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A genome-wide association study for
harness racing success in the Norwegian-
Swedish coldblooded trotter reveals genes
for learning and energy metabolism
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Carl-Fredrik Ihler3, Eric Strand3 and Gabriella Lindgren1,4

Abstract

Background: Although harness racing is of high economic importance to the global equine industry, significant
genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions
associated with harness racing success, the current study performs genome-wide association analyses with three
racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine
Genotyping Array.

Results: Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict
Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide
significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide
significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes
related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for
harness racing success.

Conclusions: Apart from the physiological requirements needed for a harness racing horse to be successful, the
results of the current study also advocate learning ability and memory as important elements for harness racing
success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted.
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Background
Regardless of horseracing discipline, speed, or perhaps
more appropriately, unparalleled speed, is the “holy
grail” of almost every horse owner, trainer, and breeder.
However, speed alone does not necessarily equate to
success on the racecourse. The manner in which a horse
demonstrates speed is critical to its racing success [1–3].
For example, while the ability to gallop fast may result in
a champion Thoroughbred (TB) or Quarter Horse (QH),
the same ability in a Standardbred (SB) or Coldblooded
Trotter (CT) is of little value. In SB and CT racing, horses

undoubtedly require speed, but galloping, a four-beat gait,
results in disqualification [1–3]. Thus, speed in these
breeds must be demonstrated at trot, a contralateral
two-beat gait, or pace, an ipsilateral two-beat gait [1–4].
Consequently, racing success in SBs, CTs, and other har-
ness racing breeds depends not on an individual’s capacity
for speed, but on an individual’s capacity for speed in a
specific gait.
To date, significant genomic resources have been ap-

plied in studies attempting to map speed and racing suc-
cess in TBs and QHs [4–18]. While these studies have
proven to be of great value for gallop racing breeds, their
applicability to harness racing breeds has been limited
[19–21]. In fact, a genomic study exploring locomotion
pattern in Icelandic horses is arguably the most influential
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study to date when it comes to racing success in harness
racing breeds [22]. The study discovered that a premature
stop codon in the doublesex and mab-3 related transcrip-
tion factor 3 (DMRT3) gene had a major effect on the pat-
tern of locomotion in the horse, resulting in some horses
possessing the ability to trot or pace at high speed without
transitioning into gallop [22]. Follow-up studies were then
able to demonstrate that for many harness racing breeds
the DMRT3 mutation was associated with racing success
(e.g. increased earned prize money) [20, 23–26]. However,
the mutation appears to only account for between 0 and
6.3% of the phenotypic variation in traits widely used to
evaluate racing success [24, 26]. Considering that herit-
ability estimates for some of these traits are as high as 0.38,
the likelihood of other genes playing a significant role in a
harness racing horse’s success is high [20, 23, 27–38].
Nevertheless, genome-wide association (GWA) studies
with harness racing performance are lacking [23].
Despite the fact that harness racing success is of high

economic importance to the global equine industry, gen-
ome scans for performance appear to predominantly tar-
get Thoroughbreds and sport horses (e.g. Warmbloods)
[4–6, 8–14, 39–41]. Most studies involving harness ra-
cing breeds tend to focus on detecting genes underlying
certain conditions and diseases [42–47]. While disease
studies are undoubtedly important for improved animal
well-being, a greater awareness of the genes, and by ex-
tension the underlying biological mechanisms, involved
in racing success are also likely to prove highly valuable.
A deeper understanding of the biology underpinning
success in a racehorse ultimately can lead to more tar-
geted medical treatments as well as a heightened aware-
ness of the physical limitations (e.g. lack of speed at trot)
some horses will inevitably possess.
Motivated by these facts, we conducted a GWA study

to identify genomic regions and genes associated with
harness racing success using the Norwegian-Swedish
Coldblooded Trotter (NSCT). Norwegian-Swedish Cold-
blooded Trotters are ideally suited for GWA analyses of
harness racing performance as their small population is
not only likely to correspond with low within breed gen-
etic variation, but the limited region in which NSCTs
are eligible to race is also likely to reduce environmental
variation. Thus, a more accurate assessment of the rela-
tionship between genomic regions and harness racing
performance is achievable.

Methods
Data collection
Pedigree information and performance data on all raced
and unraced NSCTs born between 1 January 2000 and
31 December 2009 were provided by the trotting associ-
ations in both Norway and Sweden (Norsk Rikstoto and
Svensk Travsport). Pedigree information included horse

name, horse id, date of birth, country of birth, sex,
breeder, sire id, and dam id. Performance data, as of 8
February 2017, was presented per race per horse (i.e.
data included individual race records with each record
corresponding to a given horse’s specific performance in
the race). This data included non-competitive premie
and qualification races, with each record containing in-
formation on horse id, race date, race track, race type,
race distance, trainer, owner, driver, finish position, prize
money earned, gallop status, and average km time [48, 49].

Sample acquisition
In order to reflect the raced population as accurately as
possible, a list of raced individuals was randomly gener-
ated from the data described above using the statistical
software R [50]. In addition to having raced, two require-
ments were set for inclusion in the study: 1. Hair and/or
blood samples had to be readily accessible from the
pedigree registration authorities in either Norway (De-
partment of Basic Sciences and Aquatic Medicine, Nor-
wegian University of Life Sciences) or Sweden (Animal
Genetics Laboratory, Swedish University of Agricultural
Sciences) 2. Sufficient sample material had to be avail-
able to ensure DNA quality standards would likely be
achieved. The first 661 horses on the list that met these
criteria were included in the study. Average relatedness
within the selected group, estimated using the genetic
software Contribution, Inbreeding, Coancestry, was 0.16
(interquartile range [IQR] 0.11–0.18) [51].

DNA isolation
Deoxyribonucleic acid was prepared from the hair roots
using a standard hair-preparation procedure. Briefly,
186 μL Chelex 100 Resin (Bio-Rad Laboratories, Hercules,
CA) and 14 μL of proteinase K (20 mg/mL; Merck KgaA,
Darmstadt, Germany) were added to the sample. The mix
was incubated at 56 °C for 2 h and the proteinase K was
inactivated for 10 min at 95 °C. For DNA preparation
from blood samples, 350 μL of blood was used and iso-
lated on the Qiasymphony instrument using the Qia-
symphony DSP DNA mini kit (Qiagen, Hilden, Germany).
A summary of the final horses selected for genotyping is
shown in Table 1.

Genotyping and quality control
Prior to quality control (QC) the data set consisted of
individuals genotyped using the 670 K Axiom Equine
Genotyping Array (n = 570) and the 670 K+ Axiom
Equine Genotyping Array (n = 91). The data from the
two arrays were subsequently merged based on SNP
name, chromosome, and position, yielding a combined
SNP data set of 611,888 SNPs for 661 horses. Iterative
QC was then performed with the GenABEL package in
R to remove poorly genotyped and noisy data using the
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following thresholds: minor allele frequency (MAF) (<
0.5%), missing genotypes per single nucleotide polymorph-
ism (SNP) (> 5%), missing SNPs per sample (> 15%), and
Hardy-Weinberg equilibrium (HWE) (first QC p < 1e− 10;
second QC FDR < 0.2) [50].

Phenotyping
Pedigree and performance data for the 661 genotyped
horses were structured for analyses using custom scripts
written in Perl v5.20.1. Sex classifications were based on
the official sex of the horse at the end of the study.
Number of career starts was defined as the total number
of competitive races for each individual (i.e. premie and
qualification races were excluded). Number of gallops
(NG) was defined as the total number of competitive
races in which the horse was recorded as galloping at
some point during the race. Career earnings (CE) were
calculated as the total amount of prize money won for
each horse as of 8 February 2017. Prize money won in
Sweden (SEK) was converted to Norwegian currency
(NOK) based on the average exchange rate for the year
in which the race occurred [52]. Horses having partici-
pated in only premie or qualification races were given a
value for career earnings of − 1 NOK in order to distin-
guish them from horses that had zero career earnings,
despite having raced competitively. Best km time (BT),

independent of starting method, was defined as the fast-
est average km time for a competitive race in which the
horse was not recorded as galloping during the race (i.e.
races in which a horse galloped, regardless of if the horse
was disqualified, were excluded).

Genome-wide association analyses
Genome-wide association (GWA) analyses were per-
formed using the GenABEL package in R [50]. The pack-
age was used to compute an autosomal genomic kinship
matrix as well as perform standard K-means clustering.
K-means clustering with K = {1,2,…,10} were executed to
determine the number of clusters (subpopulations). For
each iteration, the sum of within-cluster sum of squares
(∑WCSS) was calculated and subsequently plotted vs. K.
To define the subpopulations, the number of clusters
corresponding with the first inflection point (K = 3) was
chosen [53]. The multidimensional scaling (MDS) plot
yielded no apparent outliers and a visualization of the
genomic-kinship matrix and subpopulations using MDS
can be seen in Fig. 1.
To account for any population stratification, genome-

wide association analyses of CE, BT, and NG were per-
formed using a mixed model-structured association
approach (“mmscore” function with the “strata” option
in GenABEL). Preliminary analyses indicated significant
effects of sex, birth year, and number of career starts on
all three traits. Country of birth was also shown to influ-
ence CE. As a result, sex, birth year, number of career
starts, and country of birth were included as co-variants
in the final analyses accordingly. Genome-wide signifi-
cance for each of the analyses was determined by
Bonferroni correction (p < 1.39 × 10− 7, corrected for
total number of SNPs post QC) while a “suggestive”
genome-wide significance threshold was also set at 1.0 ×
10− 5. Manhattan and quantile-quantile plots were gener-
ated in R while the extent of linkage disequilibrium (LD)
was estimated by calculating r2 values between all pairs
of SNPs with inter-SNP distances of less than 1 Mb
using PLINK v1.09 (http://zzz.bwh.harvard.edu/plink/).
The effB in the GenABEL result was regarded as the al-
lele substitution effect and the proportion of phenotypic
variance explained by each significant SNP was esti-
mated as follows:

VAR %ð Þ ¼ 2pqβ2

S2
� 100

Where p and q are the allele frequencies, β is the esti-
mated allele substitution effect, and S2 is the sample
phenotypic variance. Stepwise regressions were then per-
formed to estimate the total proportion of phenotypic
variation explained by the multiple genome-wide associ-
ated SNPs (before and after pruning at r2 > 0.2; PLINK

Table 1 Summary information for the genotyped and the final
sample of horses

Genotyped Horses Final GWA Horses

N N

Sex

Intact males 70 62

Females 271 247

Geldings 320 304

Country of birth

Norway 360 312

Sweden 301 301

Year of birth

2000 45 36

2001 73 66

2002 84 80

2003 69 64

2004 56 49

2005 62 55

2006 70 67

2007 71 70

2008 63 59

2009 68 67

Total 661 613

GWA Genome-wide association
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command –indep-pairwaise 100 25 0.2) for each trait
using the lm function in R [50]. The bioinformatics
database Ensembl (http://www.ensembl.org/) was used
for candidate gene screening. Genomic coordinates of
genome-wide significant and suggestive genome-wide
signficant SNPs +/− 500 kb were used as inputs to gen-
erate a list of annotated genes using the Ensembl Bio-
mart function. The PANTHER Classification system was
then used to obtain an overview of the biological pro-
cesses, molecular functions, and pathways known to be
affected by these genes [54, 55].

Results
Following QC, 359,635 autosomal SNPs and 642 horses
were available for association analyses. Of these individ-
uals, 29 had only participated in non-competitive premie
and/or qualification races. Initial association analyses
with CE, combined with the vast array of reasons known
to prevent a horse from competitive racing suggested
the exclusion of these horses would help to reduce noise
in the final analyses. As a result, only 613 horses,

representing 120 sires (interquartile range [IQR] 1–5)
and 547 dams (IQR 1–1), were included in the final
GWA analyses (Table 1). Descriptive statistics for CE,
BT, and NG in the final sample are presented in Table 2.
Both CE and NG were not normally distributed and
were subsequently log transformed for the GWA ana-
lyses. The extent of LD decayed faster across the final
sample of horses with mean r2 dropping below 0.20 by
3 kb (Additional file 1). The GWA analysis of CE yielded
multiple genome-wide significant SNPs (p < 1.39 × 10− 7),
with the majority of these SNPs residing on Equus cabal-
lus chromosome (ECA) 6 (Fig. 2; Table 3; Additional file 2).
Analyses of both BT and NG failed to result in genome-
wide significant SNPs. However, two regions of interest
were apparent based on the presence of slight peaks on
ECA17 and ECA23 in the resulting Manhattan plots
(Fig. 3; Additional file 2). Genome-wide significant SNPs
for CE, suggestive genome-wide significant SNPs for BT
and NG, and the nearest genes are shown in Table 3. The
most significant SNP was detected at the 20,006,740 pos-
ition on chromosome 28 (AX-104828170, p = 9.01E-10)

Fig. 1 Visualization of multidimensional scaling, stratified by country of birth and subpopulation, performed on the genomic-kinship matrix
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and presented an estimated allele substitution effect of −
7079.46 NOK. The favourable allele appeared to be the T
allele, with each C allele resulting in a negative effect on
CE. Despite the fact that the frequency of the T allele was
98.2% and the frequency of the C allele was only 1.8%, the
percentage of phenotypic variance explained by this SNP
was 3.85%. The 32 SNPs in total were estimated to explain
18.34%, 18.71% and 33.17% of the variation for CE, NG
and BT, respectively, in the population studied. Conse-
quently, after LD pruning, only 17 SNPs remained –
explaining 14.17%, 18.38% and 33.13% of the variation for
CE, NG and BT, respectively (Table 3). Overall, 378, 144,
and 23 candidate genes identified were associated with
known biological processes, molecular functions, and
pathways, respectively (Figs. 4, 5 and 6; Additional file 3).

Discussion
Knowing where, why, and how genes and athletic prow-
ess intersect in a racehorse has long been the goal of
countless researchers, veterinarians, breeders, trainers,
and owners [4–38]. While great strides in this area have
recently been made for gallop racing horses, similar

advancements for harness racing horses have been lim-
ited [4–26]. Using the NSCT, the current study explored
the genetic background for athletic prowess in a harness
racing horse by performing GWA analyses and func-
tional classification for three traits associated with har-
ness racing success. These analyses resulted in a total of
32 SNPs of interest with 9 demonstrating genome-wide
significance and 13 residing in genes. Subsequent func-
tional classifications went on to provide further support
of the complexity of harness racing success with several
candidate genes involved in neurological, metabolic, and
musculoskeletal regulation identified. Since a gene can
be declared as a candidate gene if at least 1 out of the 4
following characteristics are present: 1) the gene has a
known physiological role in the phenotype of interest, 2)
the gene affects the trait in question based on studies of
knockouts, mutations, or transgenics in other species, 3)
The gene is preferentially expressed in organs related to
the quantitative trait, or 4) the gene is preferentially
expressed during developmental stages related to the
phenotype, a large fraction of the genes identified in the
current study can plausibly be considered as candidate

Table 2 Descriptive statistics of CE, BT, NG for the final sample of horses (n = 613)

Min 25th percentile Median Mean 75th percentile Max

Career earnings (NOK) 0 36,321 124,625 302,506 327,493 4,216,554

Best km time (s) 78.9 86.8 89.3 89.6 92.4 105.7

Number of gallops 0 5 11 14.4 21 123

CE career earnings, BT Best km time, NG number of gallops

Fig. 2 Manhattan plot of the genome-wide association analysis of career earnings. The red horizontal line indicates the genome-wide significance
level and the black horizontal line indicates the suggestive genome-wide significance level. Uncorrected λ = 1.0532
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genes [56]. As a result, the following discussion priori-
tizes genes that contained variants with significant or
suggestive associations with our traits of interest. The
rationale for this prioritization is simply that for associ-
ated variants that reside outside of annotated genes, it is
in general more difficult to determine which gene(s) the
variants act on.

Glutamate ionotropic receptor NMDA type subunit 2B
(GRIN2B)
Two genome-wide significant SNPs associated with car-
eer earnings were located in the GRIN2B gene, a gene
also identified in a previous study exploring pacing
ability in Icelandic horses [57]. The gene has been shown
to be involved in neural regulations in humans and

Table 3 Genome-wide significant SNPs for CE and suggestive genome-wide significant SNPs for BT and NG

SNP Analysis Location
(ECA:bp)

MAF β SE Var (%) Nearest gene Distance to
nearest gene (bp)

Raw p-value

AX-104828170 CE 28:20,006,740 0.018 −3.380 0.552 3.85 NDUFA12 114,732 9.01E-10

AX-103147507 CE 28:22,153,465 0.005 −5.762 1.011 3.27 ENSECAG00000025907 46,196 1.20E-08

AX-104611735 CE 6:47,132,529 0.015 −3.407 0.599 3.16 PDE3A 0 1.28E-08

AX-104865129 CE 16:18,366,321 0.008 −4.488 0.798 3.17 ENSECAG00000003087/PROK2 138,149/138,791 1.87E-08

AX-104494389 CE 6:20,020,914 0.006 −4.557 0.825 3.32 INPP5D 0 3.36E-08

AX-103248294 CE 6:49,512,490 0.016 −3.166 0.582 3.11 SOX5 0 5.28E-08

AX-103090138 CE 6:42,063,985 0.018 −3.007 0.559 2.46 PLBD1 3191 7.48E-08

AX-104711589 CE 6:41,462,481 0.012 −3.497 0.657 2.59 GRIN2B 0 9.99E-08

AX-104307051 CE 6:41,329,519 0.012 −3.474 0.657 2.67 GRIN2B 0 1.21E-07

AX-104144838 NG 23:23,333,501 0.278 −0.214 0.046 1.51 ENSECAG00000023609 187,643 3.18E-06

AX-104568609 NG 1:159,285,045 0.004 −1.343 0.293 1.14 ENSECAG00000003696/
ENSECAG00000022264

19,813/25,804 4.52E-06

AX-102982528 NG 23:23,324,996 0.412 −0.186 0.041 1.27 ENSECAG00000023609 179,138 6.74E-06

AX-103734745 NG 29:24,530,437 0.453 −0.176 0.040 1.29 ENSECAG00000004576 944,126 8.67E-06

AX-104373992 BT 1:162,993,722 0.016 3.289 0.655 1.79 ENSECAG00000023062/
ENSECAG00000008721

32,728/51,254 5.10E-07

AX-103261370 BT 23:22,522,071 0.409 −0.910 0.183 0.87 DOCK8 0 6.49E-07

AX-104219924 BT 17:19,525,955 0.279 0.946 0.197 2.24 WDFY2 0 1.57E-06

AX-104634248 BT 23:21,857,316 0.108 1.346 0.284 1.21 PIP5K1B/FAM122A 14,893/18,794 2.20E-06

AX-103287280 BT 23:21,064,571 0.117 1.270 0.268 1.49 PTAR1 43,300 2.22E-06

AX-104645782 BT 17:19,318,167 0.258 0.951 0.201 2.21 ATP7B 0 2.32E-06

AX-103762427 BT 23:22,461,979 0.154 −1.156 0.245 1.37 DOCK8 0 2.45E-06

AX-103530176 BT 23:22,464,604 0.156 −1.139 0.246 1.25 DOCK8 0 3.49E-06

AX-103445942 BT 1:151,919,692 0.012 3.600 0.777 1.39 ENSECAG00000012236/
ENSECAG00000013533

74,605/78,356 3.63E-06

AX-104538418 BT 17:21,083,126 0.279 0.905 0.196 2.29 KCNRG 0 3.99E-06

AX-104268231 BT 23:21,689,609 0.385 −0.823 0.179 0.79 PIP5K1B 0 4.25E-06

AX-102964033 BT 23:22,423,197 0.121 −1.259 0.275 0.95 DOCK8 5699 4.59E-06

AX-104117851 BT 7:65,266,179 0.010 3.724 0.821 1.76 ENSECAG00000007398 162,661 5.78E-06

AX-104642194 BT 31:14,300,483 0.006 4.612 1.021 1.37 MTRF1L/FBXO5 108/14,491 6.31E-06

AX-103166989 BT 23:22,496,787 0.116 −1.270 0.283 0.99 DOCK8 0 7.07E-06

AX-103803214 BT 2:21,466,714 0.049 1.725 0.386 1.82 AGO1 2494 7.72E-06

AX-104450418 BT 2:21,311,680 0.087 1.351 0.304 1.93 TEKT2/ADPRHL2 10,587/14,440 9.00E-06

AX-103305676 BT 25:26,866,219 0.019 2.590 0.584 1.67 OR1L3 492 9.11E-06

AX-104591507 BT 17:20,813,164 0.249 0.898 0.203 1.84 KCNRG 227,34 9.36E-06

CE career earnings, BT Best km time, NG number of gallop, MAF Minor allele frequency, β Estimated allele substitution effect, Var (%) Percentage of phenotypic
variance explained
Red line = Bonferroni threshold (P < 1.39 × 10−7)
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laboratory species with mutations in the gene having
been associated with neurodevelopmental disorders
[58–60]. Considered to be an important factor for
learning and memory, one can only speculate as to its as-
sociation with career earnings in a harness racing horse.
However, horses with a greater capacity to learn and adapt
to the highly variable nuances of harness racing would
conceivably be more likely to achieve racing success. On
the other hand, the gene’s association with attention-def-
icit/hyperactivity disorder in humans suggests that per-
haps certain horses lack the ability to focus on racing and
training, thereby preventing or at least hindering their ra-
cing performance [61].

ATPase copper transporting beta (ATP7B)
A single suggestive genome-wide significant SNP associ-
ated with best time was located in the ATP7B gene on
ECA17. The gene encodes a protein that functions as a
monomer, exporting copper out of cells. Excess copper

can cause serious toxicity with the process of excess
copper disposal relying heavily on ATP7B [62, 63]. Over
500 mutations have been identified in the gene, 380 of
which are considered to be disease causing mutations
[64]. Elevated levels of copper in the body often result in
muscle stiffness with acute muscle stiffness prior to a
race having the potential to affect individual perform-
ance and chronic muscle stiffness likely to impact a
horse’s conditioning, trainability, and overall capacity for
speed [62, 63].

Potassium channel regulator (KCNRG)
The KCNRG gene on ECA17 was also identified by two
SNPs demonstrating suggestive genome-wide signifi-
cance for best time. The gene encodes a protein which
regulates the activity of voltage-gated potassium chan-
nels with a study using songbirds suggesting potassium
channels to be lineage specific [64, 65]. The same study
also revealed that apart from broad expression in the

Fig. 3 Manhattan plots of the genome-wide association analyses of best km time and number of gallops. The red horizontal lines indicate the
genome-wide significance levels and the black horizontal lines indicate the suggestive genome-wide significance levels. Top panel: Best km time
analysis, uncorrected λ = 1.0902. Bottom panel: Number of gallops analysis, uncorrected λ = 1.0256
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brain a subset of potassium channel genes are selectively
expressed, with the authors hypothesizing that the KCNRG
gene may be associated with learning [65]. Although no
previous studies of racehorse performance have specifically
identified KCNRG as important for racing success, a large

conserved haplotype on ECA17 has been advocated to
have selective importance in Thoroughbreds and closely
related breeds [4, 66].
Also of note is the role voltage-gate potassium chan-

nels play in Hyperkalemic periodic paralysis (HYPP), a

Fig. 4 Biological process summary information from the functional classification analysis of candidate genes in PANTHER. PANTHER biological
process classification: the function of the protein in the context of a larger network of proteins that interact to accomplish a process at the level
of the cell or organism

Fig. 5 Molecular function summary information from the functional classification analysis of candidate genes in PANTHER. PANTHER molecular
function classification: the function of the protein by itself or with directly interacting proteins at a biochemical level
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genetic disorder predominantly seen in Quarter Horses.
The condition, caused by a mutation in the sodium
voltage-gated channel alpha subunit 4 (SCN4A) gene,
manifests intermittently with clinical signs ranging from
muscle fasciculation to signs of paresis [67–70]. Hyper-
kalemia, a term used to describe abnormally high levels
of potassium in the blood, is often seen during or imme-
diately after an attack. Voltage-gated potassium channels
are thought to remain open, allowing continual potas-
sium efflux, thereby promoting an open sodium channel
configuration. As a result, an HYPP attack can be trig-
gered or an already occurring attack can increase in se-
verity [67, 70–72]. Horses with HYPP also tend to
possess hypertrophic muscles; however, they have
been reported as having a reduced tolerance to exer-
cise with relatively more lactate being produced dur-
ing exercise [73, 74].

Phosphatidylinositol-4-phosphate 5-kinase type 1 beta
(PIP5K1B)
A single suggestive genome-wide significant SNP associ-
ated with best time was also located in the PIP5K1B
gene on ECA23. Three widely expressed isoforms of
PIP5K1 are responsible for the regulation of the major
pools of cellular phosphatidylinostitols in mammalian
tissues, with PIP5K1B negatively regulated in response
to oxidative stress [75, 76]. Neurite outgrowth, a critical
process for neuronal development, has also been shown
as negatively regulated by PIP5K1A [77]. Since the

current study is the first to suggest an association be-
tween PIP5K1B and racing success, understanding the
roles PIP5K1 isoforms have on a horse’s capacity for
speed remains a task for future studies. However, genes
that influence cell differentiation processes, such as endo-
cytosis, assuredly contribute in some way or another to
the physical limitations and overall performance of any
racehorse.

Dedicator of cytokinesis 8 (DOCK8)
Perhaps the most obvious candidate gene for harness
racing success in the current study was DOCK8. Five
suggestive genome-wide significant SNPs indicated the
importance of DOCK8 to a horse’s best time, with 4 of
the SNPs located in the gene. Mutations in DOCK8
result in a form of hyper-IgE syndrome; however, loss or
mutations of DOCK8 have also been associated with
intelligence and motor retardation [78–83]. While the
importance of intelligence in a racehorse has been briefly
discussed above, in the case of DOCK8 the significance
of the gene may lie with its link to motor skills. DOCK8
is not only located on ECA23, the same chromosome as
DMRT3, but multiple studies have hypothesized some
sort of commonality or overlap between DMRT-(1,2,3)
gene effects and DOCK8 [22, 82, 84]. Despite the estab-
lished association between DMRT3 and harness racing
performance, additional research of DMRT3 in horses
strongly suggest that the mutation is unlikely to be the
single cause of gaiting ability [22, 53, 85–88]. Therefore,

Fig. 6 Pathway summary information from the functional classification analysis of candidate genes in PANTHER
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it is conceivable that DOCK8 also significantly contrib-
utes to gaiting ability, ultimately playing some role in a
harness racing horse’s propensity to exhibit speed at trot
or pace.

Phosphodiesterase 3A (PDE3A)
The protein encoded by the PDE3A gene, a gene on
ECA6 in which a single genome-wide significant SNP
associated with career earnings is located, plays a critical
role in cardiovascular function [89–91]. The encoded
protein regulates vascular smooth muscle contraction
and relaxation and has been linked to familial hyperten-
sion, cardiovascular disease, and fertility [89–92]. Healthy
cardiovascular function is important for racing success as
the act of racing undeniably requires a higher than
resting-level of oxygen to support the horse’s increased
muscle activity. A mutation in the PDE3A gene that ultim-
ately alters cardiovascular function could potentially
prevent a horse from meeting the higher metabolic de-
mands of racing, thus decreasing his/her chances of
winning and limiting his/her career earnings. On the con-
trary, an advantageous mutation in the gene could allow
some horses to perform at an even greater cardiovascular
level, increasing their likelihood of winning races and
earning more prize money.

Inositol polyphosphate-5-phosphatase D (INPP5D) & SRY-
box 5 (SOX5)
Also identified by single genome-wide significant SNPs
on ECA6 were the INPP5D and the SOX5 genes. The
INPP5D gene is an important regulator of immune cell
signaling, while the SOX5 gene is involved in embryonic
development and has been associated with multiple hu-
man diseases and disorders [93–99]. Moreover, both
genes have been suggested as important in B cell activity
indicating that their association with career earnings in
the current study may be rooted in the immune response
of a horse [95, 100]. However, mutations in SOX5 have
also been theorized to disrupt neuronal development and
function [101, 102].

Other candidate genes
Regions on ECA1, ECA7, and ECA16 have also previ-
ously been described as important for endurance per-
formance traits, while regions on ECA14 and ECA18
associated with gallop racing in other studies do not
appear to play a significant role in harness racing
[4–8, 10–15, 19–21, 39, 66]. This likely suggest a
greater demand for endurance in harness racing
compared to gallop racing and is perhaps a sign of
the different physiological demands for speed in trot
versus speed in gallop. Candidate genes for harness
racing success in the current study were also identi-
fied on ECA1, ECA2, ECA6, ECA7, ECA16, ECA17,

ECA23, ECA25, ECA28, ECA29, and ECA31. How-
ever, it is important to note that the MAF threshold
applied in the current study is slightly lower than is
generally accepted. Although this may have inadvert-
ently resulted in some SNP associations being simply
by chance, it is also plausible that the lower MAF
threshold allowed for the capture of candidate genes/
regions that are perhaps the difference between an
elite horse and a very, very good horse. Racing per-
formance is undoubtedly complex and the unique
history of the NSCT, being a blend of draught horse
and racehorse, means that rare variants cannot be
ruled out purely because they are rare – particularly
when one considers the rarity of an elite racehorse.
While not all candidate variants/genes are discussed
above, the results of the current analyses clearly
suggest that different molecular and cellular events
mediate adaptive processes in the neuromusculoske-
letal system in response to exercise. High intensity
exercise (e.g. racing) is known to be associated with sig-
nificant physiological adaptations in the neuromuscular
system in equine athletes with prolonged and intense ex-
ercise potentially resulting in oxidative damage to cellular
constituents [103]. Moreover, the importance of the cen-
tral nervous system (CNS) as a critical “central governing”
factor in sporting performance has been previously
documented in endurance horses with exercise shown to
induce several biological processes that regulate neuro-
logical functions that help to maintain good mental health
[104]. Our results add to this line of thought, providing
further evidence that genes involved in neural regulations
(e.g. GRIN2B) likely play an important role in controlling
the fundamental biological processes underlying adapta-
tion to equine athletic performance.

Conclusions
After strict Bonferroni correction, 9 genome-wide sig-
nificant and 23 suggestive genome-wide significant SNPs
associated with harness racing success were identified.
These SNPs were located on ECA1, ECA2, ECA6,
ECA7, ECA16, ECA17, ECA23, ECA25, ECA28, ECA29,
and ECA31 with eight genes (GRIN2B, DOCK8, ATP7B,
KCNRG, PIP5K1B, PDE3A, INPP5D, SOX5) suggested as
strong candidate genes for harness racing success. Apart
from the physical attributes required to achieve racing
success, multiple candidate genes identified in the
current study also advocate learning ability and memory
as critical to success. However, further analyses of these
genes based on additional genetic and functional
studies are required to explore this notion in greater
detail. Moreover, future studies should also consider a
validation study with an independent population as
well as sequencing of candidate genes to better iden-
tify causal alleles.
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