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Identification of molecular
subtypes, risk signature, and
immune landscape mediated by
necroptosis-related genes in
non-small cell lung cancer
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Yun Jiang3* and Jianle Chen2*

1Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research
Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong
University, Medical School of Nantong University, Nantong, China, 2Department of Thoracic
Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong,
China, 3Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical
School of Nantong University, Nantong, China
Background: Non-small cell lung cancer (NSCLC) is a highly heterogeneous

malignancy with an extremely high mortality rate. Necroptosis is a

programmed cell death mode mediated by three major mediators, RIPK1,

RIPK3, and MLKL, and has been shown to play a role in various cancers. To

date, the effect of necroptosis on NSCLC remains unclear.

Methods: In The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases, we downloaded transcriptomes of lung adenocarcinoma

(LUAD) patients and their corresponding clinicopathological parameters. We

performed multi-omics analysis using consensus clustering based on the

expression levels of 40 necroptosis-related genes. We constructed

prognostic risk models and used the receiver operating characteristic (ROC)

curves, nomograms, and survival analysis to evaluate prognostic models.

Results:With the use of consensus clustering analysis, two distinct subtypes of

necroptosis were identified based on different mRNA expression levels, and

cluster B was found to have a better survival advantage. Correlation results

showed that necroptosis was significantly linked with clinical features, overall

survival (OS) rate, and immune infiltration. Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment analysis confirmed that

these differential genes were valuable in various cellular and biological

functions and were significantly enriched in various pathways such as the

P53 signaling pathway and cell cycle. We further identified three genomic

subtypes and found that gene cluster B patients had better prognostic value.

Multivariate Cox analysis identified the 14 best prognostic genes for

constructing prognostic risk models. The high-risk group was found to have

a poor prognosis. The construction of nomograms and ROC curves showed
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stable validity in prognostic prediction. There were also significant differences

in tumor immune microenvironment, tumor mutational burden (TMB), and

drug sensitivity between the two risk groups. The results demonstrate that the

14 genes constructed in this prognostic risk model were used as tumor

prognostic biomarkers to guide immunotherapy and chemotherapy. Finally,

we used qRT-PCR to validate the genes involved in the signature.

Conclusion: This study promotes our new understanding of necroptosis in the

tumor microenvironment of NSCLC, mines prognostic biomarkers, and

provides a potential value for guiding immunotherapy and chemotherapy.
KEYWORDS

necroptosis, non-small cell lung cancer, tumor microenvironment, immune,
prognostic biomarker
Introduction

Lung cancer is one of the most common cancers

worldwide and the leading reason of cancer-related deaths

worldwide (1). Every year, there are nearly 1.8 million new

cases and 1.76 million deaths worldwide (2, 3). Lung cancer is

mainly divided into two categories according to pathology:

non-small cell lung cancer (NSCLC) and small cell lung

cancer (SCLC) (4). Among them, NSCLC accounts for the

largest proportion of all patients, about 85%, and has a very

high mortality (5). With the continuous improvement of

medical leve l , surgical treatment , immunotherapy,

chemotherapy, and other comprehensive tumor treatment

methods have changed the prognosis of many patients.

However, patients were often diagnosed with advanced

cancer, so mortality rates were not reduced (6, 7). The 5-

year survival rate for patients is nearly 5%–18%, depending

on the patient’s tumor stage (8). Therefore, we urgently need

new treatment options to improve the clinical prognosis of

NSCLC and improve the prognostic value of patients.

Necroptosis is a regulated form of programmed cell death

(9, 10), which is morphologically similar to necroptosis (11),

manifested by the co-swelling of organelles and cytoplasm,

allowing rapid permeation of the plasma membrane. It is

metabolized and ruptured, and all the cell contents are lost to

the intercellular space (12, 13). Necroptosis has been proved

to play a vital role in the pathophysiology and mechanism of

action of a variety of clinical diseases, such as acute kidney
ncer; TME, tumor

, hazard ratio; GSVA,

ent analysis; ssGSEA,

ene Ontology; DEGs,

02
in jury , cardiac ischemia–reper fus ion, and var ious

inflammatory diseases including Crohn’s disease and acute

pancreatitis (14–18). We also found that necroptosis is

dual-sided in tumors (19). On the one hand, it acts as a

safety mechanism to prevent tumor development and

promote cancer treatment when the apoptotic process is

compromised. For example, ectopic activation of RIPK3, an

important mediator of the necroptosis pathway, is associated

with enhanced CD8+ leukocyte-mediated antitumor effects,

resulting in systemic tumorigenesis and invasion inhibition

and increased chemotherapeutic drug sensitivity (20–22). On

the other hand, necroptosis accelerates cancer progression

and metastatic progression (23, 24). Related studies have

shown that necroptosis promotes macrophage-induced

adaptive immunosuppression through the co-expression of

regulated CXCL1 and Mincle factors, thereby enabling

pancreatic tumor progression; DR6-mediated tumor cells

induce endothelial cell necroptosis, which in turn leads to

tumor cell extravasation and metastasis (25, 26). So far, the

specific mechanism by which necroptosis is involved in

NSCLC tumor microenvironment (TME) remains unclear.

In the present study, we used consensus clustering

analysis based on the mRNA and protein expression levels

of necroptosis-related genes in The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO) databases and

identified two distinct types of necroptosis. Apoptotic

subtypes were assessed for their immune responses,

pathways, and expression of clinicopathological factors.

Next, after the genomic subtypes were established, a model

was established based on the best prognostic genes to

comprehensively evaluate the value of necroptosis-related

genes in clinicopathological features, TME, immune-related

responses, drug sensitivity, and prognostic treatment

of NSCLC.
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Materials and methods

Data source

In the text, TCGA database was used to obtain transcriptome

data of NSCLC patients and their corresponding clinicopathological

data and overall survival (OS) information, including gene

expression FPKM (fragments per kilobase of transcript per

million mapped reads) values of 1,037 NSCLC patients and 108

normal samples. In the follow-up study, we further converted the

FPKM value into the TPM (transcripts per kilobase million) value;

in addition, we eliminated the data with incomplete survival

information to ensure the accuracy of the data. Four cohorts

(GSE50081, GSE68465, GSE31210, and GSE37745) were obtained

from the GEO database to further validate prognostic gene

signatures and risk assessment capabilities. Especially, we used the

combat function in the ‘sva’ package to remove batch effects in

different datasets. In addition, we downloaded the copy number

variation (CNV) frequency of somatic mutations from TCGA.
Molecular subtyping based on
necroptosis-related genes

Based on previous in-depth research on necroptosis, we

obtained 40 necroptosis-related genes (Supplementary

Table S1) for further analysis. We used unsupervised

clustering to identify patterns of modification distinct from

necroptosis factor expression based on mRNA expression

levels of 40 necroptotic genes in two cohorts, TCGA-NSCLC

and GSE50081. Unsupervised clustering is a relatively common

way of classifying cancer subtypes. In this process, we used the

‘ConsensusClusterPlus’ R package to define patients into

different molecular subtypes based on different expression

levels. The consensus matrix heatmap identified the optimal

number of clusters for the distribution of NSCLC subtypes.
Identification and functional analysis of
differentially expressed genes between
different subtypes

In order to identify necroptosis-related genes, we divided the

total sample size into two types based on the expression levels of

40 different necroptosis factors, which were defined as cluster A/

B, and we used the ‘limma’ R package to classify NSCLC patients

based on the empirical Bayesian approach. Crossover genes

between two different types were identified, and significance

criteria were defined as follows: adjusted p-value < 0.05 and

absolute value of Log2 FC ≥ 1.5. We performed enrichment

analysis using the ‘ClusterProfiler’ R package to further explore

their potential pathways and functional enrichment pathways.
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In addition, we re-validated its functional enrichment analysis

using Metascape online analysis software and defined a p-value <

0.05 as a critical threshold. Next, based on the ‘glmnet’,

‘survminer’, and ‘survival’ R packages, we screened out 89

prognostic-related genes using univariate Cox analysis to

construct genomic subtypes, and then we used multivariate

Cox analysis to identify 14 differentially expressed genes

(DEGs) again; the prognostic risk assessment construction

formula is as follows:

Risk score  =  coefficient1 * expression of  gene1  +   · · ·  

+  coefficientN  * expression of  geneN
Gene set variation analysis

We performed gene set variation analysis (GSVA)

enrichment analysis using the ‘GSVA’ R package. We obtained

the ‘c2.cp.kegg.v7.4.symbols.gmt’ file on the MSigDB database

using the ‘limma’ R package after adjustments. Under the

screening conditions of p-value < 0.05 and false discovery rate

(FDR) < 0.05, the corresponding heatmap was drawn, which

created a prerequisite for us to study its potential biological

functions and pathways (27).
Tumor microenvironment and immune
correlation analysis

We used single-sample gene set enrichment analysis

(ssGSEA) to correlate different molecular subtypes with the

tumor microenvironment to calculate the level of infiltration

of 23 immune cell types and assess their immune function and

correlations. At the same time, we used the ‘ESTIMATE’ R

package to evaluate the immune and stromal scores of each

NSCLC patient sample. In addition, for further validation, the

CIBERSORT algorithm was used to calculate the scores of 22

selected immune cells in NSCLC patient samples. This algorithm

is based on the analysis of LM22 immune gene parameters. It is

run against a 1,000 permutation distribution. When the p-value

of the deconvolution results is < 0.05, the samples with low

accuracy are removed. Spearman’s correlation was used to

evaluate the correlation between risk score and immune cell

infiltration level.
Construction of a necroptosis-related
prognostic model

We used univariate Cox analysis to screen out DEGs in two

molecular subtypes, a total of 89, to study the survival prognosis,

enrichment analysis, and potential biological functions of NSCLC
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patients. We then used unsupervised clustering analysis to classify

it into the three best necroptosis genomic subtypes, defined as

gene clusters A/B/C, which we used for further analysis. We

continued to identify the 14 best differentially expressed genes to

construct a prognostic model. This prognostic model uses the

corresponding median value as a cutoff point to classify NSCLC

patients in the entire dataset into high and low groups. The

‘survival’ and ‘survminer’ R packages were used to assess their

differences in survival prognosis. In addition, the receiver

operating characteristic (ROC) curve analysis was performed to

plot the area under the curve (AUC) based on different years and

different clinicopathological data. We used the ‘scatterplot3d’ R

package to perform principal component analysis (3DPCA) to

further verify the accuracy of the grouping. We used the ‘regplot’

R package to draw nomograms from clinicopathological data. We

excluded the M stage due to the lack of data available for analysis.

We can use nomograms to look at 1-, 3-, and 5-year OS

probabilities for NSCLC to further calculate the accuracy of

factual and predicted survival. We also created heatmaps

assessing the distribution of different clinicopathological data in

different groups.
Drug sensitivity analysis

To explore the prognostic differences of chemotherapeutic

drugs in high- and low-risk groups of NSCLC patients,

the chemosensit ivity was evaluated. We calculated

the half- inhibitory concentrat ion values (IC50) of

chemotherapeutic drugs routinely used in the treatment of

NSCLC patients based on the ‘ggpubr’, ‘pRRophetic’ R

packages. Data on chemotherapy drugs were obtained from

the Genomics of Drug Sensitivity in Cancer (GDSC) database.

In pRRophetic algorithm, more than 700 cell lines included in

the Cancer Genome Project (CGP) database were selected to

develop a drug response prediction using the expression

matrix, and the reliability of the algorithm was validated in

other datasets.
Collection and validation of clinical
samples

NSCLC tissues were obtained from patients who had

undergone surgery at the Affiliated Hospital of Nantong

University. In our cohort, 10 pairs of tissues were obtained

between 2015 and 2020. The study was authorized by the Ethical

Committee of Affiliated Hospital of Nantong University (2022-

L048). In a previous study, we used a high-capacity reverse

transcription kit (Takara, Maebashi, Japan) for the reverse

transcription of total RNA to cDNA, and cDNA was frozen in

the long term. In this research, we used the previous cDNA to
Frontiers in Oncology 04
conduct a qRT-PCR assay in Light Cycler 480II (Roche, Basel,

Switzerland) using SYBR Green technology (Takara), and

primer sequences were obtained from a primer bank. Primer

sequences were from previous references (28–39) and primer

bank (https://pga.mgh.harvard.edu/primerbank/). In addition,

2−Dct was used to normalize and simplify to generate a

riskscore. Riskscore (qRT-PCR) = (Score − Min)/Max.
Statistical analysis

Spearman’s and distance correlation analyses calculated

correlation coefficients. Differences in survival prognosis

among subgroups were calculated by the Kaplan–Meier

analysis and log-rank test, and correlation maps were drawn.

The Wilcoxon test was used for continuous variable analysis

between two groups; the Kruskal–Wallis test was also used for

more groups. In this paper, all data analyses were performed

using R software (version 4.0.4).
Results

Genetic changes and expression
characteristics of necroptosis-related
genes in non-small cell lung cancer

In this study, we selected 40 necroptosis-related genes. In

TCGA-NSCLC cohort, the incidence of somatic mutations and

CNV of NG in NSCLC patients was analyzed. Among the 1,052

samples, a total of 368 samples had necroptosis-related gene

mutations, with a frequency of 34.98%. Among them, CDKN2A

had the highest mutation frequency at 9%, followed by BRAF,

FLT3, and CYLD. However, OTULIN, SIRT3, NFRSF1A,

TNFSF10, BCL2, NFRSF1B, DIABLO, ID1, and STUB1

showed almost no mutation in NSCLC (Figure 1A). We also

drew a circle plot to represent the association of the 40

necroptosis-related genes with each other (Figure 1B). From

the frequency of copy number variation, it can be seen that 40

NGs have extensive CNV alterations and are mainly

concentrated on the amplification of CNV alterations, of

which 28 show copy number amplification and the remaining

12 are lost (Figure 1C). We further explored whether changes in

copy number variation frequency had a significant effect. It was

found that some necroptosis-related genes with amplified CNV

alterations had higher expression in NSCLC tissues (such as

SIRT2 and OTULIN), so we predicted that CNV alterations were

a factor affecting the expression of NG (Figures 1C, D). In

conclusion, the genetic variation and mRNA expression levels of

necroptosis-related genes in NSCLC samples and normal tissues

were significantly different, indicating that they play a potential

role in the occurrence and development of NSCLC.
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Identification of necroptosis subtypes in
non-small cell lung cancer

To investigate the modification patterns of necroptosis-

related genes in NSCLC, we pooled TCGA-NSCLC and
Frontiers in Oncology 05
GSE50081 patients into a cohort for further analysis for our

subtype establishment. First, we used KM analysis to prove that

28 necroptosis genes have prognostic significance for survival

(Supplementary Figure S1). The screening principle of this

method is that when the p-value is less than 0.05, it has an
B

C

D

A

FIGURE 1

Genetic changes and expression characteristics of necroptosis-related genes in non-small cell lung cancer. (A) Mutation frequencies of
necroptosis-related genes in NSCLC; each column represents an individual patient, numbers, and bars on the right of the graphs represent
mutation frequencies for each regulator, with stacked bars below representing transformations for each sample. (B) Circle plot drawn by correlation
analysis showing the association of all necroptosis genes. (C) The graph depicts the frequency of CNV alterations in 40 necroptosis-related genes in
NSCLC. (D) Regulation between mRNA expression levels of necroptosis-related genes. Asterisks represent p-values (*p < 0.05; **p < 0.01;
***p < 0.001). NSCLC, non-small cell lung cancer; CNV, copy number variation.
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obvious prognostic value. Next, we used a consensus clustering

algorithm to study the relationship between these necroptosis

genes and NSCLC subtypes. When k = 2, the features with the

highest intra-group correlation and the lowest inter-group

correlation are the best choices. Therefore, we divided NSCLC

patients into two groups with the most reliable and stable results,

defined as cluster A/B (Figures 2A–D; Supplementary Figures

S2A–). The Kaplan–Meier curve shows a larger OS value for

cluster B, with a better survival advantage (Figure 2E). In

addition, we also created a heatmap to compare the differences

in clinicopathological data such as age, gender, TNM stage, and

survival status between the two subtypes (Figure 2F).
Enrichment analysis and immune
landscape of distinct necroptosis
subtypes in non-small cell lung cancer

According to previous studies, we found that necroptosis has

multiple biological functions and clinical value. We validated the

identification of two necroptosis subtypes using principal

component analysis (PCA) (Figure 3B). To further analyze the

underlying biological features of the two different subtypes, we

performed a GSVA enrichment analysis. Cluster A is

significantly enriched in cell cycle, basal and oncogenic

pathways, and nucleotide metabolism pathways, including p53

signaling, small cell lung cancer, DNA replication, and

pyrimidine metabolism. Progesterone mediates oocyte

maturation, cell cycle, oocyte meiosis, basal transcription

factors, nucleotide excision repair, spliceosomes, and RNA

interpretation. Cluster B has significant enrichment

characteristics in amino acid metabolism pathways, including

sulfur metabolism, complement system, and histidine

metabolism (Figure 3C). In addition, to investigate the

immune correlation, we also used ssGSEA to evaluate the

differential correlation between two different necroptosis

subtypes and 23 human immune cells. It was evident that

cluster B has a higher infiltrating abundance compared to

cluster A (Figure 3A).

To investigate the function and mechanism of action of

genes enriched in necroptosis subtypes, we screened 293

intersection genes of two different subtypes for enrichment

analysis using the ‘limma’ R package. With Gene Ontology

(GO) enrichment analysis by Metascape online analysis

software, a variety of cellular and biological functional

pathways were found to be involved in mitotic cell cycle

process, cell–cell junction, regulation of humoral levels,

epidemic infection, cell cycle, multicellular organism

significant enrichment in homeostasis, and structural

molecular activity (Figures 4A,B). Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis showed

significant enrichment trends in cell cycle, P53 signaling,

complement, and coagulation cascades (Figures 4C, D).
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Construction of differentially expressed
gene-based genotypes in non-small cell
lung cancer

First, we used univariate Cox analysis to identify 89 DEGs

for subsequent prognostic analysis (Supplementary Table S2). In

order to further verify this regulatory mechanism and explore

potential gene functions and activation pathways, we used an

unsupervised consensus clustering algorithm to divide them into

three gene subtypes, called gene clusters A–C (Figure 5A;

Supplementary Figures S3A–C). The Kaplan–Meier curve

shows that gene cluster B has the best survival prognosis

(Figure 5B). Next, we analyzed the three genomic subtypes

based on the expression levels of 40 necroptosis-related genes,

showing significant differences (Figure 5C). At the same time, we

analyzed the expression of the three gene subtypes in

clinicopathological parameters, including gender, age, survival

status, and TNM stage, al l of which showed good

differences (Figure 5D).
Construction and evaluation of
prognostic risk model

Considering that the molecular subtypes are population-based,

we performed a risk score for each individual through the above

DEGs. Through multivariate Cox analysis, 14 DEG-based best

prognosis-related genes were identified for constructing

prognostic risk models, including seven risk genes with hazard

ratios (HRs) > 1 (CCNE1, CCNB2, ITGA6, FOSL1, TNS4, FGA, and

CDC20) and seven protected genes (BUB1B, CENPW, TRIP13,

TROAP, TMEM163, KRT6A, and CLDN2) with HRs < 1

(Figure 6A; Supplementary Table S3). From the results of the

multivariate Cox analysis, we calculated a risk score for each

patient, and then we divided the patients into two risk groups

based on the median. Survival prognostic analysis revealed

significant differences, with patients in the high-risk group having

a worse prognosis as compared to the low-risk group (Figure 6B).

We performed univariate Cox analysis and multivariate Cox

analysis to verify the stability of the prognostic risk model.

Univariate Cox analysis showed that the risk score was p < 0.001,

HR = 2.072, CI = 1.745–2.459, which was significantly associated

with the survival difference of NSCLC patients; in multivariate Cox

analysis, the risk score was p < 0.001, HR = 1.964, CI = 1.647–2.343,

which can be used as an independent prognostic factor and has

strong predictability, indicating that the prognostic risk model we

constructed is an independent prognostic indicator (Figures 6C, D).

From the patient survival status, risk score distribution, and gene

expression heatmap, it can be seen that the high-risk group had

higher mortality and higher gene expression distribution

(Figures 6E–G). When ROC curve analysis was performed on the

1-, 2-, and 3-year survival rates, the AUC values were 0.657, 0.645,

and 0.659, respectively. In addition, we also performed ROC
frontiersin.org
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analysis for different clinicopathological parameters, and the value

was 0.657. It is sufficient to demonstrate that this prognostic risk

model has good predictability for the survival rate of NSCLC

patients (Figures 6H, I). The drawn heatmap showed significant

differences in tumor stage, age, gender, and TNM stage between the

high-risk and low-risk groups (Figure 7A). PCA again verified that
Frontiers in Oncology 07
prognostic risk genes were able to differentiate the two risk groups,

high-risk and low-risk groups (Figure 7B). The nomogram

transforms the complex regression equation into a simple and

visualized graph, which makes the results of the prediction model

more readable. In order to quantitatively evaluate the overall OS

value of NSCLC patients based on the risk score and
B C

D E

F

A

FIGURE 2

Identification of necroptosis subtypes in NSCLC. (A) Consensus clustering of NSCLC patients with k = 2. (B) Consensus cluster CDF for k = 2–9.
(C) CDF curve of consensus clustering. (D) Trace plots for k = 2 to 9. (E) p-Value < 0.001 for Kaplan–Meier curve, a significant difference in
survival between the two subtypes. The survival advantage of group B was better. (F) Heatmap showing the relationship between the two
clusters on clinicopathological parameters. NSCLC, non-small cell lung cancer; CDF, cumulative distribution function.
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clinicopathological data, we drew a nomogram, and the AUC values

that effectively predicted the 1-year, 3-year, and 5-year overall

survival rates were 0.898, 0.707, and 0.57, respectively

(Figure 7C). The calibration plots showed good performance and

accuracy for the nomogram predictions (Figure 7D). The Sankey

diagram showed distributional associations between two

necroptosis subtypes, three genotypes, two risk groups, and

survival status (Figure S3D). The Kruskal–Wallis test showed

significant differences between necroptosis subtypes and

genotypes (Supplementary Figures S3E,F). In addition, we also

explored differences in necroptosis-related genes between the two

risk groups, showing significant differences overall (Figure 7E).
Tumor microenvironment and tumor
mutational burden analysis among
patients in different risk groups

We first used the CIBERSORT algorithm to assess immune

cell abundance for 14 prognostic risk genes and found generally

high correlations (Figure 8A). It can be seen from the scatter plot
Frontiers in Oncology 08
that neutrophils, mast cells activated, macrophages M1, NK cells

resting, T cells CD8, T cells CD4 memory activated, and

macrophages M0 are positively correlated with the risk score

and negatively correlated with the risk score, including

monocytes, mast cells resting, T cells CD4 memory resting,

plasma cells, T cells gamma delta, B cells memory, dendritic cells

resting, and T cells regulatory (Tregs) (Figure 8D). It is not

difficult to find that these 14 prognosis-related genes play a

crucial role in the TME of NSCLC. In addition, we performed

ESTIMATE procedures on two different risk groups and

simultaneously assessed their stromal score, immune score,

and ESTIMATE score. We found that the low-risk group had

a higher TME score and more aggregation of immune cells and

stromal cells (Figure S3G). According to previous clinical

research studies, it was found that somatic tumor mutational

burden (TMB) has a strong sensitivity to immunotherapy and is

closely related to the intensity of treatment and survival rate.

Next, we assessed the relationship between TMB and risk score

and found that the high-risk group had higher TMB values,

suggesting that it may have a better immunotherapy effect

(Figure 8B). The TMB values of different genotypes were
B

C

A

FIGURE 3

Enrichment analysis and immune landscape of distinct necroptosis subtypes in NSCLC. (A) Infiltrating abundance of two clusters in 23 immune cell
types. (B) PCA classified NSCLC into two distinct clusters. (C) GSVA enrichment analysis revealed activation of various pathways under different patterns
of necroptosis modification. NSCLC, non-small cell lung cancer; PCA, principal component analysis; GSVA, gene set variation analysis. **P < 0.01;
***P < 0.001
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significantly positively correlated with the risk score (Figure 8C).

These results suggest that TMB has a certain impact on the

immune prediction, immunotherapy, and clinical prognosis

of patients.
Drug sensitivity analysis

We continued to investigate the association between risk

scores and chemotherapeutic sensitivity. We obtained

chemotherapeutic drugs currently used to treat patients with

NSCLC in the GDSC database to assess their susceptibility to

them in high- and low-risk groups. It can be found that patients

in the low-risk group have a higher sensitivity to chemotherapy

drugs such as cisplatin, irisimo, doxorubicin, acadesine,

docetaxel , cytarabine , cyclopamine, and bosut inib

(Figures 9A–W). These results also suggest that patients in the

high-risk group lack sensitivity to chemotherapeutic drugs and

have a worse prognosis.
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Three gene expression omnibus
databases validate prognostic
risk signatures

To further verify the stability of our constructed prognostic

risk model, three GEO datasets (GSE68465, GSE31210, and

GSE37745) were used to construct an independent external

validation cohort. We used the same calculation to calculate

the risk score power for each patient and found that patients in

the low-risk group had better survival values (Figures 10A–L).

Excellent validation of the prognostic risk model with extremely

better accuracy and prognostic value.
Validation of signature-related genes in
clinical samples

We used the public database (TCGA and Genotype-Tissue

Expression (GTEx)) and qRT-PCR assays to explore the
B

C D

A

FIGURE 4

(A, B) Functional annotation of GO enrichment analysis by Metascape software. (C, D) Functional annotation of KEGG enrichment analysis. GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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expression levels of the 13 hub signature-associated genes. As

shown in Supplementary Figures S4A, B, tumor tissues

showed obviously higher expression levels of CCNE1,

CCNB2, TNS4, FGA, CDC20, BUB1B, CENPW, TRIP13,

TROAP, TMEM163, KRT6A, and CLDN2 than did the
Frontiers in Oncology 10
normal tissues. Conversely, there was a higher expression of

ITGA6 and FOSL1 in normal samples. The abovementioned

gene expression results in clinical tissue samples that almost

conformed to the public database (Supplementary

Figure S4C).
B

C

D

A

FIGURE 5

Construction of DEG-based genotypes in NSCLC. (A) Consensus clustering of NSCLC patients with k = 3. (B) Kaplan–Meier plots show that the
significant OS rate of gene cluster B is significantly better than that of gene cluster A and gene cluster C, p-value < 0.001. (C) Expression levels
of 40 necroptosis-related genes in three gene clusters. (D) Patients were grouped into three genomic subtypes, termed gene clusters A–C,
using consensus clustering analysis, with survival, age, sex, and tumor stage as reference indicators for heatmaps. DEG, differentially expressed
gene; NSCLC, non-small cell lung cancer; OS, overall survival. *p < 0.05; **p < 0.01; ***P < 0.001.
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Discussion

Lung cancer is currently the main cause of cancer-related

death in the world, with a very high mortality rate (40).

However, the clinical symptoms of NSCLC appear late,

related examinations have not been popularized, and the
Frontiers in Oncology 11
prognosis of NSCLC patients is still poor (41). Therefore,

we urgently need to analyze the clinical features, survival

prognosis, tumor microenvironment, and drug sensitivity of

NSCLC to further explore immune prediction efficacy and

therapeutic drugs to improve the diagnosis and treatment of

NSCLC (42, 43).
B
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E

F

G

H

I

A

FIGURE 6

Construction and evaluation of prognostic risk model. (A) Forest plot of the best prognostic genes. (B) Kaplan–Meier curves for survival analysis of
patients in high-risk and low-risk groups. (C, D) Univariate and multivariate Cox analyses of clinicopathological features and risk scores. (E, F) Risk score
distribution and survival status. (G) Expression heatmap of the 14 best prognostic genes. (H) ROC curves predict 1-, 2-, and 3-year survival. (I) ROC
curves predict the prognostic efficiency of different clinical features and risk scores. ROC, receiver operating characteristic.
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Necroptosis is a form of programmed cell death regulated by

three major mediators, RIPK1, RIPK3, and MLKL (20), is a key

process in cancer biology, including tumor initiation and

progres s ion , invas ion and migra t ion , and tumor

immunosuppression (44, 45). The necroptosis process is
Frontiers in Oncology 12
initiated by RIPK1, which then combines with RIPK3 to form

an oligomeric complex called ‘necrosome’ (46–48). Necrosomes

in turn subsequently induce phosphorylation of MLKL for rapid

membrane permeabilization, leading to cell rupture and

subsequent release of contents, causing damage-associated
B

C

D

E

A

FIGURE 7

Tumor microenvironment (TME) and tumor mutational burden (TBM) analysis among patients in different risk groups. (A) Heatmap is used to
show correlations between clinical characteristics and risk groups. (B) PCA of high-risk and low-risk pairs of prognostic risk models including 14
necroptosis-related genes. (C) Calibration curve predicted by nomogram. (D) Combined nomogram of risk score and other clinicopathological
factors. (E) Expression levels of necroptosis-related genes in high-risk and low-risk groups. ROC, receiver operating characteristic; PCA,
principal component analysis. *p < 0.05; **p < 0.01; ***P < 0.001.
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molecular patterns (DAMPs) of immune responses (49, 50).

Throughout the process, the kinase activities of RIPK1 and

RIPK3 are critical in the necroptosis pathway (51, 52).

According to scientific research over the years, necroptosis-

related genes play a huge role in tumor occurrence and

progression, immune prediction, drug sensitivity, and

therapeutic value, either alone or by interaction. On the one

hand, they can act as a protective mechanism, eliciting specific
Frontiers in Oncology 13
adaptive immune responses, preventing the occurrence and

progression of cancer, and playing a crucial role in eliminating

cancer cells. According to related studies, the expression of

RIPK3 is absent or significantly reduced in many cancer cell

lines (53, 54); for example, compared with normal colorectal

mucosal cells, the expression of RIPK3 is significantly reduced in

colorectal cancer. High expression of RIPK3 significantly

inhibited the expansion of colorectal cancer cells in vitro. In
B

C

D

A

FIGURE 8

Tumor microenvironment (TME) and tumor mutational burden (TBM) analysis among patients in different risk groups. (A) Association of the 14
best genes used to construct prognostic risk models with immune cell infiltration. (B) Differential levels of TMB between high-risk and low-risk
groups. (C) Correlation of TMB and risk score. (D) Correlation analysis. *p < 0.05; **p < 0.01; ***P < 0.001.
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addition, several studies have shown that RIPK3 knockout mice

have a higher risk of colorectal cancer and produce more pro-

inflammatory or tumor-promoting factors (55). Knockout of the

RIPK1, RIPK3, or MLKL genes in breast cancer cells

significantly reduces the oncogenic activity of these cells and

sensitizes the breast cancer cells to radiation therapy. On the

other hand, it also promotes the rapid migration and invasion of

cancer. For example, colon and esophageal cancer patients have

a poorer prognosis and reduced prognostic survival when MLKL

phosphorylation levels are elevated, suggesting that necroptosis

promotes tumor progression and migration (19). At the same

time, low expression of MLKL was also found to be associated

with poor prognosis in various gynecological malignancies (56–

58). RIPK3/RIPK1 regulation of CXCL1 in pancreatic cancer

restricts infiltration of highly immunogenic T or B cells to

promote tumor migration and invasion (25). The mechanisms

and potential biological functions of necroptosis-related genes in

NSCLC have not been specifically explored and elucidated.

In this study, we used consensus clustering analysis to divide the

total sample into two clusters based on the mRNA and protein

expression levels of 40 necroptosis-related genes. These two distinct

clusters have distinct clinical characteristics, survival values,

immune landscapes, and pathways. We found that cluster B has a

better survival value than cluster A. Clinical features and prognostic

analysis revealed that the modification pattern of necroptosis-

related genes was significantly associated with the progression of
Frontiers in Oncology 14
NSCLC. We continued to use ssGSEA to analyze their infiltration

abundance in 23 types of immune cells and found that cluster B had

a higher level of immune cell infiltration. We performed GO and

KEGG enrichment analysis on these necroptosis genes to explore

their biological functions and mechanisms of action, and we found

that they were highly enriched in cell cycle and p53 signaling

pathways. p53 is an important tumor suppressor gene, most

frequently altered in human cancers; mutations in this gene are

present in 50% of aggressive tumors, and mutated p53 is often used

as a target for anticancer therapy (59, 60). Next, we further divided

the screened pre-differential genes into three genomic subtypes.

Compared with the other two groups, gene cluster B had the best

survival advantage. The clinical characteristics and expression levels

in necroptosis-related genes showed that the three genomic

subtypes were significantly different and played a crucial part in

the survival assessment and prognostic value of NSCLC patients. To

more accurately quantify and assess the role of necroptosis-related

genes in individual NSCLC, we constructed a prognostic risk model.

We identified the 14 best prognostic genes for risk assessment and

divided patients by median into two risk groups, and we found that

the low-risk group had a better survival advantage. We used

heatmaps and forest plots to describe their clinical correlation

analysis and also constructed ROC curve nomograms to predict

survival prognosis in NSCLC. We found that the high-risk group

had higher TMB values, and the TMB values of different genotypes

were significantly positively correlated with risk scores. In this
B C D E F
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FIGURE 9

Drug sensitivity analysis. (A–W) IC50 values of 23 chemotherapeutic drugs between high-risk and low-risk groups.
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paper, we evaluated the relationship between tumor

microenvironment and risk score and found that they were

significantly correlated; these results could suggest that risk score

is closely related to the tumor microenvironment and tumor

mutational burden. It can be used as a prognostic marker for

NSCLC to guide further immune prediction and immunotherapy.

We continue to use IC50 analysis to assess drug sensitivity and

explore appropriate chemotherapeutic drugs to guide the treatment

of NSCLC.

Collectively, we divided necroptosis-related genes into two

distinct modification patterns based on the mRNA expression

levels of necroptosis-related genes in NSCLC and assessed their

clinical features, survival prognosis, immune correlates, and

pathways. The differential genes were divided into three genomic

subtypes, and the prognostic value, tumor microenvironment, and

drug sensitivity to treatment were further analyzed by constructing
Frontiers in Oncology 15
a prognostic risk model. In addition, the research in this paper has

certain limitations, and the potential value of necroptosis needs to

be clarified by further research in the future (61, 62).
Conclusion

Necroptosis-related genes play a crucial part in cancer

initiation and progression. In the text, we construct a

prognostic risk model. The clinical features, copy number

variation, tumor microenvironment, immune cell infiltration,

immune prediction, and drug sensitivity were comprehensively

assessed. It was found that the necroptosis modification pattern

was related to the tumor microenvironment and drug sensitivity.

New immunotherapy modalities and chemotherapeutics need to

be explored to guide NSCLC treatment. This study opens up a
B C
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A

FIGURE 10

Three GEO databases validate prognostic risk signatures. (A–F) Distribution and scatterplot of risk scores in the GSE68465, GSE31210, and
GSE37745 datasets. (G–I) Kaplan–Meier curves showing the prognostic survival value of the three datasets. (J–L) Sensitivity and specificity of
ROC curves for predicting 1-, 3-, and 5-year survival in three datasets. GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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new research avenue for the role of necroptosis in NSCLC and

also explores novel potential markers to guide the diagnosis and

treatment of NSCLC.
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SUPPLEMENTARY FIGURE 1

(A-AB) Kaplan-Meier curve analysis of OS rates for necroptosis-

related genes.

SUPPLEMENTARY FIGURE 2

(A-D) Consensus clustering of NSCLC patients with k = 2-5.

SUPPLEMENTARY FIGURE 3

(A) Consensus clustering CDF for k = 2-9. (B) CDF curve of consensus

clustering. (C) Trace plots for k = 2 to 9. (D, E) Differences in risk scores
between genomic subtypes. (F) Differences in risk scores between

necroptosis subtypes. (G) Relationship between the two risk groups and
TME scores.

SUPPLEMENTARY FIGURE 4

Validation of signature-related genes expression. (A) Expression of 13

genes in clinical samples from TCGA and GTEx database. (B) Expression of
13 genes in clinical samples from our hospital.
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