birth and death reactions discrete whenever the population size is under a set

threshold. Treating large populations as continuous greatly speeds up the simulations, but dis-

regards population fluctuations. These large population fluctuations are of minor importance

in our case, since a) probability of stochastic extinction of a population above threshold is

exceedingly small, and b) waiting time until a relatively rare event (small μ, γβ) is dependent

on average population size over time.

Code availability

The simulation codes are available from github.com: https://github.com/mustonen-group/

contrasting-cytotoxic-cytostatic.

Parameters

Simulations were carried out with two turnover values: high (β0 = 1.0, δ0 = 0.6) and low (β0 =

0.42, δ0 = 0.02) (Fig 1). Both cases have the same growth rate (r = β0 − δ0 = 0.4), but different

stochastic extinction risk (qH = 0.6, qL = 0.047). The carrying capacity was set to K = 109

(except for fully stochastic simulations, see below), however, this models also smaller tumours

equally well as only the products Kμ and Kγ are of relevance for both the mathematical analysis

and simulation. This is because we do not take into account stochastic fluctuations of the

populations at the carrying capacity. These can be neglected as the probability of stochastic

extinction of a population at K is very small (with our parameters for any reasonable tumour

size > 102) and the waiting time until a relatively rare epoch defining escape event depends on

the average population size over time. The threshold population size above which populations

were treated as continuous was set to 100. The new (fatal) carrying capacity L was set to 10K
but could also be 100K or even more without it changing the results. This is because the stop-

ping condition at ncrit = 1.5 K ensures that very little or no growth suppression is felt by the
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escape events due to carrying capacity L. Note, we could equally well require the tumours to

grow all the way up to L and the results would stay essentially the same with a small extra time

representing that growth added to the waiting times of both processes.

In the containment strategy case, i.e. treatment insufficient to eradicate the tumour, the

effect of treatment was set to Δ = 0.2, effectively halving the growth rate for all patches. In the

case where the primary tumour could be made to decline, the treatment’s effect was Δ = 0.401

on the primary tumour, yielding an effective growth rate of r = −0.001. Here, there effect of

medication to metastatic patches and mutated populations was still Δ = 0.2, providing positive

growth and a possible escape route for cancer.

Additionally, the system was simulated using the full stochastic model without any continu-

ously treated populations. Here, a smaller carrying capacity K = 1000 was used. The median

waiting times obtained by this method very similar to the values given by the hybrid stochastic

simulation, thus validating the simulation scheme.

Comparisons of analytical waiting times until progression

From Eqs 2–6 we can derive the ratios of waiting times to compare treatment options under

the two different carrying capacity model assumptions. Under the model θ = β0, i.e. death rate

increases towards carrying capacity, we have:

hTcytostatici

hTno treatmenti
> 1 when md0 > gb0ðD � b0Þ ð12aÞ

hTcytotoxici

hTno treatmenti
> 1 when D > 0 ð12bÞ

hTcytotoxici

hTcytostatici
> 1 when Dm > 0; ð12cÞ

from which we can see that both treatment options are always better than no treatment, and

cytotoxic treatment is always better than cytostatic treatment, given strictly positive parameter

values, and β0 > Δ.

For model assumption θ = δ0, i.e. birth rate decreases towards carrying capacity, we have:

hTcytostatici

hTno treatmenti
> 1 when d0D > 0 ð13aÞ

hTcytotoxici

hTno treatmenti
> 1 when gðb0 � D � 2d0Þ < m ð13bÞ

hTcytostatici

hTcytotoxici
> 1 when gðb0 � D � d0Þ > m ð13cÞ

Here, we see that cytostatic treatment is always better than no treatment, and while cytotoxic

treatment can be more effective than cytostatic, especially under high metastasis rate μ and low

mutation probability γ, cytostatic treatment can be worse than no treatment at all if mutation

probability is higher and the metastasis risk is low.
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Supporting information

S1 Fig. Waiting times for tumour progression: Case no decline. Isocontours for waiting

times for tumour progression (21, . . ., 216, upmost contours representing smaller values) from

Eqs 2–6 with two turnover values, high (β0 = 1.0, δ0 = 0.6) and low (β0 = 0.42, δ0 = 0.02), and

therapy magnitude Δ = 0.2. A no treatment B cytostatic treatment and C cytotoxic treatment.

Simulation results, 104 independent runs per μ, γ pair, are shown in dashed lines. Analytical

and simulation results closely agree until about Kμ, Kγ� 0.01 − 0.1 when the time-scale sepa-

ration argument starts to break down. We note that the longest waiting time isocontours are

underestimated by the simulations due to our stopping condition at 105 steps which truncates

an increasing number of the 104 independent runs at very small values of Kμ + Kγ< 10−4.

(EPS)
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