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Júlio Miguel Alvarenga1☯, Cecı́lia Rodrigues Vieira2☯*, Leandro Braga Godinho1, Pedro

Henrique Campelo3, James Purser Pitts2, Guarino Rinaldi Colli4

1 Programa de Pós-Graduação em Ecologia e Conservação, Departamento de Biologia, Universidade do

Estado de Mato Grosso, Nova Xavantina, Mato Grosso, Brazil, 2 Department of Biology, Utah State

University, Logan, Utah, United States of America, 3 Programa de Pós-Graduação em Biodiversidade,

Ecologia e Conservação, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil,

4 Departamento de Zoologia, Universidade de Brası́lia, Brası́lia, Distrito Federal, Brazil

☯ These authors contributed equally to this work.

* ceciliavieira@icloud.com

Abstract

Understanding how and why biological communities are organized over space and time is a

major challenge and can aid biodiversity conservation in times of global changes. Herein,

spatial-temporal variation in the structure of velvet ant communities was examined along a

forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters

and interspecific interactions upon community assembly. Velvet ants were sampled using

25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gra-

dient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy,

cooler, moister). Dataloggers installed on each trap recorded microclimate parameters

throughout the study period. The effects of spatial distances, microclimate parameters and

shared ancestry on species abundances and turnover were assessed with canonical corre-

spondence analysis, generalized dissimilarity modelling and variance components analysis.

Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the

wet season. There was pronounced compositional turnover along the environmental gradi-

ent, and temporal variation in richness and abundance was stronger than spatial variation.

The dry season blooming of woody plant species fosters host abundance and, subse-

quently, velvet ant captures. Species were taxonomically clustered along the gradient with

Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associ-

ated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant

role of environmental filters on community assemble, with physiological tolerances and host

preferences being shared among members of the same lineages. Induced environmental

changes in Cerrado can impact communities of wasps and their hosts with unpredictable

consequences upon ecosystem functioning and services.
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Introduction

Ecological and historical factors interact in complex ways and operate at different scales during

the assembly of biological communities [1–3]. At wide spatial-temporal scales, the role of spe-

ciation, extinction and dispersion is more prominent, whereas at local scales community

assembly is mediated by neutral processes, environmental filters and ecological interactions

[4–6]. Environmental filters promote the co-occurrence of species that share suitable traits,

either due to inheritance from a common ancestor or due to convergence, whereas competi-

tion acts in the opposite direction, limiting the coexistence of similar species [7]; because

related species tend to be more similar, environmental filters can result in phylogenetic cluster-

ing, whereas competition can result in phylogenetic overdispersion [3]. Yet, contemporary

coexistence theory indicates that phylogenetic clustering can also result from large fitness dif-

ferences and competitive exclusion, whereas phylogenetic overdispersion may arise from envi-

ronmental filters acting on species with similar traits (when traits are convergent) or lack of

stabilizing niche differences between closely related species (when traits are conserved) [8, 9].

The integration of phylogenies with ecological data obtained at different scales is regarded as

essential in contemporary studies on community assembly [10–12]. However, this integration

is limited by the Darwinian deficit, or the lack of knowledge on the phylogenetic relationships

between species, especially in tropical regions [13]. Furthermore, the identification of relevant

scales for conducting studies on community assembly is a major challenge [14, 15], especially

in multitaxonomic approaches, given the great variation in body size, dispersal capacity and

generation time between species [16–20].

Since the seminal works of Whittaker [21–23], ecological gradient analysis is used to under-

stand the effects of spatial and environmental factors on species distributions and community

assembly, as well as community boundaries and species turnover (beta diversity) at different

spatial scales [24–26]. In addition, the effects of spatial distances and environmental gradients

upon beta diversity are relevant to understanding the sensitivity of biological communities to

changing environments, such as climate change [27–29] or invasive species [30–32]. Ecological

gradient analysis has become popular with the development of community ordination meth-

ods [33] and their modern alternatives [34–36], as well as their implementation in a modular

open source platform for statistical computing and graphics [37, 38].

In this work, we examined the roles of spatial distances, microclimate parameters, and taxo-

nomic relationships upon the structure of velvet ant (Hymenoptera, Mutillidae) communities

along a forest-savanna gradient in the Cerrado of central Brazil. Despite their common name,

velvet ants are ectoparasitoid wasps that use larvae or pupae of other insects, mainly bees or

other solitary wasps, as hosts [39, 40]. Therefore, they can regulate host populations and play a

fundamental role in ecosystem functioning. Velvet ants comprise about 4200 species distrib-

uted mainly in the tropical region [41, 42]. They have marked sexual dimorphism, evidenced

by the usually winged males as opposed to wingless females, but also reflected in body size, pat-

tern of setae and coloration [43–46], which makes the taxonomy of the group complicated.

The phylogenetic relationships among the major lineages of velvet ants are not well established

[47, 48] and virtually nothing is known about the relationships among Neotropical species [49,

50]. Most Neotropical velvet ants are diurnal, more active early in the morning and late in the

afternoon [40, 51], and seem to prefer open and dry environments [52–54]. Temperature plays

an essential role in the development and survival of ectothermic parasitoids, as well as on their

hosts and the asynchronous pattern of population fluctuations of both [55]. Therefore, tempo-

ral and spatial variation in temperature should be an important environmental filter affecting

the abundance and composition of velvet ant communities.
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Herein, the following questions were addressed: (1) does the abundance and richness of vel-

vet ants vary predictably throughout the year and along the environmental gradient? (2) what

are the relative roles of spatial distance and microclimate parameters on the community struc-

ture? and (3) are velvet ants taxonomically structured along the environmental gradient? By

answering these questions, the goal was to understand the response of velvet ant communities

to spatial and environmental variation, to assess the role of environmental filters and interspe-

cific interactions on the assembly of velvet ant communities, and to discuss the potential

impacts of environmental change upon these communities.

Materials and methods

Study area

This study was conducted at Parque Municipal Mário Viana, locally known as “Parque do

Bacaba” (14˚42’24” S, 52˚21’9” W), in the municipality of Nova Xavantina, Mato Grosso state,

Brazil (Fig 1). With 492 ha, it is located in the western portion of the Cerrado biome, close to

its contact with Amazonia [56]. The park has forest habitats, such as “cerradão” (dense wood-

land savanna) or gallery forest, and savanna habitats, such as “cerrado rupestre” (saxicolous

vegetation) or cerrado sensu stricto [57, 58]. The cerrado sensu stricto is characterized by trees

3–8 m high, abundant herb-grass stratum and a savannic appearance, whereas cerradão is

characterized by trees 8–12 m high, closed canopy and a forest appearance [59–61]. The

regional climate is markedly seasonal, with a dry season from May to September and a rainy

season from October to April [62]. The annual precipitation varies between 1300 mm and

1500 mm and the mean annual temperature is 26˚C [63].

Sampling design

The data were collected in a forest-savanna gradient from cerrado sensu stricto (open canopy,

warmer, drier) to cerradão (closed canopy, cooler, moister). Twenty-five arrays of pitfall traps

with drift fences were installed at every 30 m along a linear transect of approximately 750 m.

Each pitfall trap array consisted of four 35 l plastic buckets buried in the ground and arranged

as a Y-shape, with the central bucket connected to three peripheral buckets by 6 m long and 50

cm high drift fences made of galvanized steel flat sheets. Traps, numbered 1 to 25 from cerrado

sensu stricto to cerradão, were opened for one week every month from August 2015 to July

2016. When opened, traps were checked every day and velvet ants collected with forceps,

stored in vials separated by traps, and preserved in 100% ethanol. Subsequently, velvet ants

were mounted and identified (many to genus level or morphospecies, including several unde-

scribed taxa). Only female velvet ants were represented in our samples. Fieldwork was con-

ducted under permit SISBIO #335343 from Instituto Chico Mendes de Conservação da

Biodiversidade (ICMBio).

Microclimate parameters

Air temperature and relative humidity were recorded at each pitfall trap array, every 10 min-

utes during the entire study period with dataloggers (HOBO Pro v2 Temperature/ Relative

Humidity, Onset Computer Corporation, MA, EUA). Dataloggers were installed two meters

away from the central bucket, 50 cm high from the ground and sheltered from rain and direct

solar radiation by a PVC hood.

Temperature and relative humidity records from dataloggers were averaged by hour/day/

trap. Subsequently, monthly absolute values (minimum, maximum), means and standard

deviations were estimated. This resulted in 14 microclimate parameters for each trap and
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month (25 traps X 12 months = 300 observations for each parameter): (1) absolute maximum

relative humidity (Hmaxa), (2) absolute maximum temperature (Tmaxa), (3) absolute mini-

mum relative humidity (Hmina), (4) absolute minimum temperature (Tmina), (5) absolute

standard deviation of relative humidity (Hsda), (6) absolute standard deviation of temperature

(Tsda), (7) maximum relative humidity (Hmax), (8) maximum temperature (Tmax), (9) mean

relative humidity (Hmean), (10) mean temperature (Tmean), (11) minimum relative humidity

(Hmin), (12) minimum temperature (Tmin), (13) standard deviation of relative humidity

(Hsd), (14) standard deviation of temperature (Tsd). These parameters represent different

microclimate aspects such as its central tendency and variability, as well as dominant monthly

patterns and extreme values. A previous study showed that the microclimate is highly corre-

lated with structural habitat and vegetation parameters, and is a good predictor of variation in

the structure of velvet ant communities [52].

Fig 1. Study area. Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. Within a transect

(green points) and along an environmental gradient from cerrado sensu stricto (open canopy, drier, warmer)

to cerradão (closed canopy, moister, cooler), 25 evenly spaced arrays of Y-shaped pitfall traps with drift

fences were placed to sample velvet ants for 12 months; each array had a datalogger to record microclimate

parameters of relative humidity and temperature. The overview map depicts the extent of Cerrado (light

green) within Brazil (grey) and the municipality of Nova Xavantina location (white star).

https://doi.org/10.1371/journal.pone.0187142.g001
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Due to technical problems with some dataloggers, microclimate parameters were not

recorded in September 2015 in trap 25, in October 2015 in trap 25, in March 2016 in trap 6,

and in July 2016 in trap 2 (4 in 300 or 1.33% missingness). Missing values can reduce the

power of statistical analyses due to loss of information and degrees of freedom. Among the var-

ious methods available to estimate missing values [64, 65], multiple imputation is considered

the most robust because it requires less assumptions about patterns of missing data [66, 67]

and, in some cases, introduces less bias in analyses than the simple removal of missing data

[68]. Missing values were estimated by averaging 100 imputations using package Amelia II
[69], which employs an “expectation-maximization with bootstrapping” (EMB) algorithm

suitable for time series data.

Statistical analyses

To explore the associations among microclimate parameters, and between traps and microcli-

mate parameters, a Principal Components Analysis (PCA) of the correlation matrix [70] was

implemented with package vegan [71]. Species accumulation curves based on samples (pitfall

trap arrays) and individuals were calculated to evaluate sampling sufficiency [72] with package

vegan. The Chao1 index [73, 74] was used to estimate the asymptotic richness of the velvet ant

community, while reducing the effects of subsampling and accounting for the presence of

undetected species with package vegan. A Correspondence Analysis (CA) was used to explore

the associations within species, and between species and traps, with package CA [75]. To

reduce the influence of rare species, only those with number of captures higher than average

were used [76]. Prior to analyses, species abundance data (number of captures) were trans-

formed to log10. To represent the spatial-temporal variation in number of captures and rich-

ness, a surface graph was produced by fitting a local regression model using package locfit [77]

with the default settings.

To identify the best environmental predictors of changes in community structure along the

gradient, two approaches were used: Canonical Correspondence Analysis [78] and a combina-

tion of Generalized Dissimilarity Modelling [35] with variance partitioning [79]. The CCA was

performed with package vegan and started with a null model, containing only the intersection,

followed by the stepwise addition of microclimate parameters considering the Akaike Infor-

mation Criterion (AIC). Model significance was determined by an analysis of variance

(ANOVA) based on 1000 Monte Carlo randomizations. As in CA, only species with number

of captures higher than average were used. Because GDM is not as widely used as PCA, CA or

CCA in ecological studies, we provide more details about its principles and algorithm. GDM is

a novel nonlinear matrix regression method that relates patterns of species turnover between

pairs of sampling locations to environmental and geographic distances [80, 81]. While CCA

associates raw species abundances with environmental (microclimate) parameters, GDM asso-

ciates dissimilarity in species composition (e.g., beta diversity) to environmental dissimilarity

and spatial distance between trap arrays. It has two major advantages over classical linear

methods (like matrix regression, CCA), by accommodating (i) variation in the rate of species

turnover and (ii) nonlinear relationships between species turnover and environmental/spatial

separation. This is achieved (i) by nonlinear transformation of each environmental predictor

using maximum likelihood and monotonic I-splines and (ii) by fitting GDM models using

generalized linear modelling and specifying adequate link and variance functions [27, 35].

GDM was implemented with package gdm [82] using a Bray-Curtis dissimilarity matrix [83]

to represent beta diversity, and the default settings.

To assess the existence of taxonomic structure in the distribution of velvet ants along the

environmental gradient, a Variance Components Analysis (VCA) was used to describe the
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hierarchical effects of genera, subtribes, tribes and subfamilies (predictors) upon species

preferences to microclimate (response). In the absence of information about phylogenetic

relationships between velvet ant species, the taxonomic hierarchy was considered as its best

approximation [84–86]. Species microclimate preferences were considered as their scores

on the first axis of the CCA (above), which correspond approximately to the average of

microclimate predictors weighted by species captures in each trap, i.e., their microclimate

optima [78]. High components of variance indicate differences in microclimate preferences

between taxonomic groups, and phylogenetic conservatism. The VCA was implemented with

package VCA [87] through a linear mixed model (LME), where predictors were considered as

random effects and model parameters were estimated through restricted maximum likelihood

(REML) [88]. All statistical analyses were performed in R [38], using a 5% significance level.

Results

The first two PCA axes (Fig 2) jointly reduced 86.33% of the total variation in microclimatic

parameters (PC1 = 60.39%, PC2 = 25.94%). This ordination described an environmental gradi-

ent of decreasing air temperature and increasing relative humidity from cerrado sensu stricto
to cerradão (Fig 2, S1 Table).

Overall, 1737 individuals of velvet ant representing 62 species and 19 genera were collected

during the study (Fig 3, S2 Table). The most abundant species were Traumatomutilla sancta
Mickel, 1964 and Hoplomutilla pollens (Kohl, 1882). Species accumulation curves showed a

tendency for stabilization, and few species would be added with increased sampling effort (Fig

4). The estimated richness (Chao1) of 63 ± 1.7 species resembled the observed richness, further

indicating the quality of the sampling effort. The first two axes of the CA jointly reduced 42.8%

of the total association between traps and velvet ant species (CA1 = 30.6%, CA2 = 12.2%). The

ordination split traps in two groups, corresponding to cerrado sensu stricto and cerradão (Fig

5, S3 Table). Species of Sphaeropthalmina, mainly in the genus Traumatomutilla and especially

T. geographica (Gerstaecker, 1874), T. bellifera (Cresson, 1902), and T. integella (Cresson,

1902), were strongly associated with traps (1–12) in cerrado sensu stricto, whereas species of

Pseudomethocina, especially Horcomutilla fronticornis (Burmeister, 1854), Mickelia harpyia
(Gerstaecker, 1874) and Pseudomethoca gounellei (André, 1895), were more associated with

traps (13–25) in cerradão. Velvet ant richness and abundance were highest in the first half of

the rainy season (November and December) and in the open portion of the gradient (cerrado

sensu stricto); the temporal variation was more pronounced than the spatial variation (Fig 6).

The CCA model selection indicated mean relative humidity and absolute minimum tem-

perature as the best microclimate predictors (F2,22 = 3.62, P< 0.05), reducing 23% of the varia-

tion in species abundances between traps. The CCA ordination of traps and species resembled

the CA, revealing strong community structuring along the gradient (Fig 7, S4 Table). Species

of Sphaeropthalmina, mostly in the genus Traumatomutilla and especially T. geographica, T.

bellifera e T. integella, were strongly associated with traps characterized by lower mean relative

humidity and lower absolute minimum temperature (cerrado sensu stricto, traps 1–12),

whereas species of Pseudomethocina, especially M. harpyia, H. fronticornis and P. gounellei,
exhibited an inverse association (cerradão, traps 13–25).

The Generalized Dissimilarity Modelling (GDM) indicated that microclimate parameters

and spatial distances accounted for 36% of species turnover along the gradient. Spatial dis-

tances reduced only 8% of the explained variation (Fig 8) and GDM revealed species turnover

across all distances encompassed by the transect (Fig 9A–9C). High covariance was detected

between beta diversity explained by microclimatic parameters and spatial distances, corre-

sponding to 44% of the explained variation (Fig 8). Environmental conditions reduced most

Dynamics of velvet ants in a forest-savanna gradient

PLOS ONE | https://doi.org/10.1371/journal.pone.0187142 October 27, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0187142


(48%) of the explained variation in species turnover (Fig 8), the best predictors being absolute

minimum temperature, mean temperature, absolute maximum relative humidity and standard

deviation of temperature (S5 Table). Species turnover was pronounced at low values of abso-

lute minimum temperature and decreased at intermediate values (Fig 9E). In contrast, there

was gradual species turnover for low and intermediate values of standard deviation of temper-

ature, but turnover increased rapidly above this limit (Fig 9D). A continuous species turnover

was observed with increasing values of absolute maximum relative humidity (Fig 9F).

Fig 2. Environmental ordination. Principal Components Analysis (PCA) describing the variation of microclimatic parameters

collected for 12 months in 25 arrays of Y-shaped pitfall traps with drift fences, along an environmental gradient from cerrado

sensu stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. Filled circles represent pitfall

trap arrays. Trap array numbers increase from cerrado sensu stricto to cerradão. The first two principal components (PC1 and

PC2) explained 86% of the variation. Arrow length and direction are proportional to correlation between microclimatic

parameters and ordination axes. Largest eigenvectors: PC1: Tsda, Tsd, Hmin, Tmax, Tmaxa, and Tmean; PC2: Hmax,

Hmaxa, and Hsda. Legend: Hmaxa, absolute maximum relative humidity (%); Hmina, absolute minimum relative humidity (%);

Hmax, maximum relative humidity (%); Hmin, minimum relative humidity (%); Hmean, mean relative humidity (%); Hsda,

absolute standard deviation of relative humidity (%); Hsd, standard deviation of relative humidity (%); Tmaxa, absolute

maximum temperature (˚C); Tmina, absolute minimum temperature (˚C); Tmax, maximum temperature (˚C); Tmin, minimum

temperature (˚C); Tmean, mean temperature (˚C); Tsda, absolute standard deviation of temperature (˚C); Tsd, standard

deviation of temperature (˚C).

https://doi.org/10.1371/journal.pone.0187142.g002
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Fig 3. Relative abundance distribution. Bar plot of velvet ant species captured for 12 months in 25 arrays of Y-shaped pitfall traps with drift fences,

along an environmental gradient from cerrado sensu stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. Bar

colours code for the subtribe which the species pertain to; red: Sphaeropthalmina, blue: Pseudomethocina, orange: Ephutina, and light blue:

Smicromyrmina. Legend: Cac, Callomutilla crucigera; Cev, Cephalomutilla vivata; Daa, Darditilla araxa; Da1, Darditilla sp. 01; Da2, Darditilla sp. 02;

Da3, Darditilla sp. 03; Da4, Darditilla sp. 04; Da5, Darditilla sp. 05; Da6, Darditilla sp. 06; Ep2, Ephuta sp. 02; Ep5, Ephuta sp. 05; Ep6, Ephuta sp. 06;

Ep7, Ephuta sp. 07; Ep8, Ephuta sp. 08; Ep9, Ephuta sp. 09; Ep11, Ephuta sp. 11; Ep12, Ephuta sp. 12; Ep14, Ephuta sp. 14; Ep15, Ephuta sp. 15;

Ep16, Ephuta sp. 16; Ep18, Ephuta sp. 18; Hpm, Hoplocrates monacha; Hob, Hoplomutilla biplagiata; Hop, Hoplomutilla pollens; Hot, Hoplomutilla

triumphans; Hrf, Horcomutilla fronticornis; Lmv, Lophomutilla vina; Ls1, Lophostigma sp. 01; Ls2, Lophostigma sp. 02; Mih, Mickelia harpyia; Pem,

Pertyella mayri; Prs, Protophotopsis sulcifrons; Pr1, Protophotopsis sp. 01; Psg, Pseudomethoca gounellei; Ps5, Pseudomethoca sp. 05; Ps6,

Pseudomethoca sp. 06; Ps7, Pseudomethoca sp. 07; Pt1, Ptilomutilla sp. 01; Suc, Suareztilla centrolineata; Taf, Tallium festivum; Ta4, Tallium sp. 04;

Ta5, Tallium sp. 05; Tim1, Timulla sp. 01; Tim2, Timulla sp. 02; Tra, Traumatomutilla andrei; Trbc, Traumatomutilla bellicosa; Trbf, Traumatomutilla

bellifera; Trga, Traumatomutilla gausapata; Trge, Traumatomutilla geographica; Trid, Traumatomutilla indica; Trint, Traumatomutilla integella; Trir,

Traumatomutilla ira; Trl, Traumatomutilla laida; Trma, Traumatomutilla maipa; Trmo, Traumatomutilla moesta; Tro, Traumatomutilla ocellaris; Trp,

Traumatomutilla parallela; Trs, Traumatomutilla sancta; Trt, Traumatomutilla tristis; Trv, Traumatomutilla vivax; Viv, Vianatilla victura; Xy1,

Xystromutilla sp. 01.

https://doi.org/10.1371/journal.pone.0187142.g003

Fig 4. Rarefaction curves. Sample-based (A) and individual-based (B) rarefaction curves of velvet ants captured for 12 months in 25 arrays of Y-

shaped pitfall traps with drift fences, along an environmental gradient from cerrado sensu stricto to cerradão at Parque Municipal Mário Viana, Nova

Xavantina, Mato Grosso, Brazil.

https://doi.org/10.1371/journal.pone.0187142.g004
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Fig 5. Species ordination. Correspondence analysis (CA) describing the variation on the distribution of velvet ants (only those species with abundance

higher than average) captured for 12 months in 25 arrays of Y-shaped pitfall traps with drift fences, along an environmental gradient from cerrado sensu

stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. Filled circles represent pitfall trap arrays. Trap array numbers

increase from cerrado sensu stricto to cerradão. The first two correspondence axes (CA1 and CA2) explained 42.7% of the variation. Legend: Da1,

Darditilla sp. 01; Da6, Darditilla sp. 06; Ep5, Ephuta sp. 05; Ep6, Ephuta sp. 06; Hop, Hoplomutilla pollens; Hot, Hoplomutilla triumphans; Hrf,

Horcomutilla fronticornis; Mih, Mickelia harpyia; Pem, Pertyella mayri; Psg, Pseudomethoca gounellei; Taf, Tallium festivum; Ta5, Tallium sp. 05; Tim1,

Timulla sp. 01; Trbf, Traumatomutilla bellifera; Trge, Traumatomutilla geographica; Trint, Traumatomutilla integella; Trmo, Traumatomutilla moesta; Trp,

Traumatomutilla parallela; Trs, Traumatomutilla sancta.

https://doi.org/10.1371/journal.pone.0187142.g005

Fig 6. Captures and richness. Monthly distribution of velvet ant species captures and richness by traps, collected for 12 months in 25 arrays of Y-shaped

pitfall traps with drift fences, along an environmental gradient from cerrado sensu stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina,

Mato Grosso, Brazil. Trap array numbers increase from cerrado sensu stricto to cerradão.

https://doi.org/10.1371/journal.pone.0187142.g006
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The VCA indicated significant taxonomic structure in microclimate preferences above the

species level, with virtually all variation concentrated among subtribes (Table 1). Species of

Sphaeropthalmina, all in the genus Traumatomutilla, showed preference for portions of the

gradient with lower values of mean relative humidity and absolute minimum temperature

when compared to species in other subtribes (Fig 10).

Discussion

Changes in vegetation structure along the environmental gradient from cerrado sensu stricto
to cerradão gradient promoted important microclimate shifts at the ground level. Open areas

are more exposed to higher solar radiation, being hotter and drier, and experiencing greater

variation in temperature and humidity. Besides the spatial variation, there is a pronounced sea-

sonality in the Cerrado, characterized by a regular and predictable variation in precipitation

along the year. This spatial-temporal variation in environmental conditions is reflected in the

structure of velvet ant communities, where species abundance and richness peak in the

warmer and drier portions of the gradient and in the first half of the rainy season, as well as in

the patterns of species turnover along the gradient. The different combinations of microcli-

mate parameters can define favourable conditions in small spatial-temporal scales and pro-

mote the coexistence of a greater number of species when compared to more constant

environments [89]. To a certain extent, this may explain the high species richness recorded in

Fig 7. Constrained species ordination. Best (reduced) Canonical Correspondence Analysis (CCA) model, depicting relationships between (A)

velvet ant species (with abundance higher than average) and microclimatic parameters, and (B) pitfall trap arrays and microclimatic parameters,

collected for 12 months in 25 arrays of Y-shaped pitfall traps with drift fences, along an environmental gradient from cerrado sensu stricto to

cerradão at Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. Species scores are represented by abbreviations, microclimatic

parameters by arrows and pitfall trap array position by circles and numbers. Coloured filled circles code for the subtribe which the species pertain

to; red: Sphaeropthalmina, blue: Pseudomethocina, orange: Ephutina, and light blue: Smicromyrmina. Grey filled circles represent pitfall trap

arrays. Trap array numbers increase from cerrado sensu stricto to cerradão. Jointly, graphs reflect species distributions along the microclimate

parameter space. Arrow lengths represent strength of association between microclimate parameters and ordination axes. Legend: Hmean, mean

relative humidity (%); Tmina, absolute minimum temperature (˚C); Da1, Darditilla sp. 01; Da6, Darditilla sp. 06; Ep5, Ephuta sp. 05; Ep6, Ephuta

sp. 06; Hop, Hoplomutilla pollens; Hot, Hoplomutilla triumphans; Hrf, Horcomutilla fronticornis; Mih, Mickelia harpyia; Pem, Pertyella mayri; Psg,

Pseudomethoca gounellei; Taf, Tallium festivum; Ta5, Tallium sp. 05; Tim1, Timulla sp. 01; Trbf, Traumatomutilla bellifera; Trge, Traumatomutilla

geographica; Trint, Traumatomutilla integella; Trmo, Traumatomutilla moesta; Trp, Traumatomutilla parallela; Trs, Traumatomutilla sancta.

https://doi.org/10.1371/journal.pone.0187142.g007
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this study compared to other studies conducted in the Neotropical region [52, 90–93]. Yet,

these differences can be attributed to variation in sampling methods and effort. For instance,

pitfall traps with drift fences seem much more efficient than Malaise or Moericke traps in cap-

turing velvet ants [52, 90, 94]. Further, the proximity of the study area to the Amazonia–Cer-

rado transition can provide conditions and resources for species from both biomes [52, 95,

96]. Ecotones may exhibit greater biodiversity than adjacent areas due to additive processes

and the presence of endemic species [97, 98], playing an important role in lineage diversifica-

tion and biodiversity conservation [99, 100].

Peaks of abundance in the first half of the rainy season seem to be a pattern among velvet

ants in the Neotropical region [90, 94]. Because velvet ants are ectoparasitoids of larvae or

pupae, mainly of other Aculeata [101–104], they should show abundance peaks coincident

with the end of the provisioning period of their hosts in every generation, which results in

Fig 8. Variance partitioning. Partitioning of total deviance in velvet ant species turnover along an environmental gradient from

cerrado sensu stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil, according to

Generalized Dissimilarity Modelling (GDM) using distance matrices of microclimate parameters and spatial distance as

predictors. The stacked histogram represents fractions of total deviance in species turnover explained exclusively by each

predictor distance matrix, their shared contribution, as well as deviance left unexplained.

https://doi.org/10.1371/journal.pone.0187142.g008
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asynchronous abundance peaks between parasitoids and their hosts [40, 105, 106]. Accurate

data on hosts of Cerrado velvet ants are wanting; however, most Cerrado woody plants are pri-

marily pollinated by animals and bloom at the end of the dry season [107–111], providing

plenty of food resources for host populations, which also peak at the same period [90, 101, 112,

113]. Therefore, the peak abundance of velvet ants during the first half of the rainy season

occurs shortly after the abundance peaks of their hosts. Yet, because velvet ants are ectotherms,

the low temperatures during the dry months can promote a reduction in their activity [114,

115].

The open portion of the environmental gradient (cerrado sensu stricto) concentrated

greater richness and abundance of velvet ants. Like the temporal variation, this could stem
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Fig 9. Species turnover. Generalized dissimilarity modelling of velvet ant species turnover across 25 arrays of Y-shaped pitfall traps with drift fences,

distributed along an environmental gradient from cerrado sensu stricto to cerradão and sampled for 12 months in Nova Xavantina, Mato Grosso, Brazil. (A)

Relationship between observed velvet ant turnover for each trap array pair and predicted ecological distance between those trap arrays. (B) Relationship

between observed and predicted velvet ant turnover. Generalized dissimilarity model-fitted I-splines (partial regression fits) of spatial distance (C) and

selected environmental variables (D-J) as predictors. The steeper the slope of the I-spline, the greater the predicted species turnover on that portion of the

gradient. The maximum height of each curve indicates the total amount of species turnover associated with that predictor and the relative importance of

that predictor in explaining species turnover holding all other predictors constant.

https://doi.org/10.1371/journal.pone.0187142.g009

Table 1. Variance Components Analysis.

Source of variation df VC %Total SD CV[%] Var(VC)

Total 7.54 1.56 100 1.25 -1597.82 0.64

Subfamily — 0.00 0.00 0.00 0.00 0.00

Subfamily:Tribe — 0.00 0.00 0.00 0.00 0.00

Subfamily:Tribe:Subtribe 1.28 0.62 39.87 0.79 -1008.94 0.60

Subfamily:Tribe:Subtribe:Genus — 0.00 0.00 0.00 0.00 0.00

Species (Error) 15.17 0.94 60.13 0.97 -1238.98 0.12

Variance Components Analysis (VCA) of microclimate preferences among taxonomic levels of velvet ants captured for 12 months in 25 arrays of Y-shaped

pitfall traps with drift fences, along an environmental gradient from cerrado sensu stricto to cerradão at Parque Municipal Mário Viana, Nova Xavantina,

Mato Grosso, Brazil. VCA used Restricted Maximum Likelihood (REML) to fit a linear mixed model (LMM) where the intercept is the only fixed effect. Values

are distributed among four taxonomic levels (subfamily, tribe, subtribe and genus). df: degrees of freedom, VC: variance component, SD: standard

deviation, CV: coefficient of variation, Var(VC): variance of VC estimates.

https://doi.org/10.1371/journal.pone.0187142.t001
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from species physiological tolerances to temperature and humidity close to the soil surface, as

well as the distribution of host species along the gradient. The greater environmental heteroge-

neity and the milder microclimate of forest areas provide greater diversity of bees and wasps

[116–119]; nevertheless, velvet ants seem to be more abundant and diverse overall in open

areas [52–54]. In the Neotropics, this seems to be associated with preference for open areas of

two potential host groups, Crabronidae and Sphecidae [90, 102, 120]. Further, parasitoid abun-

dance and rates of parasitism are often higher in open environments or in edges resultant

from habitat fragmentation [121, 122]. Also, velvet ants may be better adapted to tolerate varia-

tions in temperature and relative humidity, i.e., environments with less vegetation and more

exposed soil are suitable for the establishment of these organisms [53]. The strong taxonomic

structuring of velvet ants along the gradient indicates a predominant role of environmental fil-

ters in community organization. Apparently, physiological tolerances to microclimatic param-

eters or preferences for certain host species, which determine species turnover along the

gradient, are inherited and shared by members of the same lineages (subtribes).

The Cerrado, a global biodiversity hotspot, largest and most diverse tropical savanna, sus-

tains accelerated loss of natural habitats due to the expansion of agricultural activities and

Fig 10. Variance Components Analysis. Variance Components Analysis (VCA) of microclimate preferences among taxonomic levels of velvet ants

captured for 12 months in 25 arrays of Y-shaped pitfall traps with drift fences, along an environmental gradient from cerrado sensu stricto to cerradão at

Parque Municipal Mário Viana, Nova Xavantina, Mato Grosso, Brazil. VCA used Restricted Maximum Likelihood (REML) to fit a linear mixed model (LMM)

where the intercept is the only fixed effect. Values represent means of species scores along the first axis of a Canonical Correspondence Analysis relating

number of captures to microclimate parameters and are distributed among four taxonomic levels (subfamily, tribe, subtribe and genus).

https://doi.org/10.1371/journal.pone.0187142.g010
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habitat remnants undergo periodic fires and are subject to edge effects [123–125]. Moreover,

the biota has been affected by local climate change, characterized by reduced rainfall and

increased temperature [126–128]. All these factors should contribute to significant changes in

the structure of velvet ant communities, especially favouring those lineages more adapted to

open habitats (Sphaeropthalmina), to the detriment of the lineages most associated to areas

with denser vegetation cover (Ephutini, Pseudomethocina and Smicromyrmina). These

changes, in turn, will certainly affect host populations with unpredictable consequences to the

trophic cascade and the environmental services they provide.
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Project administration: Júlio Miguel Alvarenga, Cecı́lia Rodrigues Vieira, Leandro Braga

Godinho, Pedro Henrique Campelo, James Purser Pitts, Guarino Rinaldi Colli.
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