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Abstract: Filamentous temperature-sensitive protein Z (Tubulin/FtsZ) family is a group of con-
served GTP-binding (guanine nucleotide-binding) proteins, which are closely related to plant tissue
development and organ formation as the major component of the cytoskeleton. According to the
published genome sequence information of cassava (Manihot esculenta Crantz), 23 tubulin genes
(MeTubulins) were identified, which were divided into four main groups based on their type and
phylogenetic characteristics. The same grouping generally has the same or similar motif composition
and exon–intron structure. Collinear analysis showed that fragment repetition event is the main
factor in amplification of cassava tubulin superfamily gene. The expression profiles of MeTubulin
genes in various tissue were analyzed, and it was found that MeTubulins were mainly expressed in
leaf, petiole, and stem, while FtsZ2-1 was highly expressed in storage root. The qRT-PCR results of
the FtsZ2-1 gene under hormone and abiotic stresses showed that indole-3-acetic acid (IAA) and
gibberellin A3 (GA3) stresses could significantly increase the expression of the FtsZ2-1 gene, thereby
revealing the potential role of FtsZ2-1 in IAA and GA3 stress-induced responses.

Keywords: cassava; tubulin; FtsZ2-1; duplication event; expression patterns; abiotic stress

1. Introduction

Cell division is the process in which a cell is divided into two cells, which is the
basis for the growth, development, and reproduction of organisms. Microtubules are
polymerized by tubulins, which participate in cell division as one of the cytoskeleton
systems, while tubulins are encoded by multiple gene families in plants [1,2]. The two
most typical types of these gene families are α-tubulin and β-tubulin, which account for
more than 80% of the amount of tubulin, have similar three-dimensional structures, and
can be closely combined into dimers as subunits of microtubule assembly [3–7]. In recent
years, γ-tubulin has been discovered, which is located in the microtubule-organizing center
and plays an important role in microtubule formation, number and location, polarity
determination, and cell division [8–10]. These genes are specifically expressed in different
tissues and organs, and their mutations may give rise to abnormal plant growth [11]. For
instance, the decreased expression of α-tubulin6 (TUA6) gene led to abnormal shoot tip cell
division and inhibited root elongation in Arabidopsis thaliana [12]. Transgenic rice plants
with antisense expression of β-tubulin8 (OsTUB8) were inhibited in the amount of seed set
after ripening, and the height of plants was 20~60% lower than that of wild type [13].

FtsZ, homologs of tubulin, were first found in bacteria and involved in the bacterial
division as cytoskeletal proteins, which became key proteins of chloroplast division in
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higher plants with the occurrence of endosymbiotic events [14–19]. Generally, unlike
bacteria just only one FtsZ gene, most plants contain three functionally complementary
genes, FtsZ1-1, FtsZ2-1, and FtsZ2-2, which presumably arose by gene replication of a single
ancestral FtsZ gene [20–25]. In plants, FtsZ1-1 or FtsZ2-1 null mutants can cause chloroplast
division defects. Compared with the wild type, a decreased number and increased size of
chloroplasts in the cell of green leaf were observed. Unlike FtsZ1-1 and FtsZ2-1 mutants, the
phenotype of the FtsZ2-2 null mutant is milder, and the number and size of the chloroplast
are less variable [26,27]. During leaf growth, with the increase of chloroplasts in mesophyll
cells to maximize photosynthesis, there is a negative correlation between chloroplast size
and photosynthetic N-use efficiency (PNUE) [28,29].

The cytoskeleton tubulin and FtsZ proteins have similar functions; both are involved in
polymer formation and play a key role in cell division, while tubulin and FtsZ proteins have
little sequence identity but showed high conformational similarity [16,30]. Tubulin and
FtsZ are GTPases, and their nucleotide-binding sites of tubulin and FtsZ are similar to those
of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) but different from nucleotide-
binding sites of other typical GTPases [31,32]. Therefore, tubulin and FtsZ form a unique
family of cytoskeletal GTPases [33]. Moreover, previous studies suggest that tubulin may
have evolved from FtsZ at the beginning of eukaryotic evolution, which leads to extreme
sequence divergence related to the shift in function [34].

Cassava is an important cash crop and food source growing in Africa, Asia, and
tropical America because of its high starch content in storage root; about 750 million people
depend on cassava as food [35,36]. Meanwhile, cassava can also be processed into flour,
starch, animal feed, and alcohol [37]. It has strong tolerance and survival ability under
biotic and abiotic stresses, and a relatively high yield under poor soil conditions [38]. This
makes the production benefit of cassava significantly higher than other crops and more
conducive to the rational allocation and utilization of land resources. Drought and salt are
the main abiotic stresses affecting the growth of cassava [39]. In many coastal areas, the
saline–alkali content in soil is often too high, causing harm to plants, while appropriate
salt content can improve the nutritional level and starch content of cassava leaves. [40].
Spraying exogenous hormones can significantly affect the growth and development of
cassava; for instance, a high concentration of MeJA could induce the cassava defense
mechanism to play a role in advance [41–43]. The application of auxin can stimulate the
growth of cassava stem and bud, and tubulins play an important role in this process [44–46].
Tubulins showed different responses under various stresses, such as high expression of
soybean β-tubulin1 gene under high concentration of auxin stress, while good stability
under other abiotic stresses; the expression of α-tubulin2 gene from Hevea brasiliensis was
regulated by NaCl, drought, and MeJA [47,48]. Based on the importance of the tubulin
gene family during cassava growth, especially the regulation of FtsZ on chloroplast, it is of
great significance to research the function of the cassava tubulin gene family to improve
the quality of cassava. For this reason, we analyzed the gene characteristics, phylogeny,
gene structure, gene repetition, protein motif, and expression profiles in various tissues,
of cassava tubulin family members, and the expression of the FtsZ2-1 gene was studied
under IAA, MeJA, ABA, GA3, salt, and drought treatments.

2. Results
2.1. Identification of the Tubulin Proteins in Cassava

Through BLAST (basic local alignment search tool) search and HMMER (biosequence
analysis using profile hidden Markov Models) analysis, 23 genes with tubulin domain
were identified and annotated as MeTubulins in the cassava genome. According to the
order of screening, 23 MeTubulin genes were named from MeTubulin1 to MeTubulin23.
Table 1, Tables S1 and S2 described information of the 23 MeTubulins, including gene ID,
size, molecular weight (MW), isoelectric point (pI), and predicted subcellular location,
chromosome number, the total number of positively and negatively charged residues,
and sequence. MeTubulin20 and MeTubulin23 were identified as the smallest proteins,
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both with 421 amino acids (aa), while the largest protein was MeTubulin10 (493 aa). In
length with an average of 457 aa, the MW varied from 43.3 kDa (MeTubulin20) to 53.4 kDa
(MeTubulin6), and the pI ranged from 4.68 (MeTubulin17) to 6.93 (MeTubulin20). The
predicted subcellular localization indicated that MeTubulin10 and MeTublin20 were po-
sitioned in chloroplast stroma, MeTubulin2 was shown to be localized in the chloroplast
thylakoid membrane, and the rest of them were positioned in the cytoplasm.

Table 1. Information of 23 MeTubulin genes and proteins identified.

Gene Name Gene ID p-Value Size
(aa)

MW
(KDa) pI Predicted Subcellular

Location Chr.

MeTubulin1 Manes.08G061700 5.6 × 10−114 454 50.31 4.76 cytoplasm 8

MeTubulin2 Manes.08G024800 2.6 × 10−43 492 51.13 5.56 chloroplast thylakoid
membrane 8

MeTubulin3 Manes.02G136200 3.4 × 10−114 453 50.06 4.77 cytoplasm 2
MeTubulin4 Manes.02G123600 2.8 × 10−114 454 50.35 4.75 cytoplasm 2
MeTubulin5 Manes.05G200200 2.7 × 10−114 453 50.08 4.77 cytoplasm 5
MeTubulin6 Manes.05G025900 6 × 10−94 481 53.40 5.70 cytoplasm 5
MeTubulin7 Manes.05G147000 1.5 × 10−112 456 50.38 4.74 cytoplasm 5
MeTubulin8 Manes.13G106300 8.6 × 10−94 424 45.79 4.93 cytoplasm 13
MeTubulin9 Manes.09G100400 2.2 × 10−113 451 49.93 4.85 cytoplasm 9
MeTubulin10 Manes.09G055800 1.6 × 10−42 493 51.31 5.96 chloroplast stroma 9
MeTubulin11 Manes.09G140200 1.5 × 10−98 456 49.69 5.00 cytoplasm 9
MeTubulin12 Manes.06G058600 8 × 10−112 451 49.89 4.78 cytoplasm 6
MeTubulin13 Manes.06G007200 2 × 10−114 454 50.39 4.72 cytoplasm 6
MeTubulin14 Manes.06G147900 9 × 10−115 454 50.33 4.75 cytoplasm 6
MeTubulin15 Manes.15G108500 3.3 × 10−99 456 49.70 5.00 cytoplasm 15
MeTubulin16 Manes.01G249000 7.2 × 10−94 480 53.24 5.67 cytoplasm 1
MeTubulin17 Manes.01G061400 4.2 × 10−112 453 50.12 4.68 cytoplasm 1
MeTubulin18 Manes.01G166100 2.6 × 10−114 454 50.35 4.74 cytoplasm 1
MeTubulin19 Manes.14G124600 1.1 × 10−113 451 49.84 4.78 cytoplasm 14
MeTubulin20 Manes.03G135500 6.1 × 10−38 421 43.29 6.93 chloroplast stroma 3
MeTubulin21 Manes.03G098100 2.8 × 10−100 457 49.74 4.90 cytoplasm 3
MeTubulin22 Manes.10G087300 3.7 × 10−100 457 49.57 4.93 cytoplasm 10
MeTubulin23 Manes.10G087200 3.8 × 10−73 421 45.61 4.74 cytoplasm 10

2.2. Multiple Sequence Alignment, Phylogenetic Analysis, and Classification of MeTubulins

As shown in Figure 1, using the tubulin protein sequences of cassava, Oryza sativa,
Hevea brasiliensis, Arabidopsis thaliana, Dioscorea rotundata, and Vitis vinifera, the unrooted
phylogenetic trees were constructed by the maximum likelihood (ML) method, and their
evolutionary relationship were further analyzed. A total of 115 tubulins contained 31
Hevea brasiliensis, 16 Arabidopsis thaliana, 16 Oryza sativa Japonica, 11 Dioscorea rotundata,
and 18 Vitis vinifera, which were divided into groups I, II, III, and IV corresponding to
β-tubulin, α-tubulin, γ-tubulin and FtsZ based on the four types of tubulin (Table S3).
In addition, referring to the classification of Radchuk et al. [49], group I can be divided
into three subgroups, Ia to Ic, and group II can be divided into two subgroups, IIa and
IIb. Group Ia consisted of 22 tubulins, usually containing two introns, including five
MeTubulins (MeTubulin7, 12, 13, 17, and 19), together with six HbTubulins from Hevea
brasiliensis, four AtTubulins from Arabidopsis thaliana, four OsTubulins from Oryza sativa
Japonica, three VitTubulins from Vitis vinifera, and one DrTubulin from Dioscorea rotundata.
Three MeTubulins (MeTubulin1, 3, and 5), one AtTubulin, three VitTubulins, three OsTubu-
lin10, two HbTubulins, and one DrTubulins belonged to group Ib, which generally contains
an extra intron in the 5′ untranslated region. Group Ic mainly consisted of dicotyledons,
four MeTubulins (MeTubulin4, 9, 14, and 18), two AtTubulins, seven HbTubulins, and
three ViTubulins, and only two monocotyledons OsTubulin10, and DrTubulin2. Similarly,
group IIa usually contains three introns, including three MeTubulins (MeTubulin8, 22,



Plants 2021, 10, 668 4 of 18

and 23), together with two AtTubulins, four HbTubulins, two OsTubulins, four VitTubu-
lins, and two DrTubulins. Group IIb generally contains four introns, consisting of three
MeTubulins (MeTubulin11, 15, and 21), two AtTubulins, two VitTubulins, two OsTubulins,
four HbTubulins, and two DrTubulins. Two MeTubulins (MeTubulin 6 and 16) clustered
with two AtTubulins, DrTubulin7, three HbTubulins, OsTubulin4, and ViTubulin13 in
group III. Group IV consisted of three MeTubulins (MeTubulin 2, 10, and 20), three At-
Tubulins, three DrTubulins, three OsTubulins, two VitTubulins, and three HbTubulins.
HbTubulin4 was excluded from the grouping because it was too divergent. Furthermore,
a total of four sister pairs of MeTubulins were showed in the phylogenetic tree, includ-
ing MeTubulin2–MeTubulin10, MeTubulin8–MeTubulin23, MeTubulin15–MeTubulin21,
MeTubulin12–MeTubulin19. Tubulin domain sequence alignment of MeTubulin proteins
showed that sequence varied greatly from position 33 to 46 amino acids, but the sequence
was identical or similar in the same group (Figure 2).
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Figure 1. The phylogenetic tree represents the relationship between tubulin proteins in six species.
The bootstrap values of less than 50% were hidden. The different-colored arcs and roman numerals
indicate different groups (or subgroups) of tubulin proteins. The red star (MeTubulin10) represent
FtsZ2-1 from cassava. The branch length values are shown in Supplementary Figure S1.
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Figure 2. Tubulin domain sequence alignment of MeTubulin proteins. Dots represent gaps, blue frames represent the
conserved region, red columns indicate the identical residues, and red letters indicate conserved residues.

2.3. Gene Structure and Motif Composition of MeTubulins

For this study, 10 conserved motifs of MeTubulins with a length of 20 amino acids
were identified by the MEME program; the function of these motifs have not been clarified
(Table S4). As exhibited in Figure 3A,B, it was found that MeTubulins with similar motif
composition tend to be clustered together. For instance, groups I and II contain all motifs
(except for Metubulin23), group III mainly lacks motifs 3, 7, and 2, and group IV only
shares a common motif 9.
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Plants 2021, 10, 668 7 of 18

In order to gain a better understanding of the evolution of the cassava tubulin family,
the exon–intron structures of all identified MeTubulin genes were analyzed. All MeTubulin
genes displayed 3 to 11 exons (12 with 3 exons, 3 with 4 exons, 3 with 5 exons, 1 with
6 exons, 2 with 7 exons, and 2 with 11 exons) in Figure 3C. Significantly, each group has the
same number of exons (except for the IV group, two contain seven exons and one contains
six exons). Meanwhile, the number of introns in the same group is also similar. Generally,
the diversity of exon–intron structure makes the gene family show a variety of different
functions and could be used as a basis for phylogenetic grouping.

2.4. Chromosome Distribution and Synteny Analysis of MeTubulins Gene

In total, 23 MeTubulins were unevenly distributed on 11 chromosomes, and each
chromosome contained 1-3 MeTubulins in Supplementary Figure S2. A total of 11 segmental
duplication genes were obtained from 23 MeTubulins by BLASTP and multiple collinearity
scan toolkit (MCScanX) methods in Figure 4 (Table S5). The results show that these
MeTubulin genes might be produced by segmental replication events.
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To research the evolutionary mechanisms of the cassava tubulin family further, five
comparative syntenic maps of cassava associated with five representative species were
constructed, including two monocots (Oryza sativa and Dioscorea rotundata) and three dicots
(Populus trichocarpa, Arabidopsis thaliana, and Vitis vinifera) (Figure 5). In general, cassava
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and dicotyledons have more collinear genes than monocotyledons (Table S6). For example,
Dioscorea rotundata (7), and Oryza sativa (1) have fewer collinear genes than Vitis vinifera
(18), Populus trichocarpa (14), and Arabidopsis thaliana (9). Some MeTubulins have been
observed to be associated with more than one syntenic gene pairs, especially cassava and
Vitis vinifera, such as MeTubulin9 and MeTubulin17, speculated that these genes might play
a significant role in the evolution of the MeTubulin family.
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2.5. Expression Profiles of MeTubulins in Different Tissue Types

The RNA-seq data publicly available from the GEO (gene expression omnibus)
database under the accession number GSE7951 [50], which contained expression pro-
filing (Table S8) of 11 cassava tissue types (root apical meristem (RAM), leaf, petiole, stem,
midvein, lateral bud, storage root, fibrous root, stem apical meristem (SAM), in addi-
tion to organized embryogenic structures (OES) and friable embryogenic callus (FEC) for
genome editing and transgene integration) were used in expression analysis of cassava
Tubulin genes (Figure 6). We found that some MeTubulins have similar expressions in the
same tissue. MeTubulin1, MeTubulin3, MeTubulin4, MeTubulin5, MeTubulin6, MeTubulin10,
MeTubulin17, MeTubulin19, MeTubulin22, and MeTubulin23 showed high levels of expression
in petioles and stems, of which MeTubulin10 was also highly expressed in storage root.
MeTubulin2, MeTubulin7, MeTubulin9, MeTubulin11, MeTubulin12, MeTubulin13, MeTubulin15,
MeTubulin20, and MeTubulin21 were highly expressed in leaves and midveins, MeTubu-
lin14, MeTubulin16, and MeTubulin18 exhibited high expression levels FEC and SAM, and
MeTubulin8 exhibited higher expression levels in RAM and storage roots.
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2.6. Expression Patterns of FtsZ2-1 Gene in Response to Various Stresses

Cassava seedlings were treated with IAA, MeJA (methyl jasmonate), ABA (abscisic
acid), GA3, NaCl, and PEG (polyethylene glycol) treatments to research the expression of
the FtsZ2-1 gene by different abiotic stresses and hormonal treatments (Figure 7). Under
100 µM IAA treatment, the expression of FtsZ2-1 fluctuated with time. The expression
of FtsZ2-1 increased at the beginning, then decreased and subsequently increased again,
reached the peak at 8 h, and decreased sharply at 12 h. After that, the expression level
approached the peak at 48 h. After treatment with 100 µM MeJA, the expression of FtsZ2-1
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fluctuated with time; it decreased significantly after treatment, reaching the lowest value
at 4 h, and then increased to the highest value at 24 h. Under 100 µM GA3 treatment, the
expression of FtsZ2-1 showed an upward trend with the delay of time, decreased at 8 h, and
then continued to rise for 48 h to reach the peak. Under the abiotic stress of 300 mM NaCl
and 20% PEG, the transcriptional level of FtsZ2-1 decreased at first and then increased.
The difference was that the expression level of FtsZ2-1 reached the lowest level at 4 h
and reached the highest level at 48 h after the treatment with 300 mM NaCl, which was
significantly higher than that in the control group. However, under 20% PEG treatment,
the transcriptional level decreased rapidly to the lowest level at 2 h and increased to a
similar level as that of the control group at 48 h.
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3. Discussion

Tubulins consist of cytoskeleton proteins that are present in all plant species. Under-
standing the role of tubulins in growth and non-specific response to abiotic stress factors
in plants is essential [6,51]. In our study, the phylogenetic tree, genetic structure, gene
replication protein motif, and expression profiles in different tissues of the tubulin family
in cassava were analyzed. Furthermore, the expression of the FtsZ2-1 gene under various
stresses was researched. Tubulin genes were screened from the cassava genome, along
with six other species, for instance, Arabidopsis thaliana [52], Dioscorea rotundata [53], Hevea
brasiliensis [54], Oryza sativa [55], and Vitis vinifera [56]. In this study, 23 cassava tubulins
were found and renamed as MeTubulin1 to MeTubulin23 in the order of screening, lower
than Hevea brasiliensis (31), but higher than Arabidopsis thaliana (16), Dioscorea rotundata
(11), Oryza sativa (16), and Vitis vinifera (18); according to amino acid sequences, motif
composition, intron structure, phylogenetic feature, and tubulin type of cassava, the 23
cassava tubulin genes can be divided into four main groups.

Multiple sequence comparisons were used to analyze the conserved domains of
cassava tubulins. The results showed that MeTubulin23 had the least conserved residues,
and MeTubulin2, MeTubulin10, and MeTubulin23 had low similarity with other amino acid
sequences (Table S7). The gain and loss of domain is the diverging force of gene family
members’ diversity. The sequence variation of domains is relatively common in rice and
maize [57–59]. Thus, the function and binding specificity of specified four tubulin proteins
deserve further study.

The phylogenetic tree divides tubulin proteins into four main groups, and each group
contains only one tubulin type from cassava, Vitis vinifera, Oryza sativa, Hevea brasiliensis,
Dioscorea rotundata, and Arabidopsis thaliana, and the neighboring tubulins in the same
group might have similar functions; for instance, HbTubulin27, VitTubulin6, AtTubulin1,
and OsTubulin3 are involved in the regulation of plastid division [27,60–62]. Overall,
10 conserved motifs were identified in the cassava tubulin family, and it was found that
members with similar motif composition had cognate gene structures and were clustered
together on the phylogenetic tree. This indicates that the tubulin family is evolutionarily
diverse and conservative.

In the course of evolution, gene diversity proceeds through sequence divergence,
recombination, and replication [63]. Gene replication events have been often considered
important sources of evolutionary dynamics [64]. Tandem duplication and segmental
replication lead to the expansion of gene families [65]. Based on the explanation of Holub,
tandem duplication of a gene is a chromosomal region within 200 kb containing two or
more genes [66]. In the MeTubulin family, seven pairs of genes were found to be derived
from fragment repeat evolution, but no tandem repeat was found, which means that the
driving force of the family expansion is mainly fragment repeat (Figure 4). Purification
selection was the main driving force for differentiation of MeTubulin replication based on
Ka/Ks values below 1 (Table S8) [67]. The FtsZ2-1 gene in cassava has fragment duplication
and a colinear relationship with corresponding genes in dicotyledons (Arabidopsis thaliana
and Vitis vinifera) and monocotyledon (Dioscorea rotundata).

The expression profiles of MeTubulin in various tissues were analyzed by using RNA-
seq (RNA sequencing) data of cassava in the GEO database, which is helpful to research
the potential function of the MeTubulin gene (Figure 7), and several MeTubulins showed
tissue-specific expression in specific tissues. For instance, MeTubulin2, MeTubulin10, and
MeTubulin20 are highly expressed in leaf, and they are involved in the formation of chloro-
plast in mesophyll cell, which is similar to the homologous genes AtTubulin8, AtTubulin15,
and AtTubulin1 in Arabidopsis thaliana [68,69]. Hence, highly expressed genes might play a
role in the physiological process of corresponding tissues, which provides a new idea for
researching the potential function of MeTubulin genes in cassava.

To date, accumulated pieces of evidence show that plant hormones and abiotic stress
play a crucial role in the growth and development of cassava [70,71]. FtsZ2-1, a member
of the tubulin family, was selected for different stress treatments, and its function was
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further explored through the transcriptional response to different treatments in our research.
IAA, which may be produced by the terminal buds, limits water transport to the lateral
buds, and the change of water movement alters the composition of membrane lipids, thus
inducing the growth of lateral buds [72]. Exogenous MeJA could delay cell deterioration,
maintain postharvest longevity, reduce cell oxidative damage, and regulate storage quality
by activating superoxide dismutase, catalase, and peroxidase [70]. In addition, it can induce
plant chemical defense by stimulating the expression of plant defense genes [73]. ABA plays
a regulatory role in plant growth and under the influence of the external environment [74].
The application of ABA, through foreign aid, can accelerate the adaptation of some crops
to cold and drought [75,76]. Furthermore, it was found that GA3 affected the synthesis
of cassava starch by regulating the activities of key enzymes in the process of starch
synthesis [77]. It was noteworthy that the expression pattern of the FtsZ2-1 gene is not
completely consistent with that of previous studies, which may be caused by the inhibition
of growth by a high concentration of IAA and the promotion of growth at low concentration,
indicating that FtsZ2-1 is closely related to the growth of cassava. [67]. The expression
of FtsZ2-1 changed significantly under MeJA treatment, which provides a new idea for
studying the functional mechanism of MeJA in cassava. However, there was little difference
in the expression of FtsZ2-1 under ABA treatment, which indicated that FtsZ2-1 may not
be an important factor affecting the mechanism of action of ABA. The level of FtsZ2-1
transcripts increased significantly after GA3 treatment, indicating that FtsZ2-1 might be
an important member involved in the regulation mechanism of GA3. The main abiotic
environmental stresses are salt and drought stresses. Solving water shortage and salt stress
is a global problem to ensure the survival of agricultural crops and sustainable metabolism
of food production [78]. The expression trends of the FtsZ2-1 gene induced by PEG and
NaCl were similar, which provides an opportunity to study the relationship between
drought and salt action mechanism. From these results, the FtsZ2-1 gene might play a role
in cassava growth and environmental stress.

4. Materials and Methods
4.1. Identification of the Tubulin Gene Family

The whole genome sequence of cassava was downloaded from the EnsemblPlant
database (http://plants.ensembl.org/Manihot_esculenta/Info/Index, access date: 22 June
2020). Local BLAST searches were performed based on the hidden Markov model (HMM)
profile of tubulin domains from the Pfam database under the accession number PF00091
(http://pfam.xfam.org/family/PF00091#tabview=tab6, access date: 1 July 2020) [43,79].
The selected tubulin protein sequence was submitted to the CDD (conserved domain
database) website (https://www.ncbi.nlm.nih.gov/cdd/, access date: 12 July 2020) and
SMART website (http://smart.embl.de/, access date: 8 July 2020) with default parameters
to confirm the conservative tubulin domain [80]. The sequence length, MW, pI, and
subcellular location prediction of cassava tubulin proteins were obtained by online ExPASy
(http://web.expasy.org/protparam/, access date: 5 August 2020) and Psort server (http:
//psort1.hgc.jp/form.html, access date: 1 August 2020) with default parameters.

4.2. Sequence Analysis and Structural Characterization

The gene structures were analyzed by the gene structure display server (GSDS: http:
//gsds.cbi.pku.edu.cn, access date: 21 August 2020) [81]. The structure of exon/intron was
determined by comparing genomic DNA and CDS sequences of tubulin genes. The MEME
online program (http://meme.nbcr.net/meme/intro.html, access date: 20 September 2020)
was used to analyze the conserved motifs in full-length tubulin proteins, with the following
parameters: the site distribution, any number of repetitions; the number of motifs, 10;
optimum motif length = 10–20 residues, and shuffle the sequences several times under the
same parameters to ensure the reliability of motif [82]. Meanwhile, all identified motifs
were annotated according to InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/,
access date: 8 March 2021).

http://plants.ensembl.org/Manihot_esculenta/Info/Index
http://pfam.xfam.org/family/PF00091#tabview=tab6
https://www.ncbi.nlm.nih.gov/cdd/
http://smart.embl.de/
http://web.expasy.org/protparam/
http://psort1.hgc.jp/form.html
http://psort1.hgc.jp/form.html
http://gsds.cbi.pku.edu.cn
http://gsds.cbi.pku.edu.cn
http://meme.nbcr.net/meme/intro.html
http://www.ebi.ac.uk/Tools/pfa/iprscan/
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4.3. Chromosomal Localization and Gene Duplication

The location of MeTubulin genes on the chromosome was analyzed by MapChart soft-
ware (https://www.wur.nl/en/show/Mapchart.htm, access date: 20 October 2020) [83].
Multiple collinearity scan toolkit (MCScanX) was used to analyze the gene duplication
events, and the parameters were the default values [84]. The synthetic map of each tubulin
gene duplicated segment was generated by CIRCOS software (http://circos.ca/, access
date: 20 October 2020) [85]. The putative duplicated genes were linked by connection
lines. The syntenic analysis maps were constructed by using our own coded python
program to prove the homologous relationship of orthologous Tubulin genes obtained
from cassava and other selected species [86]. Non-synonymous (ka) and synonymous (ks)
substitution of each duplicated tubulin genes were calculated using KaKs_Calculator 2.0
(https://sourceforge.net/projects/kakscalculator2/, access date: 18 November 2020) [87].

4.4. Phylogenetic Analysis of Cassava Tubulin Genes Family

The whole protein sequences of MeTubulin, AtTubulin, HbTubulin, ViTubulin, Dr-
Tubulin, and OsTubulin were according to the descriptions in the relevant literature and
obtained from the EnsemblPlant database (http://plants.ensembl.org/, access date: 22
June 2020). All tubulin proteins were compared by ClustalW [88]. The maximum likelihood
(ML) phylogenetic tree based on the full length of protein sequences was constructed by
using MEGA 7.0, with the following preferences (Analysis: Phylogeny Reconstruction;
Statistical Method: Maximum Likelihood; Test of Phylogeny: Bootstrap method; No. of
Bootstrap Replications: 1000; Substitutions Type: Amino acid; Model/Method: Poisson
model; Site Coverage Cutoff (%): 50; ML Heuristic Method: Nearest-Neighbor–Interchange
(NNI); Initial Tree for ML: Make initial tree automatically (Default-NJ/BioNJ); Branch Swap
Filter: Moderate) [89,90].

4.5. RNA-Seq Data Analysis of Tubulin Genes

The RNA-seq data of cassava (Table S9) were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82279 access date: 22 Octo-
ber 2020) to research the expression profiles of tubulin genes in different tissue types. Based
on Hiplot tool (https://hiplot.com.cn/basic/heatmap access date: 15 February 2021), the
absolute FPKM (Fragments per kilobase of exon per million fragments mapped) values
were divided by the average of all values, and the ratios were transformed by log2 to obtain
data that are suitable for cluster displays, and the heatmap was generated [91].

4.6. Plant Materials and Treatments

SC8 (South China 8), a typical cassava cultivar was derived from the Tropical Crops
Genetic Resource Institute (TCGRI, Danzhou, China). A large number of plants regenerated
from tissue culture were obtained by using lateral buds of cassava on MS medium. Then,
they were transferred to soil culture for two months to select seedlings with similar growth
status for subsequent experiments. To study the expression pattern of the FtsZ2-1 gene
under different abiotic stresses and hormone treatments, further qRT-PCR analysis was
carried out. For hormone treatments, cassava seedlings were sprayed with 100 µM IAA,
MeJA, ABA, and GA3, respectively, and the leaves were collected at 2, 4, 8, 12, 24, and 48 h
after treatment. In addition, 300 mM NaCl and 20%PEG were used to simulate salt stress
and drought stress, which were consistent with the way of hormone treatments. All treated
leaves were immediately frozen in liquid nitrogen and stored at −80 ◦C for subsequent
analysis.

4.7. RNA Extraction and qRT-PCR Analysis

The RNA of each sample was extracted according to Trizol Reagent (Invitrogen
#15596026). All RNA was analyzed by 1% agarose gel electrophoresis and then quantified
with a Nanodrop ND-1000 spectrophotometer. RNA was used for the synthesis of the first
strand of cDNA by using HiScript® III SuperMix for qPCR (+ gDNA wiper) Kit (Vazyme

https://www.wur.nl/en/show/Mapchart.htm
http://circos.ca/
https://sourceforge.net/projects/kakscalculator2/
http://plants.ensembl.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82279
https://hiplot.com.cn/basic/heatmap
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#R323) according to the manufacturer’s recommendations. ChamQTM Universal SYBR®

qPCR Master Mix (Vazyme #Q711) was used for qRT-PCR on a Roche Lightcyler® 480.
The reaction system is as follows: 5.0 µL 2 × ChamQ Universal SYBR ®qPCR Master Mix,
0.2 µL forward primers, 0.2 µL reverse primers, 1.0 µL template cDNA, 3.6 µL ddH2O.
The PCR reaction was carried out under the following condition: preincubation (95 ◦C
for 60 s), 40 cycles of three-step amplification (95 ◦C for 10 s, 60 ◦C for 15 s, and 72 ◦C for
15 s), melting (95 ◦C for 10 s, 65 ◦C for 15 s, and 97 ◦C for 1 s), and cooling (37 ◦C for 30 s).
According to the related literature, the cassava β-tubulin gene (MeTubulin1) was suitable to
be used as an internal reference for all the qRT-PCR analyses [92]. The specific primers were
designed on the basis of β-tubulin and FtsZ2-1 (MeTubulin10) CDS sequences (Table S2)
by Primer 5.0 software (β-tubulin-F: GTTATCCCCTTCCTCCCTCGTCT, β-tubulin-R: TC-
CTTGGTGCTCATCTCTTCC3 and FtsZ2-1-F: GCCATCCTCATCATTTACCGA, FtsZ2-1-R:
TGGACATCCTAGCAAAGCAGA). Each sample was performed with three independent
replications. Relative expression levels were calculated by the 2−∆∆Ct method [93]. The
expression of the FtsZ2-1 gene at each time point was compared to the corresponding NTC
(no treatment control). Statistical differences were analyzed by one-way ANOVA, followed
by the post hoc tests, and a p-value less than 0.05 was deemed as significant. The data were
processed and plotted in pictures by the GraphPad Prism 7.0.

5. Conclusions

In the study, a genome-wide analysis of the tubulin family in cassava was carried
out, and 23 MeTubulin genes were identified. The biochemical characteristics of proteins,
prediction of subcellular localization, gene structure, conservative motifs, chromosome
location, and gene replication were analyzed, and their basic classification and evolutionary
characteristics were established. This biological information provides plentiful resources
for the functional identification of tubulin genes. The expression atlas analysis of the
MeTubulin genes provides evidence of the potential functions of these genes in specific
tissues. Moreover, analysis of FtsZ2-1 gene expression under different treatments showed
that the FtsZ2-1 gene had a comprehensive response to IAA, MeJA, ABA, NaCl, and PEG.
In general, this study laid a foundation for further analysis of the function of the MeTubulin
gene family.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10040668/s1, Figure S1: the phylogenetic tree represents the relationship between tubulin
proteins in six species, and show the branch length values, Figure S2: genome-wide distribution and
orientation of MeTubulin genes on cassava chromosomes. Table S1, S2: list of the 23 MeTubulin genes
and proteins identified in this study, Table S3: list of the 124 tubulin genes in the phylogenetic tree,
Table S4: analysis and distribution of conserved motifs and in cassava tubulin proteins, Table S5:
segmentally duplicated MeTubulin gene pairs, Table S6: one-to-one orthologous relationships between
cassava and other five plant species, Table S7: information of the 23 tubulin domains, Table S8:
orthologous relationships between cassava, Table S9: RNA-seq data of 23 MeTubulin genes that were
used in this study.
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