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Abstract

The rapid development of single-cell DNA sequencing (scDNA-seq) technology has greatly enhanced the resolution of tumor
cell profiling, providing an unprecedented perspective in characterizing intra-tumoral heterogeneity and understanding tumor
progression and metastasis. However, prominent algorithms for constructing tumor phylogeny based on scDNA-seq data usually only
take single nucleotide variations (SNVs) as markers, failing to consider the effect caused by copy number alterations (CNAs). Here, we
propose BiTSC2, Bayesian inference of Tumor clonal Tree by joint analysis of Single-Cell SNV and CNA data. BiTSC2 takes raw reads from
scDNA-seq as input, accounts for the overlapping of CNA and SNV, models allelic dropout rate, sequencing errors and missing rate, as
well as assigns single cells into subclones. By applying Markov Chain Monte Carlo sampling, BiTSC2 can simultaneously estimate the
subclonal scCNA and scSNV genotype matrices, subclonal assignments and tumor subclonal evolutionary tree. In comparison with
existing methods on synthetic and real tumor data, BiTSC2 shows high accuracy in genotype recovery, subclonal assignment and tree
reconstruction. BiTSC2 also performs robustly in dealing with scDNA-seq data with low sequencing depth and variant missing rate.
BiTSC2 software is available at https://github.com/ucasdp/BiTSC2.

Keywords: single-cell DNA sequencing, intra-tumor heterogeneity, single nucleotide variation, copy number alteration, Bayesian
modeling, cancer evolution

Introduction
The rapid development of single-cell DNA sequencing
(scDNA-seq) technology has provided a refined per-
spective for unveiling the evolutionary mechanisms
underlying cancer progression and characterizing intra-
tumor heterogeneity (ITH) [1, 2]. Although promising, the
major single-cell whole-genome amplification methods,
e.g. DOP-PCR, MDA and MALBAC, still encounter various
technical bottlenecks. These limitations will result in a
high incidence of errors, such as missing bases, false
positives or false negatives in the sequenced single-
cell DNA, which poses additional challenges for the
downstream ITH inferences [3].

Early single-cell studies utilize information from
single-cell single nucleotide variant (scSNV) or single-cell
copy number alteration (scCNA) to infer tumor evolution
with classic phylogenetic methods [4–7]. In recent

years, many computational methods have emerged
for inferring the evolutionary histories of tumors from
single-cell data. CHISEL [8], SCICoNE [9] and MEDALT
[10] are the few methods that perform scCNA detection
and also infer evolutionary histories. RobustClone [11]
is a model free method that takes raw scSNV or scCNA
genotype matrixas input to recover clone genotypes and
infer tumor clone tree. BEAM is a Bayesian evolution-
aware method based on scSNV data, which improves the
quality of single-cell sequences by using the intrinsic
evolutionary information under a classic molecular
phylogenetic framework [12]. Many other methods based
on scSNV data build maximum likelihood or Bayesian-
based models to account for sequencing noise as well as
reconstruct tumor clone/cell tree. SCITE [13], OncoNEM
[14], SCIφ [15], CellPhy [16] make infinite site assumption
in their models, that is, mutation may only occur once
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at any locus and only binary genotypes are allowed in
scSNV sites. SiFit [17] and SiCloneFit [18] construct their
models under the finite site assumption, which allows
mutations to happen more than once at any locus.

These single-cell based methods can only take into
account one source of information, either from scSNV or
scCNA. In fact, these two types of markers all play impor-
tant role in tumor generation, progression and metasta-
sis, and they constitute crucial traits in characterizing
tumor heterogeneity [19]. Evolutionary inference with
only one type of markers may lead to biased estimate. For
example, suppose there is a true evolutionary process as
shown in Figure 1A. The tumor tree T has five subclones,
where the root node subclone1 is comprised of normal
cells only, and the other nodes are cancerous subclones
caused by point mutations and/or CNAs on three loci A,
B and C. The SNV and CNA genotypes of these subclones
are shown in Figure 1B. The two SNVs occur at loci A
and B give rise to subclone2. The loss of the mutant
copy on locus B further generates subclone4 based on the
genotype of subclone2. If one infers the tumor clone tree
with only SNV data Z, one will most probably recover a
linear evolutionary history as in Figure 1C. However, this
is biased as it misses the identification of the two extra
subclones (3 and 5), which respectively generated by a
copy loss at locus A and a copy gain at locus C. Also, ignor-
ing the CNA-driven loss of SNV at locus B in subclone4
may lead to misplacement of cells in subclone4 as the
ancestor of cells in subclone2 and 5 on the SNV-based
clone tree (Figure 1C). In such case, the full history can
only be resolved by taking into account of information
from both SNV (Z) and CNA (L).

In fact, joint analysis of SNV and CNA in characterizing
ITH is common with bulk sequencing. PyClone [20]
applies Bayesian clustering to identify tumor clones/sub-
clones based on SNVs and clonal CNAs (CNAs carried by
all cancer cells). It provides insights to temporal ordering
of mutations and subclones, but does not make inference
to the tree structure. PhyloWGS [21] also employs
a Bayesian framework with a tree structured stick
breaking process as prior, which infers subclone cluster
as well as the tree relationship of the subclones. Canopy
[22] is a Markov Chain Monte Carlo (MCMC) algorithm
for tumor evolution history inference, which accounts
for both point mutations and raw copy number (CN)
information. Recently, [23] proposed a unified Bayesian
feature allocation model, SIFA, on raw bulk sequencing
reads. It provides a generating model that incorporates
SNV and CNA to infer tumor phylogenetic tree.

To the best of our knowledge, the only method for
tumor tree inference from scDNA-seq data that inte-
grates SNV and CNA information is SCARLET [24]. SCAR-
LET optimizes for a loss-supported phylogeny. It inputs a
copy number tree constructed with existing methods and
then refines such tree by resolving the multifurcations
using point mutation profiles of the observed cells [24].

In this study, we propose Bayesian inference of Tumor
clone Tree by joint analysis of Single-Cell SNV and CNA,

termed BiTSC2. It is the first method that fully models
SNV and CNA states from raw reads of scDNA-seq data. It
generalizes the SIFA model to account for the overlapping
of CNA and SNV states comprehensively, and models
allelic dropout (ADO) rate, missing rate and sequencing
errors in scDNA-seq data. BiTSC2 takes the observed total
reads and mutant reads at multiple loci in single cells
as input and assigns cells to subclones. By applying
MCMC sampling, BiTSC2 can simultaneously estimate
the subclonal CNA and SNV genotypes, the overlapping
relationship of CNA and SNV, the subclonal assignments
of cells and the tumor evolutionary tree. In comparison
with existing methods on synthetic and real tumor data,
BiTSC2 shows high accuracy in genotype recovery, sub-
clonal assignment and clone tree reconstruction. It is
worth noting that BiTSC2 is also robust in dealing with
scDNA-seq data with low sequencing depth.

Methods
Overview of BiTSC2

We give a brief introduction to BiTSC2 in this section, the
general flowchart is shown in Figure 2. The definitions
of all parameters in Figure 2B and examples of main
parameters in Figure 1A can refer to Table S1, and the
more model details can be found in following subsection
and in supplementary notes.

BiTSC2 is a Bayesian model, which takes input of raw
total and mutant read counts matrices DM×N and XM×N

measured at M loci of N cells (Figure 2A). Due to the shar-
ing of genetic information among homogeneous cells, we
assume that there are K latent subclones in the cells
drawn for sequencing (K � N). Here, we define subclone
as a group of cells with identical genotypes and distinct
subclones differ in SNV or CNA markers on at least one
of the M measured loci. We further assume the latent
states follow a categorical distribution with parameter
φ representing the prevalence of subclones and denote
the state of cell n by Cn = k (n ∈ {1, · · · , N}, k ∈ {1, · · · , K})
(the blue box in Figure 2B). BiTSC2 employs a tree coupled
generating model to generate the raw total and mutant
read count matrices, where the point mutation profiles
ZM×K and the CN profiles LM×K of subclones are jointly
modeled, with their context and relationships coupled by
the clone tree T (the green box in Figure 2B).

We consider three possible scenarios for the overlap-
ping relationship of SNV and CNA along the tree: (i)
CNA event happens before SNV on the same lineage;
(ii) CNA and SNV occur in the same genomic region but
on separate branches of the tree, thus affecting distinct
clones; (iii) SNV happens before CNA on the same lineage
(Figure 1D). For the first two scenarios, the overlapping
of SNV and CNA does not affect the number of mutant
alleles. For scenario (iii), we introduce an phase indication
vector g of length M (the green box in Figure 2B), where
gm = 1 indicates CNA happened on the mutant allele
at locus m, thus affecting the number of mutant copy,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
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Figure 1. ScDNA-seq data display tumor heterogeneity. (A) Joint tumor phylogeny tree by SNV and CNA, where the gray node represents normal cells
and the other nodes are cancerous cells. The letters A, B, and C are mutation loci. The bars under each letter represent alleles, and the bars with red
stars and triangles are mutated. (B) The SNV genotype matrix, Z, and the CNA genotype matrix, L, where rows represent loci and columns are subclones.
(C) The phylogeny tree generally obtained by SNV-based algorithms. (D) Three possible scenarios for the overlapping relationship of SNV and CNA along
the tree.

Figure 2. Overview of the computational framework of BiTSC2 that identifies subclones, recovers subclonal genotypes of CNA and SNV, as well as
reconstructs subclonal evolutionary trees using tumor scDNA-seq read count data. (A)The input of the algorithm, total reads matrix D and mutant
reads matrix X. (B) The probabilistic graphical model shows the dependency among parameters, where the shade nodes stand for observed or fixed
values, the unshaded nodes represent the latent parameters. (C) The inference output of the algorithm, mainly containing subclone assignment (C),
subclonal phylogenetic tree (T ), genotype matrix of CNA (L) and SNV (Z), phase indicator g and other parameters, such as missing rate (ρ), ADO rate (μ)
and so on.

and gm = 0 otherwise (Figure 1D). For example, in the
toy model in Figure 1A, the phase indicator for locus B
is gB = 1, since the copy loss on this locus occurs on
mutant allele, which gives rise to subclone4. For locus A,

the SNV arises in subclone2, which is parallel to the CNA
occurring in subclone3. In such case, CNA does not affect
the number of the mutant copy, thus gA = 0. For locus C,
as there is only a CNA event, so gC = 0. Then the phase
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indicator g = (0, 1, 0) for the toy model in Figure 1A (Table
S1).

In addition, as single-cell sequencing data is prone
to high technical errors, our model also accounts for
sequencing error rate (ε), missing rate (ρ) and ADO rate μ

(Figure 2B).
The ultimate goal of BiTSC2 is to infer the subclone

prevalence φ, the subclone assignment of cells C (a
vector of length N), the SNV and CNA genotypes of
subclones Z and L, the subclone tree T , the missing
rate ρ and also ADO rate μ (Figure 2C). By assigning
priors to Zo, Lo, T , C, ρ, μ, s and w (the dispersion
parameters for generating total reads D and mutant
reads X), and given read depths of the sequencing cells
� = (ψ1, ψ2, · · · , ψN), and a sequencing error rate ε,
these can be estimated from a posterior distribution
p(φ, C, L, Z,T , ρ, μ, s, w|D, X, �, ε), which corresponds to
p(φ, C, Lo, Zo, g,T , π , ρ, μ, s, w|D, X, �, ε) (Figure 2, see below
and supplementary notes for details).

Tree coupled generating model of genotypes
The subclone genotypes Z and L are generated according
to the SNV and CNA origin matrices Zo, Lo and the clone
tree T as well as phase indicator g (the green box in the
Figure 2B). By assuming a total of K subclones on the tree,
T is represented by a length-K vector, where Ti = k (i =
2, · · · , K) indicates the parent of subclone i is k. We fix
subclone1 to normal cell and place it at the root of the
tree (T1 = 0). We assign a uniform prior to all possible
trees with K nodes.

As the first model for joint analysis of CNA and SNV
states from the raw reads of scDNA-seq data, considering
the complexity of the model, BiTSC2 assumes CNA and
SNV mutations arise independently. And each mutation
(including SNV and CNA) originates only once in a spe-
cific subclone besides normal subclone. In general, the
mutation will be inherited by all descendant subclones
after its origination, with the exception that the mutant
allele is affected by subsequent overlapping CNA (with
phase indicator gm = 1), resulting in the increase or
loss of such mutation at the locus. We use Zo

m = (k, v)

and Lo
m = (k, v) to represent the originations of SNV and

CNA changes at locus m, that is, Zo
m = (k, v) indicates

mutation at locus m occurs from subclone k and gains v
mutant copies, and Lo

m = (k, v) indicates the CNA arises in
subclone k and gains (or losses if v is negative) v normal
or mutant copies.

For SNV state, we take the prior of Zo as p(Zo
m = (k, v)) ∝

ζ v (2 ≤ k ≤ K, 1 ≤ v ≤ Ms), where ζ is the somatic
point mutation rate and is predetermined within range
of (0, 1), Ms represents the maximum number of possible
mutant copies [23]. In this study, we restrict Ms = 1.
However, such restriction may be relaxed if multiple
mutations are allowed to hit one site. The specification
of the mutation probability is independent of k, which
makes it equally likely for the SNV to originate from any
subclones (besides the normal subclone).

For CNAs, since they span genome intervals, if the
genomic segmentation information is available, it will
improve the inference of CNA status. There are many
existing methods that can be applied to estimate the
segment information, such as HMMcopy, copynumber,
etc.[25, 26]. We thus model CNA status in segment level
in a way similar to SIFA [23]. We sort the loci according
to their chromosomal positions and divide the genome
into S segments, {	1, 	2, · · · , 	S}. If loci i and j are located
on the same segment, we assume they share the same
CNA status. We let Lo

m = (0, 0) represent no CNA event at
locus m. For each genome segment, 	s, we assign a prior
probability p(Lo

m = (0, 0) for all m ∈ 	s) = π for no CNA,
and uniform prior probabilities for other possible combi-
nations of k and v (e.g., Lo

m = (k, v), for 2 ≤ k ≤ K, −2 ≤
v ≤ Mc − 2), with Mc as the maximum possible number of
total copies. The probability π is further generated from a
prior distribution Beta(α, β) with given hyperparameters.

The independent origination of SNVs (Zo) and CNAs (Lo)
coupled with the structure of the K-node clone tree T and
phase indicator g will derive the M×K genotype matrices
Z and L. The elements Zij represent the number of mutant
copies at the i-th locus of the j-th subclone, and Lij rep-
resent the total number of copies at the i-th locus of the
j-th subclone. The CN matrix L can be obtained according
to Lo and T . The point mutation matrix Z is determined
by T , Lo and g. For example, for locus B in Figure 1A,
SNV and CNA with a copy loss arise in subclone2 and
sublcone4 on the clone tree T = (0, 1, 1, 2, 2), respectively.
Then Lo

B = (4, −1), thus the CNA genotypes on locue B
are LB = (2, 2, 2, 1, 2) (Table S1). For SNV, Zo

B = (2, 1) and
the CNA occurs on the mutant allele, thus gB = 1 and
ZB = (0, 1, 0, 0, 1) (Table S1).

The optimal number of subclones K is selected based
on a modified Bayesian Information Criterion (BIC, see
Supplementary Note 4 for details).

Zero-inflated modeling of single-cell sequencing
reads
Next, we introduce the likelihood model of observing the
total reads Dmn and the mutant reads Xmn at locus m of
cell n.

By given the latent subclone state Cn, e.g. Cn = k,
the total reads Dmn should be positively correlated with
CN LmCn and the cell-specific diploid average coverage
ψn (which should be given a priori) for cell n [23, 27,
28]. Here, we model the total reads by negative binomial
distribution [29] as:

Dmn|ψn, L, C, s
ind∼ NB

(
ψn

LmCn

2
, s

)
.

We parameterize the mean of negative binomial dis-

tribution to be E[Dmn] = ψn
LmCn

2 , which is equal to ψn

when the total CN of the single cell is 2. The s is the
dispersion parameter that can control nonuniformity
degree of coverage across the genome and that Var[Dmn] =
E[Dmn](1 + E[Dmn]/s). The distribution reduces to Poisson
as s → ∞.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
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Since there often exist three major sources of noises
in scDNA-seq, namely missing base, ADO or sequencing
error, especially at low sequencing depth. We model them
explicitly by introducing the zero-inflation parameter ρ,
the ADO rate μ and the sequencing error rate ε. For total
reads Dmn, we apply the zero-inflated negative binomial
(ZINB) distribution, which introduces an additional prob-
ability ρ when no reads are observed (e.g. Dmn = 0),
in order to control the amount of excessive zero reads
due to missing [30]. Also, we model the false positives
when all copies are lost, e.g. LmCn = 0, by a small prob-
ability ε due to sequencing error. Moreover, the allelic
amplification bias in scDNA-seq may result in random
nonamplification of one allele, often referred as ADO [15].
To account for ADO events for each cell, we introduce the
mixture probability with ADO rate μ for the likelihood
of the total reads. Finally, the ZINB likelihood of Dmn,
which accounts for various sources of noises can thus be
defined as in Eq. 1,

fZINB(Dmn; ρ, μ, s, ε, ψn, LmCn) =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρδ0(Dmn) + (1 − ρ)NB(s ε
1−ε

, s) LmCn = 0,
ρδ0(Dmn) + (1 − ρ)(

μNB(s ε
1−ε

, s) + (1 − μ)NB(ψn
LmCn

2 , s)
)

LmCn = 1,

ρδ0(Dmn) + (1 − ρ)(
μNB(ψn

LmCn −1
2 , s) + (1 − μ)NB(ψn

LmCn
2 , s)

)
LmCn > 1,

(1)

where,

δ0(Dmn) =
{

1 Dmn = 0,
0 otherwise.

We then denote the expected probability of observing
a mutant allele at locus m for cell n as pmn = ZmCn/LmCn .
We model the likelihood of observing Xmn reads of
the mutant allele by beta-binomial distribution [15]
as:

Xmn|Dmn, pmn, w
ind∼ BB(Dmn, f = pmn, w), (2)

where f is the mean frequency of observing mutant reads
and w is the overdispersion term determining the shape
of the distribution, which decreases with increasing vari-
ance [15].

The integrated likelihood model of mutant reads Xmn

that also accounts for ADO rate μ and sequencing error
ε can be similarly defined as in Eq. 3. For modeling
sequencing error in mutant counts, we assume that if
mutation m is absent in cell n, i.e. LmCn = 0 and/or
ZmCn = 0, the probability of observing a variant read
corresponds to the per-nucleotide rate of sequencing
error ε. If mutation m presents in cell n and 0 < pmn < 1,
the probability of sampling the mutant allele type pmn

is corrected by sequencing errors in producing any of

the other two bases [15]. If mutation m presents with
pmn = 1, that is, ZmCn = LmCn ≥ 1, there will also be a
small probability ε of sequencing error. In addition, ADO
may happen when there is at least one copy present on
the locus (LmCn ≥ 1). When ADO happens in the case of
LmCn > 1, there will be two possibilities, with probability
ZmCn/LmCn to drop the mutant allele or with probability
(LmCn − ZmCn)/LmCn to drop the wild-type allele. The prob-
ability of sampling a mutant read will also vary according
to the ADO events. We denote p0 as the probability of
sampling a mutant read without ADO events. p1 and p2

denote the probability of sampling a mutant read with
an ADO event on the mutant allele and on the wild-type
allele, respectively.

fBB(Xmn; Dmn, μ, w, LmCn , ZmCn , ε) =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

BB(Dmn, ε, w) LmCn = 0,
μBB(Dmn, ε, w) + (1 − μ)BB(Dmn, e(p0), w) LmCn = 1,

μ
(

ZmCn
LmCn

BB(Dmn, e(p1), w)

+ LmCn −ZmCn
LmCn

BB(Dmn, e(p2), w)
)

+(1 − μ)BB(Dmn, e(p0), w) LmCn > 1,
(3)

where p0 = ZmCn
LmCn

, p1 = max
(

ZmCn −1
LmCn −1 , 0

)
, p2 = min(

ZmCn
LmCn −1 , 1

)
, and

e(pi) =
⎧⎨
⎩

ε pi = 0,
pi − 2

3 ε 0 < pi < 1,
1 − ε pi = 1.

Inference
We apply the MCMC procedure to estimate the unknown
parameters in BiTSC2. The posteriors of the unknowns
are sampled with differed strategies. Here we only briefly
introduce our sampling procedures; the sampling details
of each parameter can be found in Supplementary
Note 1.

For genotype origin matrices Zo and Lo, we update
one locus at a time by applying Gibbs sampler, where
new states are sampled from the full conditional dis-
tribution. If the CNAs are in a segmented form, then
at each step we will update all loci within the same
segment. The hyper-parameter π of Lo is also sampled
by Gibbs sampler. Under scenarios where CNA happens
after SNV at overlapping locus m, we calculate the full
conditional distribution by integrating over all possible
values of phase indicator gm. That is with 1/2 probability
the subsequent CNA happens on the wild-type allele
(gm = 0) and with 1/2 probability the CNA occurs on
the mutant allele (gm = 1, see Supplementary Note 1
for details). After performing Gibbs sampling on Lo and
Zo, we estimate each element of g with the maximum
probability at each locus.

For the dispersion parameters s and w of the negative
binomial distribution and beta-binomial distribution, we
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use Metropolis sampling with Gamma prior [31]. For
missing rate ρ and ADO rate μ, since it is difficult to
sample from its full conditional distribution, we adopt
Metropolis sampling step with a uniform proposal of ρ

and μ in the interval [0, 1]. We apply a mixed sampling
strategy for T as in [23], where the tree is updated by
randomly applying a Metropolis–Hastings sampler or a
slice sampler.

In sampling of the subclone prevalence, instead of
updating the entire vector φ at once, we sample addi-
tional Gamma parameters θk∼Gamma(γ , 1), k = 1 · · · K,
one at a time. And let φk = θk/

∑K
i=1 θi. This move is equiv-

alent to sampling φ with prior Symmetric − Dirichlet(K; γ ),
and often leads to better mixing of the MCMC [23]. Each
θk is updated by Metropolis–Hastings sampling with a
Gamma proposal and an adaptive step size. Each element
Cn (n ∈ {1, 2, · · · , N}) of C is taken from the Categorical dis-
tribution with parameter φ. We employ Gibbs sampling to
update each Cn one by one.

In order to avoid Markov Chain being trapped at some
local optimum states, we adopt the parallel tempering
technique, which runs multiple chains with different
temperatures and exchanges samples between them [23,
32]. We use heuristic initialization for each parallel chain
before MCMC sampling (Supplementary Note 2). The
derivation of the fully conditional distribution for all
model parameters can refer to Supplementary Note 3.
The optimal number of subclones K is selected by per-
forming a modified BIC (Supplementary Note 4). We use
the posterior mode for T , C, Zo, and Lo as the final esti-
mates. We obtain the inference of g with the maximum
probability at each locus, as well as Z and L according to
the final estimates of Zo, Lo, T and C.

Benchmark BiTSC2

Simulation data

To test the ability of BiTSC2 in identification of subclones
that generated by only CNA changes, we simulated 10
datasets, denoted as G1. Figure S1 shows the ground truth
of the datasets, which contains the phylogenetic tree and
subclonal genotype matrices of CNA and SNV. We also
simulated another 10 datasets, named G2, to assess the
accuracy of BiTSC2 and the competing algorithms when
the overlapping CNA affects the state of SNVs in cells.
Figure S2 shows the ground truth information of G2.
There are CNA driven-loss of SNVs and CNA driven-gain
of SNVs events in subclone4 and subclone5, respectively.

We also systematically evaluate BiTSC2 in scenarios
when topological structure of the clone tree can be fully
recovered by SNV markers (Figure S3). We simulate 150
datasets with variant number of cells (n), sequencing
depths (�), missing rate (ρ) as well as the number of loci
(m) and the number of subclones (K). The 150 datasets
are divided into five groups (denoted G3–G7), each of
which contains 30 datasets. In each group we change
one parameter and keep other parameters fixed. Under
each parameter setting, we generate 10 replicates with
different total reads matrix D and mutant reads matrix X.
In addition to the variable parameter, we set the default

parameters in each group as follows: number of cells (n)
is 100, number of loci (m) is 100, ADO rate (μ) is 10%, miss-
ing rate (ρ) is 20%, sequencing depths of all single cells (�)
are 3, and the number of subclones (K) is 4. The ground
truth (including genotype matrices Z, L and tree structure
T ) of G3–G5 is shown in Figure S4, and the ground truth
of G6 and G7 is shown in Figure S5 and S6, respectively. To
simulate coverage heterogeneity caused by amplification
noise under different sequencing depths [3], we set the
divergence parameter of negative binomial distribution,
s = 100 when generating total reads. Under the ground
truth of G5, we show examples of simulated data of
total reads under different sequencing depths. The large
variance of simulated data shows high false positive and
false negative rates due to nonuniform amplification
(Figure S7). The detailed simulation process can be found
in Supplementary Note 5, and the specific parameter
settings of G3–G7 can refer to Table S2.

Real data

In addition to simulation data, we also test BiTSC2

on two sets of real scDNA-seq data. One is from the
metastatic colorectal cancer patient CRC2 in [33], which
includes 141 cells from the primary colorectal tumor
and 45 cells from a matched liver metastasis by single
cell DNA target sequencing of 1000 cancer genes with
an average sequencing depth of 137×. The sequencing
data are available in NCBI Sequence Read Archive
under accession number SRP074289. The other one is
the single nuclei exome sequencing data of estrogen-
receptor positive (ER1+/PR1+/Her22−) breast cancer
(ERBC) patient in [5] and [34], denoted as ERBC dataset.
We use the 55 cells, include 45 tumor cells and 10
matched normal cells, studied in [34]. The data are
available in Sequence Read Archive under accession
number SRA053195.

Evaluations
We compare the performance of our algorithm to Robust-
Clone, SCITE[11, 13], BEAM [11, 12], SiFit [11, 17] and
SCARLET [24], five recent algorithms that perform sin-
gle cell DNA genotype recovery and tumor tree analy-
sis. Our evaluation metrics include: (1) the error rate of
the recovered scSNV genotype matrix; (2) adjusted Rand
Index (ARI) [35, 36], the similarity of subclone assign-
ment between ground truth and the estimates (details
can refer to Supplementary Note 6); (3) MP3 similarity
[37], the similarity measure of the reconstructed tree
and the true tree. Since RobustClone and BEAM do not
make explicit infinite site assumption, we choose MP3
similarity as the metric for tree reconstruction, which
allows mutations to occur multiple times on the tree.

Results
BiTSC2 jointly infers both SNV and CNA states
Since BiTSC2 models both single-cell SNV and CNA
data jointly, we design two sets simulations: one set
corresponds to the case where CNAs do not affect SNV

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
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states but induce extra observable subclone genotype(s)
on the tree (Figure S1 and G1, scenario (iii) in Figure 1D
with g = 0); the other set includes CNAs that overlap with
SNVs and result in gain or loss of mutant copies (Figure
S2 and G2, scenario (iii) in Figure 1D with g = 1). We
simulate ten replicates for each setting. We compare the
performance of BiTSC2 to SCARLET, the only algorithm
of tumor tree inference that accounts for SNV loss
caused by CNA. In addition, we also add RobustClone,
SCITE, BEAM and SiFit, four recent methods to infer
clone/cell/mutation tree with only one source of marker
(SNV), in the comparison. As SCARLET needs an inferred
CN tree for summarization of supported loss set as input,
we provide it with the true CN tree. We provide BiTSC2 the
real segmentation information. The prior settings and
the MCMC configurations of BiTSC2 for analyzing these
simulation datasets are in Tables S3 and S4. We perform
BiTSC2 with the number of subclones K in range from 3 to
10, and select the best fitted K according to the modified
BIC (Methods and Supplementary Note 4).

In the first group (G1) of simulations, we use a simple
bifurcation structure as ground truth, which includes
a branch of clone derived by a CN change (Figure S1).
Figure 3A shows the comparison results of simulations
in G1. For tree reconstruction, we apply MP3 similarity
[37]. BiTSC2 and RobustClone all display satisfactory
accuracies (Figure 3A). Since MP3 measures tree simi-
larity based only on SNV triplet structures, the CNA-
(only) induced lineage in the simulation does not affect
the measurement. Thus, RobustClone shows slightly
less variance in performance. However, SCARLET shows
large variance for tree reconstruction. The subclone
assignment results of BiTSC2 are more consistent with
the ground truth than that of RobustClone, SCITE,
BEAM and SiFit, which only analyze one source of data
(SNV)(Figure 3A). Since SiFit and SCITE do not output
subclone assignment information, we apply K-medoids
clustering based on the distance of cell along their
reconstructed cell lineage tree (SiFit) or mutation tree
(SCITE) to cluster cells into subclones as shown in [11]. As
SCARLET does not cluster cell with two source markers
in its final output, we exclude it in the evaluation of
subclone assignment. Among all compared algorithms,
only BiTSC2 is able to reliably recover the CNA states
with accuracy of 100% (Figure S8). For SNV genotype
recovery, BiTSC2 also shows higher accuracy than others
(Figure 3A).

Next, we evaluate BiTSC2 under more complex sce-
nario. In this group, the data are generated from a tumor
tree with six subclones, in which SNV states are partly
affected by overlapping CNAs (gain and/or loss of mutant
copy caused by CNAs, Figure S2). Both BiTSC2 and SCAR-
LET show their advantages in joint modeling of the two
sources of data (Figure 3B, Figure S9). BiTSC2 performs
best in tree reconstruction. In most cases, it almost fully
recovers the true tree structure. SCARLET, owing to the
given CNA information, also shows consistent perfor-
mance. We note that, in this comparison we only provide

BiTSC2 the segmentation information, and it has higher
MP3 similarity than SCARLET in 9 out of 10 simulations.
In addition, BiTSC2 is able to successfully recover the
CN profiles with mean accuracy of 99.32%, thus result-
ing in a more accurate subclone assignment (Figure 3B,
Figure S9). More importantly, BiTSC2 can also correctly
infer the phase indicator (fully recovered in 7 out of
10 simulations), which reflects the detailed overlapping
relationship of SNVs and CNAs (Figure S10).

The SNV recovery errors of BiTSC2 are significantly
lower than other methods. The results are compara-
ble for RobustClone, SCITE, BEAM, SiFit and SCAR-
LET, where SCARLET is slightly better than the other
four single source only methods. Although SCARLET
accounts for CNA information in its algorithm, the
CNA states as well as the CN tree have to be inferred
by extra methods and packages. When providing true
segmentation information to BiTSC2, it outperforms
SCARLET (Figure 3B). We also apply BiTSC2 without real
segmentation information (each locus as independent
segment), it still shows comparable tree reconstruction
performance and excellent genotype recovery ability
(Figure S11).

BiTSC2 recovers SNV genotypes and assigns cells
with high accuracy on synthetic datasets
We further conduct five groups of simulations where
CNA states do not explicitly affect SNV states and clone
tree topology. In other words, in these sets of simulations,
CNAs do not provide much extra information to the tree
reconstruction (Figures S4–S6, including scenarios (i) and
(ii) in Figure 1D with g = 0). We compare BiTSC2 mainly
to the four single source methods, RobustClone, SCITE,
BEAM and SiFit. We evaluate their performance under
change of settings such as, number of cells, sequencing
depth, missing rate, number of loci and number of sub-
clones (see Methods for details). Still, we provide BiTSC2

the real segmentation information. The prior settings
together with MCMC and model selection configurations
of BiTSC2 can refer to Tables S3 and S4 and Supplemen-
tary Note 4.

Figure 4 shows the detailed comparison performance
of 5 algorithms in G3–G7 with three measurements. The
overall benchmarks at differed settings are displayed in
Figure S12. In general, compared with the other four
algorithms, BiTSC2 has high accuracy in recovering SNV
genotypes (top row in Figure 4 and Figure S12), high
robustness in subclone assignments (2nd row in Figure 4
and Figure S12), and high power in clone tree reconstruc-
tion (3rd row in Figure 4 and Figure S12).

Specifically, BiTSC2 recovers SNV genotypes with little
error rate in almost all simulation settings where the
default sequencing depth (�) is set to 3. The accuracies
of RobustClone and BEAM get significantly improved
as the sequencing depths increase (G4 in Figure 4). The
accuracies of SCITE and SiFit also show improved per-
formance with increasing the sequencing depths (G4 in
Figure 4). For default depth, RobustClone, SCITE, BEAM

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
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Figure 3. Comparison of performance on G1 and G2 for scSNV genotype recovery, subclone assignment and tree reconstruction. (A) The violin plot of
BiTSC2 with real segments as input, SCARLET with true CN tree and supported loss set as input, RobustClone, SCITE, BEAM and SiFit for error rate of
recovered scSNV genotype matrix, ARI of subclone assignment and MP3 similarity on G1 dataset, where 0, 1 and 1 indicate best performance for error
rate, ARI and MP3 similarity, respectively. (B) The violin plot of BiTSC2 with real segments as input, SCARLET with true CN tree and supported loss set
as input, RobustClone, SCITE, BEAM and SiFit for error rate of recovered scSNV genotype matrix, ARI of subclone assignment and MP3 similarity on G2
dataset, where 0, 1 and 1 indicate best performance for error rate, ARI and MP3 distance, respectively.

Figure 4. Comparison of detailed performance on G3-G7 for scSNV genotype recovery, subclone assignment and tree reconstruction among BiTSC2

with real segments as input, RobustClone, SCITE, BEAM and SiFit, where 0, 1 and 1 indicate best performance for error rate, ARI and MP3 similarity,
respectively.

get lower error rates when more cells (N) are sampled
and/or more loci (M) are sequenced, but shows reduced
accuracy as the missing rates (ρ) and the number of
subclones rise. Different from these three algorithms,
SiFit shows increasing error rates with more cells (N).

The subclone assignment results of BiTSC2, Robust-
Clone and SCITE are mostly consistent with the ground

truth. BEAM and SiFit are slightly less consistent (2nd
row in Figure S12), but BEAM gets improved with the
increase of number of cells (N), number of loci (M) and/or
sequencing depths (�) and SiFit performs better with
less cells (N), more loci (M) and/or deeper sequencing
depths (�) (2nd row in Figure 4). The tree reconstruction
accuracies, which are measured in MP3 similarity, are
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almost over 0.9 in all cases for BiTSC2. For RobustClone,
the tree reconstruction performance is also good in
simulations with moderate missing rates and fewer
subclones. The MP3 similarities between real tree and
tree recovered by SCITE mostly near 0.5, but the similar-
ity increases with the increase of sequencing depth(�),
number of loci (M) and number of subclones (K). BEAM
and SiFit are very sensitive to number of cell, sequenc-
ing depth and number of loci. And BEAM only per-
forms satisfactorily in scenarios with sequencing depth
over 5.

In the above comparisons BiTSC2 was given the real
segmentation information as input. Reliable segmenta-
tion may offer extra information and jointly updating
CNA states of multiple loci with in the same segment
could greatly improve the likelihood of the model.
However, this information may not always be reliably
estimated. In that case, we can either take the more
refined raw bins (the bins after binning step before
segmentation and CNA calling) as segments or use
locus specific segments (each gene/SNV locus as a
segment). Here we additionally evaluate BiTSC2 under
locus-specific configuration, where the Los are updated
one locus at a time. Although the performance results
of BiTSC2 reduce slightly as compared with cases where
correct segmentation information is provided, the overall
accuracies are still consistently good (Figures S13 and
S14).

BiTSC2 recovers single-cell phylogeny of
metastatic colorectal cancer
We apply BiTSC2 to real scDNA-seq data of colorectal can-
cer patient CRC2 in [33], which includes both primary and
metastatic samples. After filtering for some low-coverage
data, the sequencing data of 182 single cells with 36
SNV loci were retained for further analysis. We directly
input the raw reads covering these loci to BiTSC2 and use
locus-specific segment setting for CNAs. The cell-specific
sequencing depth of each single cells can be found
in the Supplementary Table S4 in [33]. The priors and
MCMC settings for running BiTSC2 are shown in Tables S5
and S6.

BiTSC2 fits a clone tree with 8 subclones as shown in
Figure 5A (see Figure S15 for the BIC values). Figure 5B
displays the prevalence of cells in each subclone. The
metastatic aneuploid cells are mainly distributed in
subclones 7 and 8, whereas the primary aneuploid cells
are predominantly clustered in subclone5 (Figure 5C).
Although the cells occupied the other subclones were
labeled diploid in [33], we still find considerable CNA
events occurring in these targeted genes (Figure 5D).
Extensive point mutations are identified in primary
(subclone5) and metastatic (subclones 7 and 8) tumor
cells (Figure 5E).

Interestingly, our inferred tumor clone tree and
genotypes show that metastatic cells (subclones 7 and
8) mainly share the same CNA events on PTPRD and
LINGO2:3, which arise from primary sites (subclone5).

Contrary to the polyclonal seeding (i.e. two independent
clones with different mutations migrate from primary
colon cancer to liver metastases at different time points)
conclusion based on SCITE tree in the original study [33],
our result indicates that the liver metastasis from colon
is a single event, which supports the monoclonal seeding
hypothesis and is consistent with the inference based on
the SCARLET tree (Figure S16) [24].

Besides the metastatic lineage, we also identified
another lineages with unique mutations. The lineage
leads to subclone6, which consists of a small proportion
of cells that carries point mutations on CIITA and PIK3CG.
Such lineage was also identified by SCITE and SCARLET
trees (Figure S16AB).

BiTSC2 recovers single-cell phylogeny of breast
cancer
We additionally perform BiTSC2 on the ERBC dataset,
which contains 55 cells. The raw single-cell sequencing
dataset are retrieved from the Sequence Read Archive
(No. 053195) in FASTQ format [5, 34]. The information
of mean sequencing depths for individual samples can
refer to Table S1 of [34]. We adopt the pipeline given
by [34] in their Supplementary Note to preprocess the
raw data (Supplementary Note 7 for brief steps). After
preprocessing, a total of 1137 gold-standard SNV loci with
their raw mutant and total reads are extracted and used
for downstream analysis. The priors and MCMC settings
for running BiTSC2 are shown in Tables S6 and S7.

We apply BiTSC2 to the processed ERBC dataset and
infer a best fit clone tree with 9 subclones (Figure 6A).
The BIC values for 3–10 subclones can be found in Figure
S17. Subclones 1, 2 and 3 are inferred to be ancestor
clones with no cells assigned in. Subclones 4 and 8 con-
tain only normal cells, and subclones 5 and 6 are tumor
only clones. With only one cell assigned to subclone5, the
majority of tumor cells are concentrated in subclone6.
The other tumor cells are distributed in subclones 7
and 9. Note that BiTSC2 is not aim for labeling tumor
or normal cells; the labels of tumor cell or normal cell
are from [5] according to the sampling sites. The normal
cells are most possibly from matched adjacent normal
tissue, which may already possess many somatic muta-
tions. In the study by [34], they also identified many
somatic mutations in the normal cells with the same
dataset (Figure 6 in [34]). Figure 6BC show the inferred
CNA and SNV genotype matrices by BiTSC2 (L and Z).
From the results we can see some CN events shared
by most subclones (3–9 and 4–9, Figure 6B), which con-
firming the findings that somatic CNAs are acquired
early on during breast cancer development [5]. We fur-
ther find many loci with increased CN occur on the
mutant alleles in the major tumor clone (subclone6). In
addition, there are also some CNA-driven loss of muta-
tions in subclones 7 and 9 (Figure 6BC). We then inves-
tigate previously reported non-synonymous mutations
in [5, 34]. We find that all these mutations are inferred
to have overlapped copy gains, to some extent, in the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac092#supplementary-data
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Figure 5. BiTSC2 reconstructs tumor phylogeny of metastatic colorectal cancer. (A) The phylogeny tree of metastatic colorectal cancer reconstructed by
BiTSC2. (B) The subclone assignment. (C) The number of overlapped cells contained in subclones identified by BiTSC2 and cells contained in the targeted
region, where PD stands for Primary Diploid, PA stands for Primary Aneuploid, MD stands for Metastatic Diploid, and MA stands for Metastatic Aneuploid
in [33]. (D) The CNA subclonal genotype matrix estimated by BiTSC2, where LINGO2: 1–5 represent different loci in the genomic region of LINGO2 on the
chromosome, as well as SPEN:1-2 and APC:1-2. (E) The SNV subclonal genotype matrix estimated by BiTSC2.

Figure 6. BiTSC2 reconstructs tumor phylogeny of breast cancer. (A) The phylogeny tree of breast cancer reconstructed by BiTSC2. (B) The CNA subclonal
genotype matrix estimated by BiTSC2. (C) The SNV subclonal genotype matrix estimated by BiTSC2. (D) The CNA subclonal genotype matrix of 10
previously reported nonsynonymous mutations. (E) The SNV subclonal genotype matrix of 10 previously reported nonsynonymous mutations.

same region (Figure 6D). Moreover, by combining CNA
and SNV genotypes together with the phase indicator, we
infer that the copy gain happened in DNM3 and PIK3CA
in tumor subclone6 possibly occurred on their mutant
allele (Figure 6DE).

Discussion
Computational method based scDNA-seq data for tumor
ITH and evolutionary history inference can provide
important insights to the understanding of tumor
progression and metastasis mechanism and provide
guidance to tumor treatment and response. Most of such
methods only utilize one source of information, either
SNV or CNA, which may lead to biased estimation of
the true evolution history of cancer. In this study, we
propose BiTSC2, a Bayesian-based method that integrates
SNV and CNA markers from scDNA-seq data to jointly
infer tumor clone tree. BiTSC2 is a unified Bayesian
framework, which takes the raw total reads and mutant
reads of single cells generated by sequencing as input
and takes into account sequencing errors and models

ADO rate, as well as missing rate. It also optimizes SNV
and CNA subclonal genotype matrices, assigns cells to
subclones and constructs subclonal tree. It can also
estimate the overlapping relationship between CNA and
SNV. BiTSC2 has a high accuracy for subclone assignment
and SNV subclonal genotypes matrix recovery compared
with existing methods such as RobustClone, BEAM
and SCARLET. BiTSC2 can handle low-depth single-cell
sequencing data with strong performance. BiTSC2 also
provides high accurate and robust estimation of the
missing rate in scDNA-seq data (Figure S18).

The simulations designed in this study simplified
the SNV distribution along the chromosomes. While in
reality SNVs occur randomly on all genomic regions,
they were simulated in a neatly arranged manner.
Since we assume SNVs arise independently between
different loci and infer the genotype of SNV locus by
locus. As long as the SNVs generated are informative in
distinguishing subclones, whether they occur randomly
on chromosomes will not affect the inference of our
model. We have tested BiTSC2 on an exemplar simulation
with 10 replicates, where SNVs randomly and uniformly
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occur on all genomic regions (Figure S19A). BiTSC2 can
fully recover the SNV and CNA genotypes of cells and
accurately assign cells into subclones (results not show).
Moreover, SNVs could be also sparsely and nonuniformly
distributed within each CNA segment. We additionally
performed an simulation with sparsely distributed SNVs
as in Figure S19B. BiTSC2 also works robustly, when
provided the CNA segment information, BiTSC2 could
fully recover the SNV and CNA genotypes of cells and
accurately assign cells into subclones (results not show).

In general, BiTSC2 prefers to update all the loci in the
same CNA segment together, since loci in the same
segment share CNA status. There are many existing
methods can be applied to perform segmentation, for
example, HMMcopy, copy number, etc. [26]. In cases when
segment information can not be reliably obtained, BiTSC2

can also update Lo and L locus by locus in the same way
as updating Zo and Z. In the results on synthetic data,
we show that the accuracy and robustness of updating
one locus at a time are still higher than RobustClone
and BEAM in most cases (see Section 3.2, Figure S11,
Figures S13 and S14). In this way, BiTSC2 may provide a
raw estimation of CNA segments based on the inferred
CNA genotype matrix L.

At a given number of subclones, BiTSC2 will place
each cell into the most likely subclones according to
their mutation profiles (both SNV and CNA) and make
inference to subclone genotypes. The number of sub-
clones K is determined by model selection procedure. In
some cases, BiTSC2 may recover a few empty subclones
under the selected number of K. These subclones are
possibly latent subclones, that are either un-sampled or
extinct ancestors of all other descendent subclones. Such
subclones may be pruned in the final results if only the
observed subclones are being interested.

The full probabilistic model in BiTSC2 describes the
generating process in a comprehensive manner. Espe-
cially, we purposed the phase indicator, which reflects
the overlapping relationship of SNV and CNA in the same
genomic region. Under such setting, our model can detect
both gains and losses of mutant copy due to CNA. In
contrast, the stepwise construct and refine approach (i.e.
SCARLET) could not recover gains of mutant copy from
the data. In addition, the optimization of SCARLET may
fall into local optimum with integer-linear programming
and the subtree root may be misplaced during the refine-
ment [24]. For example, in the toy model of Figure 1A,
SCARLET misplaces cells in subclone4 as the siblings
of cells in subclone2. Thus, it failed to reconstruct the
most parsimonious tree as shown in ground truth (Figure
S20). In contrast, BiTSC2 can fully recover the topological
structure in the true tree.

Indeed, different values of g will indicate whether CNA
affects the CN of the mutant allele on overlapping locus.
This will affect the genotype matrix Z, thereby affecting
the likelihood computation of mutant reads (Eq. 3), and
further affecting the sampling of parameters C, T , μ and
w (the posterior computation in Supplementary Note

3). In the example of Figure 1A, the CNA occurs on the
mutant allele on locus B under the ground truth, then
gB = 1 and the mutation states are ZB = (0, 1, 0, 0, 1) (the
2nd row of Z in Table S1). However, if the phase indicator
is erroneously estimated as gB = 0, the SNV states of
locus B will be derived as ZB = (0, 1, 0, 1, 1). Thus, it will
directly affect the likelihood computation in Eq. 3 in turn
impact the sampling of other parameters.

Despite the application of phase indicator and the
comprehensive design of BiTSC2, its model assumptions
are still a simplified version of the reality. In our model,
we assume SNV and/or CNA mutations occur indepen-
dently among different loci and each mutation (including
SNV and CNA) originates only once in a specific subclone,
i.e. the infinite site assumption. In practice, however,
such assumption may be violated. Multiple (point) muta-
tions may hit the same site in the genome. Moreover,
CN changes may happen in overlap or nested regions
on the genome [22]. In addition, the effects of epistatic
interactions among genes may induce extra correlations
between different SNVs or CNAs. These complications
are beyond the discussion of our present model. However,
working on relaxing one or more assumptions in joint
modeling of single cell SNV and/or CNA data can be a
promising future direction.

Key Points

• We proposed Bayesian method, BiTSC2, for tumor clone
tree inference by joint analysis of single-cell SNV and
CNA data.

• BiTSC2 employs a tree coupled generating model that
accounts for allelic dropout rate, sequencing errors and
missing rate, as well as assigns single cells into sub-
clones.

• BiTSC2 involves phase indicator in its model that models
the overlapping relationship of SNV and CNA on the
tumor tree.

• BiTSC2 shows high accuracy in genotype recovery, sub-
clonal assignment and tree reconstruction on synthetic
and real tumor data.
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