
ORIGINAL RESEARCH
published: 20 May 2021

doi: 10.3389/fgene.2021.652623

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 652623

Edited by:

Shaolong Cao,

University of Texas MD Anderson

Cancer Center, United States

Reviewed by:

Md. Ashad Alam,

Tulane University, United States

Wenxing Hu,

University of Pittsburgh, United States

*Correspondence:

Sun Kim

sunkim.bioinfo@snu.ac.kr

Specialty section:

This article was submitted to

Statistical Genetics and Methodology,

a section of the journal

Frontiers in Genetics

Received: 12 January 2021

Accepted: 26 March 2021

Published: 20 May 2021

Citation:

Jeong D, Lim S, Lee S, Oh M, Cho C,

Seong H, Jung W and Kim S (2021)

Construction of Condition-Specific

Gene Regulatory Network Using

Kernel Canonical Correlation Analysis.

Front. Genet. 12:652623.

doi: 10.3389/fgene.2021.652623

Construction of Condition-Specific
Gene Regulatory Network Using
Kernel Canonical Correlation
Analysis
Dabin Jeong 1, Sangsoo Lim 2, Sangseon Lee 3, Minsik Oh 4, Changyun Cho 1,

Hyeju Seong 5, Woosuk Jung 5 and Sun Kim 1,2,6*

1 Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea, 2Bioinformatics Institute, Seoul

National University, Seoul, South Korea, 3 BK21 FOUR Intelligence Computing, Seoul National University, Seoul, South Korea,
4Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea, 5Department of Crop

Science, Konkuk University, Seoul, South Korea, 6Department of Computer Science and Engineering, Institute of Engineering

Research, Seoul National University, Seoul, South Korea

Gene expression profile or transcriptome can represent cellular states, thus

understanding gene regulation mechanisms can help understand how cells respond

to external stress. Interaction between transcription factor (TF) and target gene

(TG) is one of the representative regulatory mechanisms in cells. In this paper, we

present a novel computational method to construct condition-specific transcriptional

networks from transcriptome data. Regulatory interaction between TFs and TGs is

very complex, specifically multiple-to-multiple relations. Experimental data from TF

Chromatin Immunoprecipitation sequencing is useful but produces one-to-multiple

relations between TF and TGs. On the other hand, co-expression networks of genes

can be useful for constructing condition transcriptional networks, but there aremany false

positive relations in co-expression networks. In this paper, we propose a novel method to

construct a condition-specific and combinatorial transcriptional network, applying kernel

canonical correlation analysis (kernel CCA) to identify multiple-to-multiple TF–TG relations

in certain biological condition. Kernel CCA is a well-established statistical method for

computing the correlation of a group of features vs. another group of features. We,

therefore, employed kernel CCA to embed TFs and TGs into a new space where the

correlation of TFs and TGs are reflected. To demonstrate the usefulness of our network

construction method, we used the blood transcriptome data for the investigation on the

response to high fat diet in a human and an arabidopsis data set for the investigation

on the response to cold/heat stress. Our method detected not only important regulatory

interactions reported in previous studies but also novel TF–TG relations where a module

of TF is regulating a module of TGs upon specific stress.

Keywords: kernel canonical correlation analysis, gene regulatory network, network dynamics, transcription factor,

TF cooperation, condition specific network
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1. INTRODUCTION

In a living cell, rewiring of interactions among proteins, genes,
and RNA molecules orchestrates how cells respond to external
stimuli. One of the most fundamental regulatory relationships
arise from transcription factors (TFs) that bound to the promoter
of target genes (TGs) resulting in changing transcriptional
dynamics. Since TF–TG interactions can be represented as a
network, dynamics of gene regulatory mechanisms upon stimuli
can be modeled and analyzed as gene regulatory network
(GRN). High-throughput experimental techniques, such as
Chromatin Immunoprecipitation sequencing (ChIP-seq), have
been widely utilized to construct GRNs detecting one-to-multiple
relationships of TF and TGs (i.e., relations of a TF and the
promoters of TGs where the TF binds to). Such experimental
techniques are powerful but provide only partial snapshot of
condition-specific GRN. TF ChIP-seq can measure only one TF
at a time and it is not practical to perform ChIP-seq experiments
for all TFs under various conditions. More importantly, multiple
TFs work together to regulate multiple TGs in a condition-
specific way, thus data from TF ChIP-seq needs to be combined
for constructing networks of multiple TFs and multiple TGs
simultaneously. Thus, it is necessary to develop computational
methods for elucidating multiple-to-multiple relations of TFs
and TGs in a specific condition. There have been several studies
to identify multiple-to-multiple interactions. A study by Jolma
et al. (2015) tried to identify TF–TG regulations using a tailored
experimental technique in a multiple-to-multiple fashion. Their
work is still limited in identifying only 315 TF–TF interactions
from∼2,000 putative TFs.

There have been growing attention in in silico reverse
engineering methods that infer GRNs from gene expression
data. Correlation-based network inference methods—the most
straightforward approach—detect regulatory relations if two
genes are linearly correlated (Eisen et al., 1998). However, the
correlation-based methods are prone to produce many false-
positive relations, i.e., the relations predicted by computational
methods but not detected in experimental validations, because
the methods consider solely a linearly correlated expression
pattern between a pair of genes. For example, if two genes B

and C are regulated by a common gene A, expression patterns
of B and C are correlated thus detected as regulatory relations
even though there are no direct regulatory relationships between
B and C. A number of computational methods with different
strategies have been developed over two decades. Methods based
on mutual-information (MI) is a generalization of correlation-
based model that can detect non-linear dependencies, taking
into account the effect of third-party genes in addition to
two correlating genes. ARACNe (Margolin et al., 2006) and
ARACNe-AP, one of the most popular reverse engineering
methods, use the data-processing inequality to prune the indirect
regulations if a pair of genes interact only through a third gene
in every possible gene triplets. Likewise, the three-way mutual
information (MI3) and conditional mutual information (CMI)-
based models consider the effect of co-regulators in order to
remove false-positive interactions (Luo et al., 2008; Zhang et al.,

2012). Besides, regression-based methods considers multiple-to-
one relations of TFs and a TG as a feature selection problem,
where the expression of TGs is predicted from the expression
of all other TF genes (Xiong and Zhou, 2012; Hill et al., 2016).
GENIE3, one of the most best-performing methods, utilized
an ensemble of regression trees to select putative TFs for each
TG. Although MI-based approaches showed lower false-positive
rate than correlation-based methods, they do not consider the
biological nature of TFs—combinatorial and cooperative nature
of TFs—when regulating TGs are disregarded.

Then, how TFs work in order to coordinate certain
biological functions? First, TFs regulate a biological function
through interacting with protein complexes rather than
simply elevating mRNA concentration (Sutherland and
Bickmore, 2009; Rieder et al., 2012; Duren et al., 2019).
Therefore, to detect important TFs that are related to a certain
biological function, TF interaction network should be utilized
rather than simply detecting TFs with the highest mRNA
concentration. Second, combinatorial interaction of TFs
regulates TGs to control certain biological functions. That is,
given alternative stimuli, different combinations of TFs may
regulate expression of different sets of TGs to certain cellular
response involving multiple-to-multiple relations of TFs and
TGs. Several studies have suggested an atlas of combinatorial TF
module interactions (Ravasi et al., 2010; Wise and Bar-Joseph,
2015; Guo and Gifford, 2017) and inferred their associated
regulators using probabilistic graph models (Segal et al.,
2003).

In this paper, we present a new computational method that
reconstructs GRN from gene expression data incorporating
the aforementioned biological nature of TFs. We detected
cooperating TFs that coordinate common biological functions
utilizing public protein–protein interaction (PPI) network. For
detection of combinatorial relations of TFs and TGs specific
to the dataset, i.e., condition-specific combinatorial relations,
we utilized kernel canonical correlation analysis (kernel CCA).
Kernel CCA is a well-established statistical method for learning
coefficients of two groups of features that maximize the
correlation of a group of features vs. another group of features
(Kuss and Graepel, 2003; Akaho, 2006; Rhee et al., 2009;
Ashad Alam and Fukumizu, 2015; Richfield et al., 2016; Tang
et al., 2019). A high value of coefficients or weights of features
implies that the features from different groups are relevant. For
example, applying kernel CCA in motif data and gene expression
data, features (e.g., motif) with high weights are deduced as
relevant motifs in regulating gene expression (Rhee et al., 2009).
Therefore, conducting kernel CCA on gene expression data
consisting of groups of features—one feature set composed of
TFs and another feature set composed of TGs—can detect TF–
TG regulatory relations. Specifically, we employed kernel CCA
to embed TFs and TGs into a new space where the correlation
of TFs and TGs are reflected to detect context-specific, i.e.,
response to external stimulus, TF–TG relations. This enables the
construction of GRN that models responses to stimuli shows
dynamics of GRN over time, applying our method in time-series
data. Since we utilized PPI network to detect co-working TFs,
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we can modularize a GRN into sub-networks of manageable size,
which resulted in the improved interpretability of GRN.

2. METHOD

The method proposed in this paper aimed at constructing
condition-specific GRNs considering the cooperative and
combinatorial nature of TFs. To detect cooperative TFs that
share common biological process, we utilized PPI network as
a prior knowledge. Then, to detect combinatorial multiple-to-
multiple regulatory relations between TFs and TGs, we utilized
kernel CCA in inferring regulatory interactions. Our approach
uses gene expression profile data in multiple conditions (e.g.,
time points) as input and produces a network of gene–gene
regulatory relations. Public PPI network and GRN network were
utilized as a prior knowledge to guide the detection of correct
TF–TG relations. Specifically, our approach consists of three
steps—Step 1: Identification of TFs and TGs modules. Step
2: Construction of regulator relationships among the TF/TG
modules. Step 3: Inference of condition-specific GRN—as
described in Figure 1.

2.1. STEP 1: Identification of TF and TG
Modules
Since TFs work as a protein complex or as a group to direct
common biological functions (Sutherland and Bickmore, 2009;
Rieder et al., 2012; Duren et al., 2019), we aimed at identifying
a group of TFs that work together and TGs that are regulated
by the TFs. Genes were classified as TFs referring to the public
TF catalogs (Jin et al., 2016; Lambert et al., 2018), otherwise as
TGs. We used PPI network—STRING (v10.5) (Szklarczyk et al.,
2016) and BioGrid (v.3.5.179) (Stark et al., 2006) database—
as putative interactions of genes. STRING database compiled
interaction based on experimental data or from the literature.
Some interactions in STRING are made by using computational
prediction methods, which may contain many false-positive
interactions. On the other hand, BioGrid primarily compiled
experimentally validated interactions. Thus, interactions in
BioGrid may be more reliable but inference using BioGrid may
suffer a high level of false-negatives. We concatenated both of
the databases to complement each other’s limitations. Then,
we filtered the network with TFs to build TF–TF interaction
network and with TGs to build non-TF–non-TF interaction
network (i.e., TG–TG interaction network). In our study, these
two networks are used as template networks of co-working
or interacting genes. To detect condition-specific network of
TFs and TGs for a given context, we instantiated the TF–TF
interaction network with expression data of TFs and the TG–TG
interaction network with expression data of non-TFs (Ahn et al.,
2017). In particular, among gene–gene interactions in template
networks, interactions whose Pearson’s correlation coefficient
between expression vector of corresponding genes below 0.5 are
discarded. Using condition-specific networks, respectively, we
detected clusters of TFs ad TGs with a multi-level community
detection algorithm to detect condition-specific TFs and TG
modules. We utilized multilevel.community function in

R igraph package that implemented the Louvain algorithm for
community detection (Csardi and Nepusz, 2006).

2.2. STEP 2: Construction of Preliminary
GRN Between TF and TG Modules
A very large search space of TF–TG relationships is one of the
challenges in reverse engineering of GRN. Given n genes, n2

combinations of interactions should be considered. In particular,
it is not computationally feasible to perform kernel CCA analysis
on a very large network. Even if it is feasible, no computational
methods can produce correct results when there are many
unknown factors, true relations in this case. To reduce search
space, we used publicly reported gene regulatory relationships
as a guide to navigate TF–TG relationships. Specifically, we
merged public GRNs: TRRUST (Han et al., 2018) and HTRIdb
(Bovolenta et al., 2012), computationally predicted TF-DNA-
binding sites data (Ernst et al., 2010) for Human dataset;
PlantRegMap (Tian et al., 2020) and ATRM (Jin et al., 2015)
for Arabidopsis dataset. Then, we pruned the network with
genes with signature genes—for example, differentially expressed
genes (DEGs) or genes with high variance across samples—to
navigate the GRN in condition-specific perspectives. A subgraph
of GRN that contained signature genes and their first nearest
neighbors in public GRNs is utilized as condition-specific gene
regulation candidates. For every combination of TF modules and
TGmodules, projection from a TF cluster to a TG cluster through
all shortest paths in the GRN yields a sub-network of GRN
and we utilized these edges from the sub-network as a TF–TG
relationship candidate.

2.3. STEP 3: Inference of
Condition-Specific GRN With Kernel CCA
For each of preliminary sub-network of GRN determined in
section 2.2, our goal is to construct condition-specific sub-
networks considering multiple-to-multiple relationships of TFs
and TGs. Specifically, we utilized kernel CCA to embed TFs
and TGs in canonical dimensions. Then, we measured cosine
similarity between TFs and TGs in the embedding space to
discover TF–TG pairs that contribute to the correlation between
the groups of TFs and TGs. Since TFs can also regulate
expression of other TFs, which in turn generate TF cascading
network, we iteratively conducted kernel CCA embedding and
TF–TG relation detection for every possible relationship in each
GRN sub-network.

2.3.1. Kernel Canonical Correlation Analysis
A common biological phenomenon shared by groups of genes
tends to yield a high correlation detected between expression
vectors of the genes (Yamanishi et al., 2003; Rhee et al., 2009).
CCA is a method to detect shared correlation across variables
from heterogeneous datasets and yield canonical vectors, which
are weight coefficients for linear combination of variables in
each dataset. These canonical vectors represent how much
contribution or weights each variable has in correlation. Kernel
CCA is a generalized version of CCA that can detect non-
linear relationships between variables. Therefore, we utilized
regularized kernel CCA (Bilenko and Gallant, 2016) to retrieve
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FIGURE 1 | Workflow. STEP 1: To detect interacting transcription factor (TF) and target gene (TG) modules, respectively, prior protein–protein interaction (PPI) network

was instantiated with gene expression data and community detection algorithm was used to detect condition-specific TF and TG modules. STEP 2: To get putative

TF–TG relations, we conducted projection from a TF module to a TG module through public gene regulatory network (GRN). This process is conducted for every

possible TF–TG module pair. STEP 3: Utilizing kernel canonical correlation analysis (CCA), we constructed condition-specific GRN that detects multiple-to-multiple

regulatory relationships between TFs and TGs.
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new embedding of TFs and TGs that reflects contribution of
genes in correlation between expression level of TFs and TGs.
Highly scored TFs and TGs in canonical vectors are considered
as genes that contribute to correlation of shared biological
phenomenon between TFs and TGs.

Let X = (x1, x2, . . . , xn) ∈ R
n×p and Y = (y1, y2, . . . , yn) ∈

R
n×q be the gene expression matrices of TFs and TGs with

n samples and p genes and with n samples and q genes,
respectively. The original gene expression profiles are mapped
to high-dimensional feature space, reproducing kernel Hilbert
space (RKHS), through feature maps φx : x ∈ R

p 7→ Hx and
φy : y ∈ R

q 7→ Hy. Feature vector φx(x) is the projection of
a data point x ∈ X and likewise φx(x) is the projection of
a data point y ∈ Y. We represent the datasets projected in
feature space as 8x =

(

φx(x1),φx(x2), · · · ,φx(xn)
)

and 8y =
(

φy(y1),φy(y2), · · · ,φy(yn)
)

, respectively. Applying kernel trick,
the similarities of feature vectors can be defined as a positive
definite kernel kx(xi, xj) = 〈φx(xi),φx(xj)〉Hx and ky(yi, yj) =

〈φy(yi),φy(yj)〉Hy , where i, j = 1, 2, . . . , n. Specifically, we applied
Gaussian RBF kernel (Equation 1)

kx(xi, xj) = exp
[

−
‖xi − xj‖

2

2σ 2

]

ky(yi, yj) = exp
[

−
‖yi − yj‖

2

2σ 2

]

(1)

We define kernel projection of data or kernel Gram matrices as
Kx = (kx(xi, xj))

n
i,j=1 = 8T

x 8x and Ky = (ky(yi, yj))
n
i,j=1 =

8T
y 8y.
The aim of kernel CCA is to find projection vectors fx and

fy that maximize the correlation of canonical components u =

〈fx,φx(x)〉Hx and v = 〈fy,φy(y)〉Hy . Since canonical vectors fx
and fy lie in space spanned by the feature space mapped objects,
we can represent canonical vectors as linear combinations of 8x

and 8y, where fx = 8T
x α and fy = 8T

y β . Therefore, canonical
components u and v are represented with kernel matrix, u =

8T
x 8xα = Kxα and v = 8T

y 8yβ = Kyβ . The objective function
of the kernel CCA is restated with kernel projections as follows:

argmax
α,β

corr(u, v) = argmax
α,β

α Kx Ky β (2)

where α ∈ R
n,β ∈ R

n are expansion coefficients. The problem
can be reformulated as a generalized eigenvalue problem with
regularization as follows:

(

0 KxKy

KyKx 0

) (

α

β

)

= ρ2

(

K2
x + λI 0
0 K2

y + λI

)

(3)

where I denotes the identity matrix, λ is regularization parameter,
and ρ = max〈u, v〉/(‖u‖‖v‖). Once we obtain solutions for
the above equations that represent the amount of contribution
of each sample, we multiplied the transpose of gene expression
matrices XT ∈ R

p×n and YT ∈ R
q×n with canonical weight

vectors α ∈ R
n and β ∈ R

n to get the TF and TG embeddings,
wx ∈ R

p andwy ∈ R
q that represents the amount of contribution

of each gene (Equation 4).

wx = XT α

wy = YT β
(4)

We can now compute k canonical components orthogonal to
each other, so that we can get TF and TG embeddings matrix
Wx ∈ R

p×k and Wy ∈ R
q×k where each row in matrix stands

for new embeddings of TGs and TGs in k canonical dimensions.

2.3.2. Detection of Multiple-To-Multiple Relations of

TFs and TGs
Using kernel CCA, genes that greatly contribute to the
correlations of TFs and TGs gain greater weights in canonical
embeddings and TF–TG pair that both TF and TG show
high weights should be remarked as valid pair. Inspired by
Seo and Kim (2013), we weighted every k dimension with
the corresponding eigenvalue so that the eigenvalue-weighted
embeddings is dominated by the leading eigenvectors. For
every possible TF–TG pair retrieved from public GRN, we next
computed dot-product similarity of TF and TG embeddings to
define an edge weight of the pair. We then filtered out edges that
have weights below 0.5. This process is iteratively performed until
there are no TFs left in candidate TG lists.

3. DATA AND PERFORMANCE
EVALUATION SCHEME

3.1. Data
We analyzed public time-series gene expression data from NCBI
GEO datasets (GSE127530, GSE5621, and GSE5628).

• GSE127530 is an RNA-seq data that measure human blood
transcriptome after high-fat meal (HFM) measured in three
time points (Fast, +3, and +6 h after stimulus) with 15 samples
for each time point, where each time point denoted as tp0,
tp1, and tp3. Raw counts are normalized in terms of gene
length with TPM (transcripts per million). For our method,
we applied MinMaxscaler in Python sklearn library in order
not to make correlations dominated by highly expressed genes

• GSE5621 is an microarray data that measures transcriptome
from shoots in Arabidopsis thaliana in response to cold stress
at seven time points (0, +0.5, +1, +3, +6, +12, and +24 h)
with two replicates for each time point, where each time point
denoted as tp0, tp1, tp2, tp3, tp4, tp5, and tp6. GSE5628 is
an microarray data responsive to heat stress, which consists of
heat-shocked samples at 38 Centigrade and recovered samples
after heat-shock treatment prolongs to 21 h at 25 Centigrade
measured at five time points (0, +0.25, +0.5, +1, and +3 h)
with two replicates for each time point, where each time
point denoted as tp0, tp1, tp2, tp3, and tp4. We applied
MinMaxscaler in Python sklearn library for normalization.

3.2. Evaluation 1: Performance
Comparison With Existing Methods
We compared our method with the existing methods: ARACNe-
AP (Lachmann et al., 2016) and GENIE3 (Irrthum et al., 2010).
ARACNe-AP is a representative reverse engineering method
based on information theoretic approach for GRN construction
while GINIE3 uses a regression tree method. We then compared
howmuch condition-specific signature eachmethod can capture,
utilizing GSE127530 dataset. ARACNe-AP does not yield valid
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edges from the datasets, thus GRN constructed with GSE5621
and GSE5628 datasets were excluded.

• Construction of Ground Truth GRN: To assess the network
inference performance, we constructed condition-specific
GRN as a ground truth gene set. A comprehensive biomedical
entity search tool, BEST (Lee et al., 2016), was utilized to
retrieve condition-specific gene sets using four keywords from
literature search related to HFM: “lipid metabolism (Ming
et al., 2009),” “obesity (Golay and Bobbioni, 1997),” “diabetes
(Salmeron et al., 2001; Marshall and Bessesen, 2002),” and
“innate immunity (McLaughlin et al., 2017; Childs et al.,
2019).” Among the four keywords, “innate immunity” is
the term reported as a related biological term in the paper
that reported the GSE127530 dataset (Lemay et al., 2019).
The literature search identified 1,131 HFM-associated genes.
These genes were mapped according to the public GRN
described in section 2.2. As a result, we constructed a ground
truth network of 738 nodes and 1,991 edges that connect 2
HFM-associated genes.

• Metrics for Performance Measurements: Given the nodes
and edges of an inferred GRN by our method, we measured
the overlap of the nodes and edges between the inferred GRN
and the ground truth GRN.

− specificity = TN/(TN+FP)
− precision = TP/(TP+FP)
− recall = TP/(TP+FN)

For the node-level comparison, we measured specificity and
recall. True-positive (TP) are a set of genes that are both in
the ground truth network and reported by our method. False-
positive (FP) is a set of genes that are reported by our method
but do not exist in the ground truth network. True-negative
(TN) is a set of genes that are not in the ground truth network
and not reported by our method. False negative (FN) is a set
of genes that are not reported by our method but exist in
the ground truth network. For the edge-level comparison, we
measured precision and recall. TP are a set of edges that are
both in the ground truth network and reported by ourmethod.
FP is a set of edges that are reported by our method but do
not exist in the ground truth network. FN is a set of edges
that are not reported by our method but exist in the ground
truth network.

3.3. Evaluation 2: Investigation of TF
Cooperation
A sub-network constructed by our method contains multiple TFs
that cooperate with each other for regulating TGs in the sub-
network. One way to evaluate the power of TF cooperation is
to compare metrics from all TFs in the sub-network vs. metrics
from a set of individual TFs in the sub-network. That is, we
constructed sub-networks using individual TFs in TF modules
without considering the cooperativeness of TFs. The original
sub-network (denoted as Gall) that was constructed using all
cooperating TFs in TF modules was compared to the sub-
networks (each sub-network denoted as Gi) that was constructed
using individual TFs in TF modules. We used two metrics for the

evaluation of TF cooperation: the biological significance and the
cooperative potential.

3.3.1. Biological Significance
Biological significance (Bp) of TF cooperation in terms of each
pathway was calculated using Equation (5). Pathway enrichment
with nodes in Gall and all G′

is were was calculated using Enrichr
(FDR < 0.05) (Chen et al., 2013) in gseapy library. For
each pathway p, the p-value obtained from Gall is denoted as
p
p
a and the p-value obtained from Gi is denoted as p

p
i . Since

multiple Gis are constructed, aggregating pathway p-values from
Gi was performed by Fisher’s combined probability test (Fisher,
1992). Specifically, a set of p-values from k independent tests

to calculate a test statistic χ2
F = −2

∑k
i=1[ln[p

p
i ] that follows

χ2 distribution with 2k degrees of freedom under the null
hypotheses of the k tests. The p-value combined with the Fisher’s
combined probability test as denoted as p

p
c .

For each pathway p, Rp value was calculated to compare the

relative significance of Ga and Gis dividing p
p
a with p

p
c ).

Bp = log2

[

log10(p
P
a )

log10(pPc ))

]

(5)

3.3.2. Cooperative Potential
The cooperative property of TFs was measured by comparing
network centrality values between Gall and Gis (Equation 6). We
used betweenness centrality of a node in a given sub-network that
measures the proportion of the shortest paths present in the sub-
network that pass through the corresponding node. Gene-level
network centrality values were calculated on the Gall and the set
ofGis, which are denoted as c

g

all
and c

g
i s. Then, the centrality value

of the Gall (c
g

all
) was divided by the square-rooted squared sum of

c
g
i s. The cooperative potential of a pathway (Cp) was calculated
by summing up the cooperative potential of the overlap genes.

Cp =
∑

g∈P

log2





c
g

all
√

∑k
i=1(c

g
i )

2)



 (6)

3.4. Evaluation 3: Dynamics of GRNs
Across Time
One of the advantages of our method is that the whole GRN is
divided into small sub-networks. We suggest two approaches to
choose sub-networks for detailed inspection.

• To emphasize on the dynamics of network over time, we chose
sub-networks where regulatory relations vary significantly
over time. For assessing the amount of variance across time,
we measured the fraction of time-point exclusive nodes and
edges to the size of a sub-network for each time point and
then averaged across time. We applied this approach to the
human dataset.

• To investigate how combinations of co-working TFs vary
over time, we chose a Differentially Expressed Gene (DEG)-
enriched TG module and inspected the DEG-enriched sub-
networks connected to the TG module. We applied this
approach to the Arabidopsis thaliana datasets. There were too
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TABLE 1 | Comparison of our method to ARACNe-AP and GENIE3 in terms of specificity, precision, and recall with respect to the ground truth network from a literature

search tool, BEST (Lee et al., 2016).

ARACNe-AP GENIE3 Linear CCA Kernel CCA

+3 h

Node comparison
Specificity 0.841 0.270 0.692 0.961

Recall 0.230 0.829 0.533 0.483

Edge comparison
Precision 0 8.05× 10−6 9.01× 10−3 3.12× 10−2

Recall 0 9.04× 10−3 0.413 0.591

+6 h

Node comparison
Specificity 0.869 0.277 0.741 0.957

Recall 0.197 0.830 0.451 0.389

Edge comparison
Precision 6.30× 10−6 8.20× 10−6 6.51× 10−4 2.89× 10−2

Recall 8.84× 10−4 9.04× 10−3 0.188 0.340

many genes in the Arabidopsis thaliana network, thus we used
only DEGs to reduce the number of genes.

4. RESULTS

Given gene expression profiles, our method produces GRN
that consists of multiple sub-networks where condition-specific
interacting TFs regulate a set of TGs through intermediate
genes. Utilizing the public GRN and signature genes as a
guide, our method selects edges of the network with kernel
CCA to model cooperative and combinatorial natures TFs and
TGS. Another strength is that our method decomposes the
whole GRN in to sub-networks to improve interpretability.
When an organism is exposed to an environmental stimulus,
it orchestrates multiple biological process as a response and
what our method determines is the intermingled regulatory
interactions. Therefore, decomposition of the whole GRN into
sub-networks helps us to interpret the result better.

4.1. Comparative Analysis
We compared our method with the existing methods: ARACNe-
AP (Lachmann et al., 2016) and GENIE3 (Irrthum et al.,
2010). We compared how well each method can capture
condition-specific network using GSE127530 dataset. Our
method produced a set of TF–TG modules, i.e., a set of sub-
networks, but existing methods produced a single network of
large size. To compare the results, we combined a set of sub-
networks from our method into a large single network. GENIE3
produced a set of million edges with importance score, and
top 0.5% edges in terms of importance score were used for
comparative analyses. To assess the performance of network
inference, we retrieved 1131 HFM-related gene sets using a
comprehensive biomedical entity search tool, BEST (Lee et al.,
2016), as a condition-specific gene set (see section 3.2 for details).
Both specificity and recall were used as metrics to compare the
three methods for quantitative evaluation (Table 1). In node-
level comparison, our method showed the best performance in
terms of specificity and the second best in terms of recall in
all time points. In edge-level comparison, our method showed
the best performance in terms of both precision and recall
in all time points. Additionally, in order to demonstrate that
the non-linear technique for the construction of canonical

components is necessary, we compared the performance of
network inference by the regularized linear CCA with the
performance of the regularized non-linear kernel CCA. In a
majority of cases of performance comparisons, except recall of
node comparison, utilizing kernel CCA exceeds in inferring the
ground truth network.

4.2. Case Study 1: GRN in Response to
HFM in Human
4.2.1. Dynamics of GRN Over Time in Response to

HFM
Dynamics of GRN over time in response to HFM was
investigated. We executed our method on GSE127530 dataset
obtaining a GRN for each time point (tp1 and tp2) with respect
to tp0 as a baseline; a GRN with 7,021 nodes and 99,455 edges in
tp1, and with 5,985 nodes and 61,646 edges in tp2. One challenge
that arises in inspection of GRN is that regulatory relations are
too complex to interpret in which multiple biological processes
are intermingled together. One of the strengths of our method is
that we can decompose the giant network into a feasible size of
sub-network consisting of GRN projection from a TF module to
a TG module. The resulting GRN from our method consisted of
31 TFmodules and 76 TGmodules in tp1 and 26 TFmodules and
52 TGmodule in tp2 whichmeans that 31× 76 sub-networks and
26× 52 sub-networks consists of a GRN of each time point.

To investigate the regulatory mechanism over time, a network
dynamics score of a TF–TG sub-network between two adjacent
time points was measured. Basically, the score represents an
average proportion of exclusiveness of genes at each time point.
Detailed description of the score is given in section 3.4. With
the score, we now can sort out TF–TG networks that show
bigger change in network dynamics over time. By sorting TF–
TG networks in terms of the score, we selected top 100 TF–TG
networks. Each TF–TG network is a pair of a TF module and a
TG module. Interestingly, many sub-networks shared common
TF modules. Among 100 TF–TG networks, i.e., 100 pairs of a
TF module and a TG module, 95 pairs of TF and TG modules
share a TF module. With this observation, we can merge multiple
TF–TG networks into single sub-networks. One sub-network
that include 17 TG modules was used to investigate network
dynamics over time after HFM—denoted as G3h for tp1 and G6h

for tp2. We then compared how much biological pathways were
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enriched in these networks over time (Figure 2). As a result,
immune system related pathways—Th17 differentiation, Th1 and
Th2 cell differentiation, and inflammatory bowel disease (IBD)—
were high ranked both in G3h and G6h. Specifically, AGE-RAGE
signaling pathway in diabetic complications was enriched in both
time points. Advanced glycation end products (AGEs) and their
receptor, RAGE, are known to deal with the accumulation of
metabolite end product in diabetes (Ramasamy et al., 2011). The
amount of soluble RAGE is also reported to play an important
role in post-prandial response to HFM (Fuller et al., 2018).

Here are detailed discussions on dynamics of a TF–TG sub-
network with the highest dynamics score (Figure 2). FOXO3
and FOXO4, which are the interacting TFs and are at the top
hierarchy in TF cascading network, are isoforms of well-known
nuclear TFs—FOXO family—that are involved in metabolic
regulation (Barthel et al., 2005) and promoting inflammatory
response in T cell (Kerdiles et al., 2010; Hedrick et al.,
2012) implying the regulatory link between immune response
and metabolic process. After 3 h after HFM, tumor necrosis
factor α (TNF-α) and interleukin-6 (IL-6) are pro-inflammatory
cytokines whose concentration reaches peak around 2–3 h
after HFM (Herieka and Erridge, 2014). One of the TGs
in the sub-network, S1P phosphatase 2 (SPP2) is known to
play a pro-inflammatory role in induction of TNF-α and IL-
6 (Mechtcheriakova et al., 2007). A differentially expressed
gene, ETS1, encodes a TF involved in production of cytokine
and chemokine in T helper cells (Russell and Garrett-Sinha,
2010; Garrett-Sinha, 2013) where one of the early responses
of HFM is pro-inflammatory cytokine production. GATA3 is
a family of GATA TF family that is an important regulator of
T-cell development. According to Ibarra et al. (2020), FOXO1-
ETS1 is reported as a potential cooperative TFs. FOXO1
and FOXO3 are the most dominant isotypes of Forkhead
box family TF that coordinate common biological function—
regulatory T cell development (Ohkura and Sakaguchi, 2010),
implying that cooperative potential of FOXO regulation with
ETS1 genes which is detected in our network. After 6 h
after HFM, TF–TG relations that are regulating SPP2—one
of the acute post-prandial responses—is diminished in the
sub-network. However, other immune-responsive genes (i.e.,
POU2F1, RUNX1, NFKB1, and LEF1) are still enriched that are
promoting other immune responses.

4.2.2. Investigation of TF Cooperation in HFM
We next investigated how much cooperation occurs in sub-
networks (Figure 3). To demonstrate this, we analyzed the
level of disruption if a single TF were considered—there are n
simulations for n TFs in a given sub-network. To demonstrate
this, we analyzed the level of disruption in pathways comparing

sub-networks using multiple TFs (denoted as G
′

all
) vs. simulated

networks using individual TFs (denoted as G
′

i). The level
of cooperation was measured at two perspectives: biological

significance (Bp) and cooperative potential (Cp) between the G
′

all

and G
′

i.
The greater the RP value is in a certain pathway p, the

more genes exist in the p utilizing multiple TFs compared to

the simulation with individual TFs. Heatmap in the left panel
of Figure 3 depicts Bp value of the enriched pathways in G

′

all
.

Pathways including inflammatory bowel disease, hepatitits B,
and estrogen signaling pathways showed greater TF cooperation
at tp1. While at tp2, FOXO signaling pathway showed greater
Bp at tp2 compared to that of the previous time point despite
most of the pathways showed subtle enrichment changes against
simulations. Such temporal changes indicate that there are
regulatory dynamics in multiple pathways co-regulated by
multiple TFs. Cp value in Equation (6) was developed here to

investigate the degree of TF cooperation at G
′

all
in comparison

to G
′

i by summing up the individual contribution to cooperative
potential of the genes in a sub-network. The greater betweenness
centrality of a node is, the more shortest paths go through
the node. As the whole network topology is more likely to be
disrupted, the genes with high centrality are removed, and the
node would play an important role in maintaining the given
network topology.

Cp showed that tighter TF regulations were made by multiple
TFs compared to the simulations throughout the enriched
pathways. Compared to the subtle changes in Bp value, the
ability of kernelCCA to construct a sensitive regulatory sub-
network to temporal dynamics reflected greater Cp value across
the pathways. Specifically, pathways related to cellular signaling
were consistently co-regulated by two TFs (FOXO3 and FOXO4).
This was also supported by a previous study that suggests greater
co-regulation by multiple TFs stay invariant to perturbations as
well as play a central role in controlling pivotal dynamics in
response to external stimuli (Kim et al., 2012).

4.3. Case Study 2: GRN in Response to
Heat and Cold Stress in Arabidopsis

thaliana
4.3.1. Dynamics of GRN Over Time in Response to

Heat and Cold Stress
To investigate how combinations of co-working TFs vary over
time, the sub-networks connected to the most DEG-enriched TG
module are scope of our inspection. Since GRN of Arabidopsis
thaliana is denser and more DEGs are detected than in human
dataset, we, therefore, used DEG-centric approach that paths to
DEGs from co-working TFs are inspected. All paths detected are
listed in Appendix A.

It has been a long question how plants detect the lower and
higher temperature and how they are sensing differences in the
temperature. Usually, plants complete their whole life in one
place where they germinated. Their growth undergoes diurnal
rhythm and seasonal periodicity, which means the temperature
condition is changing all the time. Plants can recognize the small
change of temperature, such as 2–3 centigrade, called ambient
temperature. The effects of these small changes are cumulative,
having retention time to appear certain consequences even
though the ranges of results vary depending on the stage
of growth, other environmental conditions, and their genetic
backgrounds. All of these processes occur in plants started
from very minute changes at the molecular level. So, it has
been an important task to undercover how plants recognize
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FIGURE 2 | Network dynamics of a gene regulatory network (GRN) sub-network after high-fat meal (HFM) over time. Two circular diagrams in the upper panel show

the change in gene–gene relationship, in particular, TF–TG regulation. Two tables in the middle summarize top 10 most enriched biological pathways with p-value

corrected by false discovery rate (FDR) < 0.05. Two networks are dynamics of a TF–TG sub-network with the highest dynamics score. In the TF–TG sub-network, two

transcription factors (TFs), FOXO3 and FOXO4, regulates different sets of target genes (TGs) over time. TFs were denoted with diamond-shaped nodes. Square nodes

denotes TGs and circle nodes denote genes connected to TFs and TGs. Nodes colored pink denote genes that consist of GRN in each time point. Nodes colored red

denote shared TFs among concatenated sub-networks and nodes colored green DEGs that are detected by DESeq with FDR < 0.05.
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FIGURE 3 | Examination of transcription factor (TF) cooperation. High score of Bp and Cp represents the amount of cooperativity of co-working TFs in the pathways.

Heatmap in the left panel shows the cooperation in terms of pathway enrichment over time in high-fat meal (HFM). Pathway enrichment in the Gall was compared to

the simulations given each TF (Gi ) and measured using Equation (5). Heatmap in the right panel shows the cooperative potential using enriched pathway genes.

Betweenness centrality was compared between Gall and Gi using Equation (6).

and trigger the serial and reversible and sometimes irreversible
responses. Still, it is challenging to find out the group of
genes in the thermal physiology of plants. We used two
different Arabidopsis datasets, GSE5628 and GSE5621. GSE5628
represents heat stress that consists of heat-shocked samples up
to 3 h at 38 centigrade and recovered samples after heat-shock
treatment prolongs to 21 h at 25 centigrade. When outranged
thermal changes have occurred, all responses of plants go for
stabilizing homeostasis.

Interestingly, we detected both genes of circadian clock
associated (CCA1) and late elongated hypocotyl (LHY), a short
period after high-temperature treatment. These two genes,
detected as a co-working TFs in our proposedmethod (Figure 4),
involve in common biological pathway—a central role in the
phytochrome-medicated circadian clock (Alabadi et al., 2002;
Dong et al., 2011). After that, we observed in one of our early-
stage tp1 and tp2 of heat-path various TCP genes, PIF5 (PUT2)
and CAT genes, those involved in thermosensory (Michael
et al., 2003; Zhou et al., 2019; Balcerowicz, 2020). A path
of phytochrome-mediated thermo-response appears tp3 stage.
Mainly PIF4 and many of its downstream genes include directly
related genes, such as TCPs and BZIP28 and indirectly related
genes that mediate heat shock responses (Che et al., 2010).

Unlike a higher temperature treatment for several hours
that increases physiological reactions and results in less severe
consequences, lower temperature treatment over hours is
life threatening. This characteristic difference of temperature
treatment is why we found a relatively broad range of gene
regulatory paths from cold treatment. We found well-defined
cold response genes, such as CBF, DREB, COR, ERF, ZAT,
RVE, and ABF1 (Vogel et al., 2005; Lee and Thomashow, 2012;
Meissner et al., 2013; Wang et al., 2017; Dubois et al., 2018)
and many cold stress-related genes from the early stage of cold
treatment (Figure 5, Appendix A). Co-working TFs, such as
RVE1, CPD45, and ATCBF2, detected in our GRN are involved in
common cold related pathways implying cooperative functions

of the TFs (Eremina et al., 2016; Chen et al., 2020). We found
CCA1, LHY, and PIF4 gene from DEGs of cold temperature
treated samples (Figure 5). It might have resulted from the
thermosensory networkś change even though the treatmentś
degree was far beyond the ambient temperature to the lower
direction. It might be noteworthy that we observed the genes
of developmental processes like RVE and cold acclimation
related COR and CBF. There are several reports on CBF
gene regulation. We found most of CBF promoter binding
TFs, such as PIFs, CCA1, and LHY (Dong et al., 2011; Jiang
et al., 2017). Several genes reported as intermediate genes—
connecting the co-working TFs and the DEGs regulated by
the TFs—are involved in common cold responsive pathways,
implying that cooperative action of regulating downstream
DEGs (Appendix A).

4.4. Discussion and Conclusion
In this paper, we proposed a kernel CCA based condition-
specific GRN inference method that models combinatorial and
cooperative nature of TF–TG relations. The traditional approach
is to start with the whole network and test validity of edges, which
lead to a condition-specific network based on gene expression
data. One major issue with this approach is to deal with a
single large network as a whole, which is challenging. However,
we know that each TF regulates a relatively small number of
genes, typically several hundred genes. So, it is possible to
limit the scope of TGs that are regulated by a single TF. In
fact, experimental techniques, such as TF ChIP-seq provide
condition-specific comprehensive snapshot of genes that are
targeted by a TF. Although these experimental data provides
condition-specific targets of a TF, there are two major issues for
utilizing such TF ChIP-seq data. First, a TF ChIP-seq experiment
provides TGs of the TF only. Since TF may target different genes
under different conditions, reconstruction of condition-specific
networks requires TF ChIP-seq experiments for “all” relevant
TFs, which is infeasible due to the time and budget constraints.
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FIGURE 4 | Network dynamics of a gene regulatory network (GRN) sub-network after heat stress over time. Network in the left panel shows the change in gene-gene

relationship, in particular, TF–TG regulation. DEGs are denoted as pink. Four tables in the middle summarize top five most enriched biological pathways with p-value

corrected by false discovery rate (FDR) < 0.05. Heat stress related Gene Ontology (GO) terms are enriched in GO enrichment tests with DEGs. The networks in the

right panel are dynamics of a TF–TG sub-network that are DEG enriched. Transcription factors (TFs) were denoted with green nodes. Blue nodes denote target genes

(TGs) and gray nodes denote genes connected to TFs and TGs. Square nodes denote DEGs that are detected by Limma with FDR < 0.05.

Second, even if we can perform such expensive experiments, we
need to combine many TF-networks into large networks. One
major issue for this task is to identify co-operating TFs in a
specific condition, but this is largely unknown.

4.4.1. Advantages and Limitations
The novelty of our approach is to address the two issues in
a single computational framework. First, we used clustering

approach to reduce the search space by generating a set of
TF clusters and a set of TG clusters. This approach allows us
handle much smaller networks. Specifically, a TF set vs. a TG
set is considered one at a time. Second, use of kernel CCA
allows us to investigate on the complex relationship of multiple
TFs vs. multiple TGs. In the final step of our computational
framework, all TG sets that are related to a single TF set are
merged, which generates condition-specific sub-networks. By
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FIGURE 5 | Network dynamics of a gene regulatory network (GRN) sub-network after cold stress over time. Networks in the left panel shows the change in

gene–gene relationship, in particular, TF–TG regulation. DEGs are denoted as pink. Four tables in the middle summarize top five most enriched biological pathways

with p-value corrected by false discovery rate (FDR) < 0.05. Cold stress related Gene Ontology (GO) terms are enriched in GO enrichment tests with DEGs. The

networks in the right panel are dynamics of a TF–TG sub-network that are DEG enriched. TFs were denoted with green nodes. Blue nodes denote TGs and gray

nodes denote genes connected to transcription factors (TFs) and target genes (TGs). Square nodes denote DEGs that are detected by limma with FDR < 0.05. We

showed GRN from tp3 to tp6, since GRN constructed in tp1 and tp2 is too small because the number of DEGs are too small in tp1 and tp2—41 and 23, respectively.

performing analysis on transcriptome of human high-fat data
and of arabidopsis cold and heat data at each time point, temporal
dynamics of TF–TG networks was constructed by explaining
condition-specific biological mechanisms successfully.

Although our method was successful in constructing
dynamics of condition-specific TF–TG networks over time in
both data sets, there are several issues remaining as further study.
In the current framework, clustering of TF and TG modules
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need more rigorous definitions. The size of TF and TG modules
vary greatly—some clusters consist of few genes while others
consists of hundred genes. Merging TF–TG sub-networks in
the final step of our method also need more rigorous guideline.
We suggested two approaches in selecting sub-networks that
show condition-specific response, which is meaningful, but there
is still room for improvement to consider the non-responsive
gene regulatory interactions that are required for fundamental
cellular functions.

In terms of biological perspectives, there are also several
issues that requires further study. First, our method does
not discriminate stimulative or repressive gene regulation.
Another issue is with kernel CCA. Kernel CCA can detect
multiple-to-multiple relations of TFs and TGs, it does not
discriminate whether correlations are positive or negative. In
addition, our method assume that TF is a major regulator.
However, there are other regulatory mechanisms, such
as mutations, copy number variations, and epigenetic
mechanisms, that can affect transcription level of genes.
This requires a comprehensive model, e.g., ensemble of deep
learning (Kang et al., 2020). Combining network analysis
techniques and deep learning technologies is a major current
research topic.
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