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Simple Summary: Colorectal Cancer (CRC) is one of the leading causes of cancer-related death in the
United States. Current diagnosis techniques are either highly invasive or lack sensitivity, suggesting
the need for alternative techniques for biomarker detection. Metabolomics represents one such
technique with great promise in identifying CRC biomarkers with high sensitivity and specificity, but
thus far is rarely employed in a clinical setting. In order to provide a framework for future clinical
usage, we characterized dysregulated metabolites across recent literature, identifying metabolites
dysregulated across a variety of biospecimens. We additionally put special focus on the interplay of
the gut microbiome and perturbed metabolites in CRC. We were able to identify many metabolites
showing consistent dysregulation in CRC, demonstrating the value of metabolomics as a promising
diagnostic technique.

Abstract: Colorectal cancer (CRC) is a highly prevalent disease with poor prognostic outcomes if not
diagnosed in early stages. Current diagnosis techniques are either highly invasive or lack sufficient
sensitivity. Thus, identifying diagnostic biomarkers of CRC with high sensitivity and specificity is
desirable. Metabolomics represents an analytical profiling technique with great promise in identifying
such biomarkers and typically represents a close tie with the phenotype of a specific disease. We
thus conducted a systematic review of studies reported from January 2012 to July 2021 relating
to the detection of CRC biomarkers through metabolomics to provide a collection of knowledge
for future diagnostic development. We identified thirty-seven metabolomics studies characterizing
CRC, many of which provided metabolites/metabolic profile-based diagnostic models with high
sensitivity and specificity. These studies demonstrated that a great number of metabolites can be
differentially regulated in CRC patients compared to healthy controls, adenomatous polyps, or across
stages of CRC. Among these metabolite biomarkers, especially dysregulated were certain amino
acids, fatty acids, and lysophosphatidylcholines. Additionally, we discussed the contribution of the
gut bacterial population to pathogenesis of CRC through their modulation to fecal metabolite pools
and summarized the established links in the literature between certain microbial genera and altered
metabolite levels in CRC patients. Taken together, we conclude that metabolomics presents itself as a
promising and effective method of CRC biomarker detection.

Keywords: colorectal cancers; metabolite biomarker; metabolomics; LC-MS; GC-MS

1. Introduction

Colorectal Cancer (CRC) is the second leading cause of cancer-related death when male
and female data are combined [1]. According to the American Cancer Society, colon and
rectal cancers combined are projected to amount to 149,500 new cases and 52,980 related
deaths in 2021 [1]. Individual colorectal tumors are typically present as adenocarcinomas
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originating from the epithelial cells of the colonic mucosa [2]. CRC can stem from mutations
in a wide variety of genes, including adenomatous polyposis coli (APC), Kirsten rat sarcoma
viral oncogene homolog (KRAS), tumor protein 53 (TP53), and genes relating to chromosomal
instability and DNA mismatch repair [3]. These genes can lead to significant dysregulation
of genetic and metabolic processes, including dysregulated amino acid metabolism driven
by APC mutations and dysregulation in glycolytic and glutamine pathways spurred by
mutations in KRAS [4,5]. Overall incidence of CRC is increasing in Americans under 50
(early onset CRC), but death rates are dropping due to improved screening techniques [1,6].
The major techniques employed in CRC screening and detection include colonoscopy, tissue
biopsy, and fecal occult blood test (FOBT) [7]. These techniques are invasive and can be
uncomfortable for the patient in the cases of colonoscopy or biopsy, or typically exhibit
low sensitivity in the case of the FOBT [8]. This demonstrates the clinical need for a less
invasive test with increased sensitivity.

Meanwhile, high throughput “omics” techniques such as metagenomics, transcrip-
tomics, proteomics, and metabolomics, offer a potentially less invasive alternative for CRC
diagnosis. Each of these techniques offers its own advantages to cancer biomarker discov-
ery and diagnosis. Genomics, for example, is particularly effective for determining CRC
susceptibility and familial risk for the disease, but holds little diagnostic power as DNA
sequences rarely directly translate to phenotype due to epigenetic, post-transcriptional and
post-translational modifications [9]. Transcriptomics and proteomics represent closer ties to
the phenotypic state of the organism, and, especially when integrated, hold some diagnostic
power [10]. However, their individual diagnostic power falls short of that of metabolomics,
which allows for time-sensitive and accurate phenotypic profiling of the organism and its
metabolic pathways, as well as the ability to analyze the interplay between host & gut bacte-
rial metabolites, which represents an integral part of CRC pathogenesis [10]. Metabolomics
is defined as “the comprehensive analysis of metabolites (small molecule intermediates or
end products of metabolic processes) in a biological specimen [6,11].” Metabolomics is typi-
cally conducted with either NMR spectroscopy or a form of coupled chromatography–mass
spectrometry, allowing for comprehensive analysis of an individual’s metabolic pheno-
type [6]. Researchers have employed metabolomics techniques to identify biomarkers of
a multitude of diseases with high specificity and sensitivity, including several types of
cancer [12–14]. Metabolomics can be conducted over a wide range of biological specimens,
many of which can be collected with minimally invasive techniques. However, biomarker
specificity and metabolite identification often can fluctuate based upon specimen, stage of
colorectal cancer, and even between different studies [15]. In accordance, many primary
studies have been conducted attempting to identify commonalities in the metabolic profiles
of CRC patients using metabolomics analyses.

A small number of review papers drawing conclusions from multiple metabolomics
studies in CRC have been published over the years. Erben et al. characterized a wide
breadth of primary studies, especially well-characterizing differences in metabolite pro-
files between biological specimen types [12]. Zhang et al. reviewed a smaller breadth
of literature but provided substantial pathway analysis relating to potential markers of
CRC incidence [16]. Yusof et al. characterized studies addressing metabolic profile dif-
ferences specifically between stages of CRC [17]. Hashim et al. additionally reviewed
serum specimen-only metabolomics studies, providing a collection of specific data applica-
ble to this particular specimen [18]. While each of these reviews has contributed greatly
to the understanding of metabolomics analysis of CRC patients, many lack a clear and
easy-to-read condensation of metabolites identified across multiple primary studies. Addi-
tionally, the contribution of the gut microbial population and microbial metabolites to CRC
pathogenesis has been identified as crucial in many recent studies [19,20]. This important
connection, however, has largely been overlooked by reviews of metabolomics profiling in
CRC. Accordingly, we attempted to provide a comprehensive analysis of current literature
in the field of metabolomics identification of CRC biomarkers, comparing metabolomics
biomarkers of CRC across different biospecimens, while paying close attention to fluctua-
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tions in gut microbial composition and their associated changes in the metabolome in stool
specimen studies. We expect our review will provide clear analysis of recent studies in the
field, offering easy-to-read tabulation of commonly identified metabolites differentially
regulated in CRC patients, as well as characterizing microbial contributions to the CRC
metabolome, which collectively should present a strong foundation for further research in
metabolomics profiling of CRC.

2. Methods
2.1. Systematic Literature Review

We conducted multiple sets of systematic literature search using both Google Scholar
and PubMed databases from 10 to 29 July 2021. We first used the terms: (biomarker
OR biomarkers OR metabolite OR metabolites OR metabolome OR metabolomic OR
metabolomics OR metabolic) AND (“Colorectal neoplasm” OR “colon neoplasm” OR
“colonic neoplasm” OR “Rectal Neoplasm” OR “colorectal cancer” OR “colon cancer” OR
“colonic cancer” OR CRC OR “Colorectal tumor” OR “colon tumor” OR “colonic tumor” OR
adenoma)), then (biomarker OR biomarkers OR metabolite OR metabolites OR metabolome
OR metabolomic OR metabolomics OR metabolic) AND (“early onset” OR “sporadic” OR
“late onset”) AND (“Colorectal neoplasm” OR “colon neoplasm” OR “colonic neoplasm”
OR “Rectal Neoplasm” OR “colorectal cancer” OR “colon cancer” OR “colonic cancer” OR
CRC OR “Colorectal tumor” OR “colon tumor” OR “colonic tumor” OR adenoma)), then
(biomarker OR biomarkers OR metabolite OR metabolites OR metabolome OR metabolomic
OR metabolomics OR metabolic) AND (“polyp” OR “colorectal polyp” OR “Adenomatous
polyp” or “colon growth”) AND (“Colorectal neoplasm” OR “colon neoplasm” OR “colonic
neoplasm” OR “Rectal Neoplasm” OR “colorectal cancer” OR “colon cancer” OR “colonic
cancer” OR CRC OR “Colorectal tumor” OR “colon tumor” OR “colonic tumor” OR
adenoma)) and filtered results. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement flow diagram for systematic reviews was used to
depict number of sources at each phase and rationale for exclusion (Figure 1) [21]. Cross
references identified from original papers and reviews were also included.

Basic statistical analyses among groups of studies were conducted with Student’s two-
sample t-test, assuming unequal variance, or one-way ANOVA analysis. These analyses
were performed to compare number of total dysregulated metabolites identified in groups
of varying statistical cutoff methods, instrument methods, specimen types, and the number
of participants to identify if any of these features were relevant factors in the identification
of metabolite biomarkers.

2.2. Exclusion Criteria

We removed study duplicates and articles unavailable in English, and then screened
remaining articles for eligible studies according to our criteria. Exclusion criteria included
topics unrelated to the review question, review articles, studies unavailable for open-access
reading, and studies that were not focused on metabolomics-based biomarker detection in
human subjects. Studies were included if published from January 2012 to July 2021.
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Figure 1. PRISMA flow diagram detailing the literature review process. After filtration, 37 relevant
articles were included.

3. Results & Discussion
3.1. Overview

In this study, relevant articles after PRISMA filtration were reviewed and patient data
was retrieved and classified to provide context for further study breakdown. The biological
specimen, stage of CRC, number of cases of CRC and controls, analysis platform, patients
age, stage, country of origin, and year of study were recorded (Table 1, Figure 2).

Table 1. Overview of the 37 articles included in this review. All studies except Geijson et al. and
Liu et al. [22,23] compared CRC specimens to either adenoma or normal (healthy) specimens.

Study Stage Specimen Cases &
Controls Platform Country Age %

Male Year Study
Number

Cross et al. N/A Serum CRC: 254,
Control: 254

UHPLC-
MS,

GCMS
America Median: 64.3 56 2014 [24]

Crotti et. al

Stage I: 11,
Stage II: 9,

Stage III:16,
Stage IV:12

Plasma CRC: 48,
Control: 20 GC-TOF Italy 49–90 CRC, 35–83

Control 54 2016 [25]

Deng et al.

Stage I: 30,
Stage II: 50,

Stage III:
57, Stage

IV: 31

Urine

Training: CRC:
121, Control: 121;
Validation: CRC:
50, Control: 50

LCMS Canada
Median Control:

58.9, Median
CRC: 66.4

55 2019 [26]
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Table 1. Cont.

Study Stage Specimen Cases &
Controls Platform Country Age %

Male Year Study
Number

Di
Giovanni

et al.
N/A Serum

CRC: 18, CRC
(Remission): 17,

Matched Control:
19 and 17

GCMS Belgium

32–90 overall,
Mean CRC: 70.3,
Mean Control:

63.5

24 2020 [27]

Farshidfar
et al.

47 Stage I,
60 Stage II,
Stage 3: 71,

Stage 4:
142

Serum

Training: CRC:
222, Control: 156;
Validation: CRC:
98, Adenoma: 31,

Control: 98

GCMS Canada

Mean: Control:
61.7, Adenoma:

59.5, stage I: 68.6,
6 stage II: 68.6
stage III: 64.9,
stage IV: 63.1

61 2016 [28]

Geijsen
et al.

Stage I: 168,
Stage II:

212, Stage
III: 290,

Stage IV: 74

Plasma CRC: 744 LCMS Germany >18 65 2020 [22]

Gu et al. N/A Serum

Training: CRC:
40, Adenoma: 32,

Control: 38;
Validation:

CRC:8, Adenoma:
8, Control: 8

H-NMR China N/A N/A 2019 [29]

Gumpenberger
et al.

Stage I: 30,
Stage II: 17,

Stage III:
18, Stage

IV: 12, Un-
specified: 3,
Missing: 8

Plasma

CRC: 88,
High-risk

Adenoma: 200,
Low-risk

Adenoma: 200

UHPLC-
MS America

Mean CRC: 70
Mean HRA: 65.4,

Mean Control:
66.0

67 2021 [30]

Holowatyj
et al.

Stage I: 40,
Stage II: 56,

Stage III:
74, Stage

IV: 44

Plasma CRC: 233,
Control: 153 LCMS America 18–89 59 2020 [31]

Jing et al.

Stage I: 10,
Stage II: 21,

Stage III:
29, Stage

IV: 21

Dried
Blood
Spot

Training: CRC:
77; Adenoma: 73;
Testing: CRC: 8,

Adenoma: 8

Direct
Infusion

MS
China 29–79 Adenoma,

22–92 CRC 58 2017 [32]

Kim et al.

Stage I: 7,
Stage II: 12,
Stage III: 9,
Stage IV: 3

Stool

Training: CRC:
26, Control: 32;

Validation: CRC:
6, Control: 8

GCMS South
Korea

49–78 Control,
45–80 CRC 58 2020 [33]

Kim et al. N/A Stool
CRC: 36, Control:
102, Advanced
Adenoma: 102

UHPLC-
MS America >50 60 2020 [34]

Liu et al.
Stage I/II:
20, Stage
III/IV: 20

Plasma CRC: 40 UHPLC–
MS China

Mean stage I/II:
58.1, Means stage

III/IV: 55.25
68 2019 [23]

Long et al. N/A Serum

Training: CRC:
30, Adenoma: 30,

Control: 30;
Validation: CRC:
50, Adenoma: 50,

Control: 50

LCMS America

Mean CRC: 53.97,
Mean Adenoma:

51.87, Mean
Control: 55.23

53 2017 [35]

Martín-
Blázquez

et al.
Stage IV: 65 Serum CRC: 65, Control:

60 LC-HRMS Spain
Median CRC:
59.9, Median
Control: 56.1

52 2019 [36]

Serafim
et al.

Stage I: 4,
Stage II: 5,

Stage III: 31
Plasma

CRC: 40,
Adenoma: 12,

Control: 32

MALDI-
TOF
MS

Brazil
Mean Control: 58,
Mean Adenoma:

66, Mean CRC: 64
66 2019 [37]

Shu et al. N/A Plasma CRC: 250,
Control: 250

GC-
TOFMS,
UPLC-

QTOFMS

China 40–74 50 2018 [38]
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Table 1. Cont.

Study Stage Specimen Cases &
Controls Platform Country Age %

Male Year Study
Number

Tan et al.

Stage I: 26,
Stage II: 43,

Stage III:
26, Stage

IV: 6

Serum

Training: CRC:
62, Control: 62;

Validation: CRC:
39, Control: 40

GC–
TOFMS,
UPLC–

QTOFMS

China 24–82 42 2013 [39]

Uchiyama
et al.

Stage I: 14,
Stage II: 14,

Stage III:
14, Stage

IV: 14

Serum
CRC: 56,

Adenoma: 59,
Control: 60

CE-TOFMS Japan

Mean Control:
67.7, Mean

Adenoma: 69.9,
Mean CRC: 70.4

50 2017 [40]

Udo et al.

Stage I: 52,
Stage II: 67,

Stage III:
71, Stage

IV: 17

Urine

Training: CRC:
105, Adenoma: 8,

Control: 11;
Validation: CRC:
104, Adenoma: 8,

Control: 11

LCMS Japan

Mean Control:
46.8, Mean

Adenoma 63.2,
Mean CRC: 68.8

58 2020 [41]

Wang et al.
Stage I/II:
61, Stage
III/IV: 59

Urine

Training: CRC:
45, Control: 32;

Validation: CRC:
10, Control: 8

1H-NMR China
27–84 Stage I-II,

38–81 Stage III-IV,
28–78 Control

56 2017 [42]

Wang et al.

Stage I: 13,
Stage II: 29,

Stage III:
27, Stage

IV: 4

Plasma

Training: CRC:
34, Control: 34;

Validation: CRC:
39, Control: 39

LCMS China
Mean CRC: 59.7,
Mean Control:

57.2
67 2019 [43]

Weir et al.

Stage I:2,
Stage II:

3,Stage III:
4

Stool CRC: 10, Control:
11 GCMS America 24–85 52 2013 [44]

Wu et al. N/A Serum
Colon Cancer: 22,
Rectal Cancer: 23,

Control: 45
GCMS China 49–84 69 2020 [45]

Yachida
et al.

Stage I/II:
80, Stage
III/IV: 68

Stool

CRC: 178,
Adenoma: 45,
Control: 149,
Surgery:34

CE-TOFMS Japan
Mean Control:

64.11, Mean CRC:
62.04

59 2019 [37]

Yang et al.

Stage I: 9,
Stage II: 13,

Stage III:
16, Stage

IV: 10

Stool CRC: 50, Control:
50 GCMS China N/A 41 2019 [46]

Zhu et al.

Stage I/II:
21, Stage

III: 17,
Stage IV: 28

Serum

Training: CRC:
46, Adenoma: 53,

Control: 64;
Validation: CRC:
20, Adenoma: 23,

Control: 28

LCMS America 18–88 48 2014 [47]

Sinha et al. N/A Stool CRC: 42, Control:
89

HPLC-
GC/MS-

MS
Singapore Mean: 60 overall 62 2016 [48]

Brown
et al.

Stage I: 3,
Stage II: 3,
Stage III: 8,
Stage IV: 1

Stool CRC: 17, Control:
17

GC-MS,
UPLC-MS America Mean: 58.8

overall 76 2016 [49]

Goedert
et al. N/A Stool CRC: 48, Control:

102

HPLC-
GC/MS-

MS
America Mean: 62.9 CRC,

58.3 Control 58.7 2014 [50]

Nishiumi
et al.

Stage I: 12,
Stage II: 12,

Stage III:
12, Stage

IV: 12

Serum

Training: CRC:
60, Control: 60;

Validation: CRC:
59, Control: 63

GCMS Japan 36–88, Mean: 67.7 65 2018 [51]

Rachieriu
et al.

Stage I: 2,
Stage II: 13,
Stage 3: 1,
Stage IV: 9

Serum CRC: 25, Control:
16

UPLC-
QTOF-

ESI+MS
Romania Mean: 65.9 CRC,

54.2 Control 61 2021 [52]
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Table 1. Cont.

Study Stage Specimen Cases &
Controls Platform Country Age %

Male Year Study
Number

Lin et al.

Stage I/II:
20, Stage

III: 25,
Stage IV: 23

Stool

Training: CRC:
54, Control: 26;

Validation: CRC:
14, Control: 6

1H-NMR China N/A 51 2016 [53]

Ning et al.

Stage II: 65,
Stage III:
74, Stage

IV: 24

Urine

Training: CRC:
79, Control: 77;

Validation: CRC:
76, Control: 30

GC-
TOFMS China 46% under 60,

64% over 60 62.7 2021 [54]

Gao et al. N/A Tumor
Tissue

CRC: 22,
Adenoma: 10 CE-TOFMS China N/A N/A 2016 [55]

Cottet et al.

Stage I: 65,
Stage II: 69,

Stage III:
55, Stage

IV: 14

Adipose
Tissue

CRC: 203,
Control: 223 GCMS France Mean: CRC: 69.5,

Control: 66.8 59.7 2014 [56]

Song et al.

Stage I: 3,
Stage II: 6,
Stage III:
14, Stage

IV: 3

Stool
CRC: 26,

Adenoma: 27,
Control: 28

GCMS South
Korea

Mean: CRC: 59.7,
Adenoma: 53.6,

Control: 51.1
77.8 2018 [57]

N/A: Not applicable.

Figure 2. (a) Breakdown of the number of studies by specimen type. (b) Breakdown of the number of
studies by platform of analysis.

Studies were then compared for differentially detected metabolites between CRC and
control populations under reported statistical threshold of each study and metabolites were
classified according to several major molecular classes (Table 2), while any study reporting
testing of a diagnostic model was evaluated by area under the receiver operating curve
(AUC), sensitivity, and specificity. These are summarized in Figure 3.

Metabolites of particular interest (identified in three or more studies) were reviewed
to see whether they were most commonly reported as increased or decreased in CRC
compared to control (Table 3).
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Table 2. Identified CRC metabolite biomarkers in summarized studies based on their compound class.
Metabolite selections were based on the statistical criteria each individual paper set for significance,
which listed in the last column. Healthy control vs. CRC data was preferred in studies containing
data for both healthy and adenomatous polyp controls.

Name Study Specimen
Metabolite Class

Total Statistical ThresholdNucleo-
tides

Sterols/
Derivates AA PA FA SL PL CHO/

Derivatives
Other/

Unknowns

Cross et al. [24] Serum 1 1 Bonferroni-corrected
p value < 0.05

Crotti et al. [25] Plasma 4 4 p value < 0.05
Deng et al. [26] Urine 1 1 2 p value < 0.05

Di Giovanni
et al. [27] Serum 1 2 3 p value < 0.1

Farshidfar
et al. [28] Serum 10 6 8 24 Bonferroni-corrected

p value < 0.05
Geijsen et al.

** [22] Plasma 2 2 5 9 FDR-adjusted
p value < 0.05

Gu et al. [29] Serum 13 2 2 6 23 VIP > 1
Gumpenberger

et al. [30] Plasma 4 2 21 1 13 5 46 FDR-adjusted
p-value < 0.05

Holowatyj
et al. [31] Plasma 28 9 75 4 116 FDR-adjusted

p-value < 0.05

Jing et al. * [32]
Dried
Blood
Spot

7 11 3 21 p value < 0.05

Kim et al. [33] Stool 1 2 1 8 5 3 3 23 FDR-adjusted
p value < 0.05

Kim et al. [34] Stool 5 4 5 14 FDR-adjusted
p value < 0.1

Liu et al. ** [23] Plasma 1 7 8 FDR-adjusted
p value < 0.05

Long et al. [35] Serum 2 1 3 p value < 0.05
Martín-

Blázquez
et al.

[36] Serum 2 2 1 5 FDR-adjusted
p value < 0.05, VIP > 1

Serafim et al. [37] Plasma 4 1 3 8 VIP > 1

Shu et al. [38] Plasma 1 2 2 3 1 9 FDR-adjusted
p value < 0.05

Tan et al. [39] Serum 4 23 9 1 7 5 17 66 p value < 0.05,
VIP > 1,

Uchiyama
et al. [40] Serum 4 1 2 7 p value < 0.01

Udo et al. [41] Urine 1 5 3 9 FDR-adjusted
p-value < 0.05

Wang et al. [42] Urine 8 7 15 p value < 0.05,
VIP > 1,

Wang et al. [43] Plasma 2 1 3 1 7 FDR-adjusted
p value < 0.05, VIP > 1

Weir et al. [44] Stool 2 10 5 2 1 20 p value < 0.05
Wu et al. [45] Serum 5 2 2 9 p value < 0.05
Yachida

et al. [37] Stool 3 2 31 4 5 4 8 57 p value < 0.005

Yang et al. [46] Stool 3 1 5 2 7 9 26 53 p value < 0.05
Zhu et al. [47] Serum 1 4 13 4 6 28 p value < 0.05, VIP > 1

Sinha et al. [48] Stool 1 1 2 4 FDR-adjusted p value
< 0.05

Brown et al. [49] Stool 1 1 13 1 1 1 4 2 24 p value < 0.05
Goedert

et al. [50] Stool 19 1 1 17 38 FDR-adjusted
p value < 0.1

Nishiumi
et al. [51] Serum 5 1 4 10 p value < 0.05

Rachieriu
et al. [52] Serum 8 2 20 2 32 p value < 0.1

Lin et al. [53] Stool 6 3 1 3 13 p value < 0.5, VIP > 1
Ning et al. [54] Urine 5 2 1 7 15 p value < 0.5, VIP > 1

Gao et al. [55] Tumor
Tissue 9 9 p value < 0.001

Cottet et al. [56] Adipose
Tissue 4 4 p value < 0.05

Song et al.
*** [57] Stool 2 2 p value < 0.05

* Study compared CRC to adenomatous polyp rather than healthy control. ** Study compared CRC to other CRC
patients (stage specific comparison). *** Only significant in male patients. Abbreviations: AA: Amino Acid, PA:
Polyamine, FA: Fatty Acid, SL: Sphingolipid, PL: Phospholipid, CHO: Carbohydrate, VIP: Variable Importance in
Projection, FDR: False Discovery Rate
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Figure 3. (a) Summary of the areas under the receiver operating curve (AUCs) for CRC diagnostic
models created using identified metabolite biomarkers in each reference. References are stratified
by specimen type. (b) Sensitivity and Specificity of diagnostic models created using metabolite
biomarkers when listed. References are stratified by specimen type. DBS = Dried Blood Spot.

Table 3. CRC related metabolite biomarkers identified in 3 or more studies. Summarized metabolite
was found increased or decreased in CRC vs. control in each paper, respectively. Reference numbers
of studies in which a particular metabolite was identified are contained in parentheses after number
of studies demonstrating increase or decrease. Consensus direction is reported in the final column,
depicting the most commonly identified direction of regulation of each particular metabolite across
reviewed studies.

Metabolite Times
Identified

Studies Showing
Upregulation

Studies Showing
Downregulation

Studies Not
Reporting
Regulation

Directionality

Consensus
Direction

3-hydroxybutarate 4 3 (48, 35, 55) 1 (52) ↑
Alanine 10 4 (53, 54, 22, 42) 6 (48, 36, 46, 35, 28, 52) ↓

Asparagine 6 1 (24) 5 (36, 46, 35, 28, 44) ↓
Aspartic Acid 5 1 (40) 4 (48, 35, 55, 38) ↓

Choline 3 1 (48) 2 (49, 28) ↓
Citrulline 5 2 (51, 56) 3 (23, 36, 45) ↓
Creatinine 3 1 (35) 2 (28, 33) ↓

Cystine 5 3 (35, 51, 40) 1 (53) 1 (56) ↑
Deoxycholate 3 1 (31) 2 (38, 44) ↓

Glucose 4 3 (48, 27, 43) 1 (38) ↑

Glutamic Acid/Glutamate 8 7 (24, 48, 36, 22, 38,
40, 41) 1 (35) ↑
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Table 3. Cont.

Metabolite Times
Identified

Studies Showing
Upregulation

Studies Showing
Downregulation

Studies Not
Reporting
Regulation

Directionality

Consensus
Direction

Glutamine 4 1 (28) 3 (48, 36, 42) ↓
Glycerol 5 4 (53, 48, 22, 39) 1 (35) ↑
Glycine 7 6 (53, 48, 22, 28, 56) 1 (43) ↑

Hippurate/Hippuric Acid 3 2 (49, 52) 1 (28) ↑

Histidine 8 8 (23, 36, 35, 55, 33,
52, 44, 43) ↑

Isoleucine 6 6 (53, 48, 54, 27,
56, 47) ↑

Kynurenine 5 4 (30, 51, 56, 40) 1 (36) ↑
Lactate 3 2 (48, 41) 1 (56) ↑
Leucine 5 4 (48, 54, 22, 56) 1 (36) ↑

Linoleic Acid 5 3 (53, 35, 25) 2 (22, 45) ↑
Lysine 6 4 (53, 48, 54, 22) 2 (36, 55) ↑

LysoPC 16:0 3 3 (23, 49, 36) ↓
LysoPC 16:1 3 3 (49, 36, 35) ↓
LysoPC 17:0 3 3 (24, 49, 36) ↓
Methionine 4 1 (47) 3 (36, 35, 52) ↓

Palmitic Acid 5 5 (53, 31, 54, 35, 43) ↑
Phenylalanine 7 3 (53, 56, 42) 4 (36, 35, 33, 56) ↓

Proline 6 4 (49, 38, 42, 47) 2 (48, 36) ↑
Serine 4 2 (48, 22) 1 (35) 1 (56) ↑

Sphinganine 3 3 (31, 32, 35) ↑
Succinate 3 2 (54, 56) 1 (48) ↑

Tryptophan 5 1 (43) 4 (36, 55, 28, 27) ↓
Tyrosine 9 3 (53, 43, 47) 6 (48, 36, 46, 28, 56, 38) ↓

Urea 3 1 (38) 2 (35, 27) ↓
Valine 7 3 (22, 56, 47) 4 (48, 49, 36, 46) ↓

Additionally, differentially regulated metabolites in CRC were then mapped in accor-
dance with their implicated metabolic pathways in order to visualize metabolic networks
perturbed in CRC pathogenesis (Figure 4, Table 4).

Table 4. Metabolic pathways significantly (p < 0.05) upregulated or downregulated in CRC across
multiple studies, as depicted in Figure 4, along with metabolites significantly up or downreg-
ulated in each pathway. Analysis was performed by using MetaboAnalyst version 5.0 (https:
//www.metaboanalyst.ca/home.xhtml), developed by the Xia lab, Alberta, Canada, accessed on 8
August 2021.

Pathway Metabolites Implicated p Value Regulation

Aminoacyl-tRNA biosynthesis 7 5.07 × 10−8 Upregulated
Valine, leucine, and isoleucine biosynthesis 2 0.00205 Upregulated

Butanoate Metabolism 2 0.00743 Upregulated
Histidine Metabolism 2 0.00845 Upregulated

Glycolysis or Gluconeogenesis 2 0.0217 Upregulated
Alanine, Aspartate, and glutamine metabolism 2 0.025 Upregulated

Glutathione Metabolism 2 0.025 Upregulated
Porphyrin metabolism 2 0.0285 Upregulated

Glyoxylate and dicarboxylate metabolism 2 0.0322 Upregulated
Biosynthesis of unsaturated fatty acids 2 0.04 Upregulated

Arginine and proline metabolism 2 0.0442 Upregulated
Linoleic acid metabolism 1 0.0444 Upregulated

https://www.metaboanalyst.ca/home.xhtml
https://www.metaboanalyst.ca/home.xhtml
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Table 4. Cont.

Pathway Metabolites Implicated p Value Regulation

Valine, leucine, and isoleucine degradation 2 0.0485 Upregulated
Aminoacyl-tRNA biosynthesis 9 2.46 × 10−121 Downregulated

Arginine biosynthesis 4 0.00000198 Downregulated
Alanine, aspartate, and glutamate metabolism 4 0.0000382 Downregulated

Phenylalanine, tyrosine, and tryptophan
biosynthesis 2 0.000327 Downregulated

Phenylalanine metabolism 2 0.00239 Downregulated
Pantothenate and CoA biosynthesis 2 0.00873 Downregulated

D-Glutamine and D-glutamate metabolism 1 0.0456 Downregulated
Nitrogen metabolism 1 0.0456 Downregulated

Figure 4. Diagram depicting a metabolite–metabolite interaction network for major metabolites
identified to be differentially regulated across studies. Map was created using MetaboAnalyst’s
network analysis feature, using a degree filter of 5.0 and betweenness cutoff of 2.0. Color of metabo-
lite represents directionality of difference between CRC and control in literature (Difference was
calculated by number of papers identifying metabolite as upregulated—number of papers identify-
ing metabolite as downregulated). Nodes are connected utilizing the KEGG database of metabolic
pathways, with larger nodes being implicated in more pathways and thus having more connections.
Outline of metabolite represents pathways that are up or downregulated in CRC, analyzed using the
KEGG database, with blue-outlined metabolites representing pathways downregulated in CRC and
red-outlined metabolites representing pathways upregulated in CRC.

Lastly, six studies focusing on the metabolome from stool specimens and their corre-
sponding microbial populations were further analyzed to shed light on the gut bacterial
population’s impact on the metabolic profile of CRC (Figure 5).
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Figure 5. (a) Graphical representation of bacterial genera identified to be differentially regulated
in multiple studies over four studies reporting that data [33,37,44,48]. A bar above the x axis
indicates upregulation of that bacterial genus in CRC fecal tissue, while a bar below the x axis
indicates downregulation. (b) Heatmap demonstrating the identified Pearson correlation of bacterial
genus identified as differentially regulated in multiple sources and identified metabolites in five
studies [33,34,37,44,48], using stool as the primary specimen. A positive (>0) value on the heatmap
implies a positive correlation between bacterial genus and metabolite, while a negative (<0) value
implies negative correlation between the genus and that metabolite. A 0 indicates no reported
correlation for that metabolite.

3.2. Study Design and Population Characteristics

After two of the authors independently evaluated the literature following our work-
flow in Figure 1, we identified a total of 37 relevant articles after applying the reported
inclusion and exclusion criteria. Population characteristics, methods of analysis (platform),
the year of study, and country of origin of these selected studies are reported in Table 1.
Studies with incomplete or missing information for a particular category are marked N/A
(Table 1). These studies ranged through a variety of populations, including CRC patients
from USA, China, Japan, Italy, Canada, Belgium, Singapore, Germany, Romania, South
Korea, France, and Brazil, although most studies were clustered in North America or East
Asia (Table 1). Samples were extracted from a variety of biological sources, including
serum (12 studies), stool (10 studies), plasma (8 studies), urine (4 studies), tumor tissue
(1 study), adipose tissue (1 study), and dried blood spot (1 study) (Figure 2a). Populations
of these studies were generally small, but had a large spread, ranging from 10 CRC cases
with matched control [44] to 744 total patients [22]. Five studies had less than 50 total
participants, eight studies had 50–100 participants, eight had 100–200 participants, and
sixteen had more than 200 participants. Patient counts were broken down by training and
validation sets when available (Table 1). Ages of study participants ranged from 18–92
in studies where age ranges were available (Table 1). Here we describe age data in the
most detailed form it was reported in by the study in question, either by age range or
mean/median age, either overall or within specified study groups such as control or CRC.
Additionally, some studies reported age ranges or mean/median ages by stages of CRC.
We reported gender as percentage of total subjects that were male, which was available
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in nearly all studies (Table 1). Gender percentages for the entire study were calculated
for studies only reporting gender data by stage of CRC, broken down by control or CRC
groups, or separated by training and validation sets. Studies ranged from 24% male [27] to
77% male [57], although most studies ranged between 45% and 65% male participants.

It is interesting to note that almost all studies identified in our review represented
clinical studies with diagnostic aims (including detailed staging attempts), highlighting
the need for better diagnostic approaches in CRC, while one study monitored the treat-
ment/remission process of CRC [27]. Most studies employed a case-control research design,
using either a healthy (carcinoma-free) control, adenomatous polyp group, or both. Twenty-
one studies compared CRC directly to healthy control [24–26,31,33,36,38,39,42–46,48–54,56].
Jing et al. and Gao et al., conversely, compared CRC patients to an adenomatous polyp
control [32,55] while eleven studies utilized CRC, healthy control, and adenomatous polyp
groups [28–30,34,35,37,40,41,47,57,58]. Two studies (Geijson et al., Liu et al.) did not in-
clude a control group [22,23], while Di Giovanni et al. compared CRC groups to healthy
control in both CRC models as well as CRC remission models, using separate controls
but comparing CRC-remission and CRC patients using an Effect Size model [27]. This
allowed the group to differentiate metabolite profiles between pre- and post-treatment
CRC patients. Of note, special attention was also paid to distinguish early and late onset
CRC [42], to stratify biomarkers by CRC stage [22,23,28], and to correlate genetic analysis
of the gut microbiota with metabolite alterations in CRC [33,34,37,44,46,48]. For example,
Holowatyj et al. [31] compared early and late-onset CRC to healthy control and identified
13 dysregulated metabolites in young-onset patients and 103 dysregulated metabolites
in late-onset patients [31], while 35 metabolites were detected differentially in early vs.
late-onset CRC patients [26]. For the purposes of our study, these datasets were combined
to one large CRC group, but it is worth noting that early and late-onset CRC metabolic
profiles significantly differ, with further metabolic dysregulation occurring in late-onset
patients [31]. Meanwhile, both Geijson et al. and Liu et al. opted for pairwise comparison
of metabolomic profiles in different stages of CRC highlighting several metabolites that
were differentially regulated in specific stages of CRC [22,23]. These included citrulline,
histidine, and several lysophosphatidylcholine molecules, all of which were found in lower
concentrations in later stage CRC, as well as several triglycerides which were found in
higher concentrations in later stage CRC [22,23]. Also, Farshidfar et al. distinguished
metabolites between different CRC stages and healthy control, but did not compare metabo-
lites among stages of CRC [28]. It is important to note that these studies show the usefulness
of metabolomics beyond just CRC diagnosis, as it can be potentially used to differentiate
not only healthy controls from CRC patients, but also to identify different stages of disease
as well as to predict early or late onset disease.

3.3. Analytical Methods and Their General Performance

In our review, most studies employed a type of mass spectrometry analysis, with
three studies employing 1H-NMR analysis [29,42,53]. Liquid-Chromatography-Mass Spec-
trometry (LCMS), including Ultra-High Performance Liquid Chromatography-Mass Spec-
trometry (UHPLC-MS) and Liquid Chromatography-High Resolution Mass Spectrom-
etry (LC-HRMS), was the most popular method for analysis, with eighteen identified
studies that applied this technique [22–24,26,30,31,33,35,36,38,39,41,43,47–50,52], followed
by Gas Chromatography-Mass Spectrometry, which was conducted in seventeen stud-
ies [24,25,27,28,34,38,39,44–46,48–51,54,56,57] (Figure 2b). These counts include four stud-
ies conducting both LCMS and GCMS. Other methods of analysis included direct infusion
mass spectrometry (1 study) [32], Capillary electrophoresis-time of flight mass spectrome-
try (CE-TOFMS) (3 studies) [37,40,55], and Matrix Assisted Laser Desorption Ionization-
Time of Flight mass spectrometry (MALDI-TOF MS) (1 study) [58] (Figure 2b). Thirty
studies [23–25,27–32,34–40,42–46,48–50,53,54,56–58] employed untargeted metabolomic
profiling, while 9 studies employed targeted metabolomics, either with a metabolite
subset in mind to begin the study or as part of a validation of their untargeted data
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[22,25,26,28,35,47,51,52,55]. Of studies where the selections of analytical columns could
be identified, 16 used a column that could identify polar and nonpolar compounds
[22,25–28,31,33,36,38,39,44,48,49,51,55,58], 8 focused on polar compounds [23,24,30,34,47,52,54],
and 2 used nonpolar compounds [45,46]. Additionally, six studies [23,25,52,56–58] con-
ducted lipidomics, a subset of metabolomics specifically targeted at lipid identification,
as the lipidome is often perturbed in CRC patients [59]. Song et al., in addition to find-
ing two individual fatty acids expressed differently in CRC compared to control in male
participants, also found that the total levels of ω-6 polyunsaturated fatty acids as well
as total monounsaturated fatty acids were raised in male CRC patients compared to con-
trol [57]. Total number of metabolites identified as biomarkers after filtering with statistical
cutoff ranged from one (Cross et al.) to 74 (Holowatyj et al.) [24,31]. Total number of
metabolites identified after statistical screening did not significantly differ from that of
one-way ANOVA analysis using LCMS, GCMS, 1H-NMR, or other instrument methods.
Total metabolite counts for each study are listed in Table 2.

3.4. Evaluating the Performance of Metabolomics-Based Assays in CRC Studies

To understand the overall performance of metabolomics assays for CRC diagnosis
and differentiations, we evaluated the sensitivities, specificities, and AUC values based
on available data provided in the included studies. Metabolites associated with CRC risk
for each study at some levels of statistical significance and their general compound class
are listed in Table 2. In these studies, comparisons were made in terms of metabolite
regulation between: (i) a CRC group and a healthy control group, (ii) a CRC group and
an adenomatous polyp group, or (iii) two different stages of CRC patient, where the latest
available stage of CRC was compared to the earliest available stage of CRC. Metabolites
differentially regulated under the statistical cutoff reported by the study in question were
counted, sorted for direction of regulation (i.e., whether they were up or downregulated in
CRC), and tabulated based on compound class in Table 2. Statistical threshold using p-value,
Bonferroni corrected p-value or false discovery rate (FDR) for metabolite inclusion reported
by each study is listed in the final column of Table 2. Six studies used a different p-value to
represent statistical significance (0.1, 0.01, 0.001, or 0.005) [27,33,37,40,51,55]. Reasonings
for increased or decreased p-value threshold differed. For example, Di Giovanni et al.
employed several different p-values, including 0.01, 0.05, and 0.1, but considered any value
below 0.1 statistically significant [27]. Yachida et al. employed a Mann–Whitney U-test for
statistical analysis and thus also used a p-value of 0.005 cutoff [37]. Gao et al. used a targeted
approach to characterize mainly amino acids’ contribution to the CRC metabolome and
employed a p value < 0.001, as this statistical cutoff encompassed metabolites that showed
the highest individual sensitivity and specificity in their validation set [55]. Kim et al. and
Nishiumi et al. additionally employed an FDR-adjusted p-value of 0.1, while Uchiyama
et al. employed a p-value of 0.01 [34,40,51]. None of these three authors offered extensive
in-text justification for these values. Some studies also employed a Partial Least Squares
Discriminant Analysis (PLS-DA) VIP score cutoff of >1 for metabolite inclusion of diagnostic
models [29,36,39,42,43,47,58]. There was no significant difference in total metabolites
identified between simple p-value cutoff and p-value correction or VIP score cutoff when
compared with a standard two-sample t-test (p = 0.74 vs. adjusted p value, p = 0.51 vs.
VIP cutoff). As summarized in Table 2, number of metabolites reported to be differentially
regulated in the CRC population varied widely among different studies. For instance, Cross
et al. were only able to identify one metabolite (leucyl-leucine) associated with CRC risk
in both men and women, but significance was not below a Bonferroni-corrected p value
of 0.05 [22], while Holowatyj et al. identified 116 dysregulated metabolites [31]. From
these diverse studies, it seems that the wide range in the number of metabolites meeting
statistical threshold, in addition to not being due to statistical cutoff value, could also not
be attributed entirely to instrument type (LCMS, GCMS, 1H-NMR, Other) or specimen type
(plasma, serum, stool, urine, dried blood spot) when analyzed using one-way ANOVA
analysis (p values of 0.889, 0.509 for the separate means model of instrument type and
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specimen type respectively). There was a general trend of identification of larger metabolite
sets with increasing sample size when compared with two sample t-test, but differences
were slightly above a p value of 0.05. For instance, studies including less than 40 CRC
patients identified fewer metabolites than studies with 200+ CRC patients, but only at
p = 0.13. When studies were stratified into two larger groups, those with 0–60 CRC patients
and those with 61+ patients (split so there would be roughly an equal number of studies
in each group), studies with 61+ patients identified an average of 10 more metabolites, at
p = 0.11. Variation of metabolites, in addition to sample size, together with differences in
instrument, technique, and study population at different geographic locations (i.e., patients
in Japan may have different metabolic profiles than those in America) might explain why
different metabolites were identified by various studies [60].

3.5. Diagnostic Model Performance

Some studies were able to build diagnostic models capable of differentiating between
CRC patients and healthy controls with a small number of individual metabolites, while
the majority identified larger panels of dysregulated metabolites. Overall, these studies
identified between 1 and 116 total dysregulated metabolites (Table 2).

These metabolites encompassed a wide range of compound classes which differed
by specimen, technique, sample size, and aim of the study. Only a select number of
studies constructed statistical diagnostic models using these dysregulated metabolites. For
instance, Yang et al. identified several metabolites as differentially regulated in CRC but
only employed two, lysine breakdown products putrescine and cadaverine, as separate
diagnostic markers for AUC analysis, claiming that polyamines such as these are widely
dysregulated in CRC (Figure 3a) [46]. Interestingly, despite their insistence that the models
generated by these metabolites were predictive of CRC diagnosis, no other studies identified
putrescine as a dysregulated metabolite in CRC, and only one other study identified a
derivative of cadaverine (n-acetyl-cadaverine) [33]. Generated AUC values were 0.672
for putrescine and 0.764 for cadaverine. ROC in other studies far better in terms of AUC
value. Kim et al. used a combination of two metabolites, leucine and oxalic acid, to
generate their receiver operating curve (ROC) as these metabolites gave the model the
best sensitivity and specificity in their validation set [33]. Udo et al. employed a three
metabolite panel using butyrate, leucine, and carnosine to generate a ROC with an AUC of
0.748 for CRC diagnostics against healthy controls (Figure 3a) [41]. Wang et al., conversely,
used a panel of eight metabolites to generate their diagnostic model for differentiation of
CRC patients and healthy controls [43]. Other studies employed larger panels, such as a
24-metabolite panel employed by Di Giovanni et al. to generate their ROC. The highest
reported AUC values were derived by Gao et al., which derived an impressive AUC value
of 0.991 using methionine, tyrosine, valine, and isoleucine and was able to distinguish
between CRC and adenomatous polyp tissue using these metabolites; Kim et al., which
was able to establish an AUC of 0.92 in its validation model using just leucine and oxalic
acid, as well as an AUC of 1.0 combining these metabolites with their metagenomics data;
Wang et al., which established an AUC of 0.933 from a panel of four metabolic biomarkers
of different classes, and Serafim et al., which established an AUC of 0.924 from a two
lipid metabolites (Figure 3a) [33,42,55,58]. Interestingly, there was no overlap between any
metabolites driving these ROC’s. Wang et al.’s diagnostic model, in addition to reporting an
AUC of 0.880 for its validation set, also tested patients’ survival using its eight diagnostic
metabolites with a LASSO-risk scale [43]. Briefly, they dichotomized their 73 CRC patients
into two roughly equal groups considered lower and higher risk, which were then followed
for survival status [43]. The model was able to accurately predict overall survival time
at a p value of 0.022 as well as progression-free survival time at a p value of 0.002 [43].
The sensitivity, specificity, or AUC are comparable between studies of different specimen
types observed. Individual study AUC as well as corresponding sensitivity and specificity
for diagnostic models used for biomarker validation were depicted in Figure 3a. Among
these studies, Kim et al. and Gao et al. reported the highest specificity (1.0), while Serafim
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et al. reported the highest sensitivity (1.0) (Figure 3b) [33,55,58]. Sensitivity values ranged
from 0.72 to 1.0, while specificity values ranged from 0.733 to 1.0 [27,33,54,55,58]. Average
sensitivity and specificity of diagnostic models reporting these values were 0.855 and
0.839, respectively.

Generally, models employing a combination of multiple classes of metabolites, such
as a combination of amino acid and lipid biomarkers, were demonstrated to hold more
diagnostic power. For instance, Jing et al.’s model combining a combination of eight
acylcarnitine and amino acid biomarkers had an AUC of 0.909, while Yang et al.’s single-
metabolite cadaverine and putrescine models only reported AUC values of 0.765 and 0.672
respectively [32,46]. This was not an absolute rule, and while larger metabolite panels
typically performed better in diagnostic validation, some smaller models such as Kim et al.’s
model using only leucine and oxalic acid (0.92) [33]. The generally high sensitivity markers
of the identified studies (the average sensitivity across identified studies was roughly
86% as depicted in Figure 3b) far exceed the measured sensitivity of the current diagnosis
methods guaiac FOBT (sensitivity of ~65%) and immunochemical FOBT (~75%) [8]. Thus,
diagnostic models created using metabolic biomarkers may be powerful predictors for
CRC diagnosis.

3.6. Frequently Reported Metabolite Biomarkers in CRC Studies

CRC is a disease with a complicated pathology and metabolite biomarkers may vary
based upon biospecimen, stage of cancer, and method of analysis. In totality, however,
there were still many metabolites commonly identified across different methods of analysis
and specimens. After identification of metabolites reported as potential biomarkers of
CRC development, we stratified metabolites by the number of times being identified as a
statistically significant indicator of CRC risk as well as directionality of this risk (higher
amounts of metabolite in CRC patients are listed as upregulated, while higher amounts
of metabolite in healthy control are listed as downregulated). We reported metabolites
identified in 3 or more studies as significantly differentially regulated in Table 3. For
example, amino acid metabolism has been characterized as significantly altered in cancer
pathogenesis, and accordingly the majority of frequently identified, differentially regulated
metabolites in the identified studies were amino acids [61]. Alanine, tyrosine, asparagine,
aspartic acid, tryptophan, methionine, and glutamine showed the most significant decrease
in CRC patients among metabolites identified in multiple studies, while glutamic acid,
glycine, histidine, and isoleucine showed significant upregulation (Table 3). Among other
types of metabolites, lipids and lipid-related molecules were the most often identified
groups. Palmitic acid and linoleic acid were identified in five papers each, with palmitic acid
shown to be consistently upregulated across all five studies and linoleic acid upregulated
in three studies as well, while linoleic acid was found to be downregulated in two studies
(Table 3). Palmitic acid, a saturated fatty acid, has been more consistently associated
with CRC pathogenesis in scientific literature than linoleic acid, an unsaturated fatty acid,
which shows mixed results in terms of CRC correlation [62–64]. 3-hydroxybutyrate, a
ketone body and product of fatty acid degradation, was also upregulated in CRC (Table 3),
but also shows an unclear relationship with CRC, and it was indicated to drive cancer
proliferation in some studies while to be better prognostic outcomes when upregulated in
other studies [65,66]. Lysophosphatidylcholines of varying lengths were downregulated in
CRC patients, while free choline was also found to be downregulated (Table 3). Glycerol, a
byproduct of glycolysis as well as a precursor to triglyceride formation, was identified as
upregulated in four studies (Table 3). Lastly, urea cycle-related metabolites such as urea,
citrulline, and hippuric acid, glycolytic intermediates such as glucose and lactate, as well as
TCA cycle metabolite succinate, were found to be perturbed in CRC, although there was a
lack of consistency in directionality of regulation (Table 3). Many studies gave contradictory
results, in which a certain metabolite may be found upregulated in CRC patients over
healthy control in one study, while downregulated in another. Generally (but not always)
this differential regulation could be attributed to differences in specimen. For instance, the
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metabolites citrulline and alanine are identified as upregulated in CRC patients in 2 and
4 studies respectively, but also identified as downregulated in 3 and 6 studies respectively
(Table 3). The studies in which citrulline was found to be upregulated occurred in urine and
stool, but all studies identifying downregulation occurred in blood-related specimens such
as plasma, serum, and dried blood spot (Table 3). This differential may be explained by the
increase in amino acid mobilization seen across studies. Citrulline is a urea cycle metabolite
and would likely be excreted in urine more often during increased protein breakdown,
when the urea cycle is employed for nitrogen disposal [67,68]. Conversely, this would
result in lower levels of circulating citrulline in the blood. Valine, alanine, and succinate
were also found upregulated in stool but down in most blood-related specimens (Table 3).
The exact mechanisms for this differential remain unknown but may be related to the
bacterial populations in the gut that are overproducing these metabolites being correlated
to unrelated mechanisms of CRC proliferation, while endogenously produced levels of
these amino acids are negatively correlated with CRC. Certain metabolites were also only
identified in particular specimen types. For instance, 3-hydroxybutyrate, aspartic acid,
glucose, glycerol, glycine, isoleucine, leucine, linoleic acid, lysine, serine, and sphinganine
were all only discovered in serum and stool specimen studies (Table 3). Histidine was only
identified in blood-related specimen (serum and plasma), while kynurenine was mostly
identified in urine or stool (Table 3). Altogether, our data demonstrate that specimen type
likely plays an influence in metabolite identification.

We additionally were able to show correlated metabolites through pathway inter-
connectivity (Figure 4, Table 4). Metabolites identified in three or more studies (Table 3)
were analyzed for consensus direction of regulation in CRC vs. healthy control tissues
and mapped in accordance with their level of connection to one another through related
metabolic pathways (Figure 4). Metabolic pathways most frequently upregulated in CRC
pathogenesis include aminoacyl-tRNA biosynthesis, valine, leucine, and isoleucine biosyn-
thesis, and butanoate metabolism. Pathways most often downregulated also include
aminoacyl-tRNA synthesis, as well as arginine biosynthesis and alanine, aspartate, and
glutamate metabolism (Table 4). Notably, aminoacyl-tRNA biosynthesis was the most
perturbed pathway connecting both up and downregulated metabolites in CRC patients vs.
healthy controls. This likely stems from cancer’s demand for differential rates of synthesis
of different proteins than normal tissues (i.e., increased need for proteins related to pro-
liferation and cell migration and lower need for more cell-specific, specialized proteins),
which would ultimately lead to some metabolites in this pathway being upregulated and
some downregulated [69]. Ultimately, identified pathways were largely driven by dysregu-
lation of amino acid metabolism, which was perturbed in many identified studies. Further
study of these dysregulated pathways may begin to elucidate more detailed metabolic
mechanisms for CRC pathogenesis.

3.7. Metabolite Classes of Interest

The most frequently identified metabolite class perturbed in CRC tissue across all
37 identified studies was amino acids. Several major proteinogenic amino acids, including
alanine, tyrosine, asparagine, aspartic acid, valine, glutamic acid, glycine, histidine, and
isoleucine, were identified to be dysregulated in CRC patients across the majority of studies
we identified (Table 3). While the major energy pathway perturbed in cancer metabolism
is glycolysis, in what is known as the Warburg effect [70], amino acid metabolism is often
also significantly altered [71,72]. Amino acids can be preferentially catabolized to feed the
upregulated metabolism of cancer cells, serve as precursors for the excessive nucleotide syn-
thesis of cancer cells, be broken down to synthesize glutathione to neutralize the increased
reactive oxygen species (ROS) proliferated by cancerous cells, or used as transcriptional or
epigenetic regulators to fuel cancer-specific processes [71]. For example, glycine, found to
be increased in CRC samples in the majority of our identified studies (Table 3), can serve as
a carbon and nitrogen donor for purine biosynthesis as well as a source of carbon for the
methionine-folate cycle [71]. Many other amino acids can serve as anaplerotic substrates
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for continued glycolysis or TCA cycle metabolism [73]. Of additional interest in CRC is
downstream tryptophan metabolite kynurenine, which can act as a ligand and induce
immunosuppression via the aryl hydrocarbon receptor (AHR) [71,74]. This binding impairs
the ability of dendritic cells and regulatory T cells to eliminate cancer cells [71]. In CRC,
this enables increased cancer cell growth and proliferation, and inhibition of kynurenine
production has been experimentally proven to limit cancer proliferation [74]. Kynurenine
was identified in multiple studies in our review as increased in CRC patients, while its
amino acid precursor, tryptophan, was found to be downregulated across several studies
(Table 3). Also often perturbed in CRC are lysophosphatidylcholines (LysoPC), three of
which were found downregulated in CRC across multiple studies (Table 3). LysoPC is a
class of phospholipid often significantly lowered in CRC cases, and increased breakdown
of these groups to phosphatidylcholine groups increases cancer malignancy [75,76]. Phos-
phatidylcholines, when incorporated into cell membranes, can alter membrane potential
and motility, increasing ability of cell adhesion and leading to enhanced malignancy [76].
The mechanism whereby LysoPCs are associated with lowered cancer risk, conversely,
likely involves activation of apoptosis-inducing factors, such as caspases and cytochrome c
release [77]. Additionally, 3-hydroxybutarate, a ketone body identified to be more prevalent
in CRC in 3 of our identified studies, is sometimes also implicated in CRC pathogenesis,
where one study found it can the expression of genes responsible for mitochondrial biogen-
esis, self-renewal, and migration [66].

Additionally, certain mutations leading to CRC may cause differential metabolic
profiles due to their different metabolism-related downstream targets, although further
clarification through integrated metabolomics and proteomics/transcriptomics are likely
needed for full elucidation of these pathways. There have been some preliminary studies
demonstrating that APC and KRAS mutations’ characteristic activation of WNT pathways
may give rise to a glycolytic phenotype that differs largely from that of mismatch repair
mutations [5]. However, metabolic characteristics of CRC stemming from differing genetic
mutations, especially in the case of mismatch repair, have not been well-characterized.
Nonetheless, this is an area of CRC pathogenesis worthy of further investigation.

3.8. Biospecimen-Specific Metabolite Biomarkers in CRC

Some, but not all, dysregulated metabolites were able to be differentiated by specimen
types in our collection of studies. Several metabolites were more often identified in stool
samples including palmitic acid, lysine, and sphinganine (Table 3). The upregulation of
sphinganine and palmitic acid can possibly be tied to the same metabolic pathway, in
which palmitic acid, either from dietary sources or endogenous synthesis is converted
to sphingolipids either by the host or by some gut microbes in the Bacteroides genus by
the enzyme serine-palmitoyl transferase [77]. Sphingolipids such as sphinganine have
modulatory effects on cancer cells, including increasing proliferation through mediation of
sphingosine-1-phosphate [78,79]. Thus, elevated levels of both molecules could increase
CRC pathogenesis. Palmitic acid has also been found to independently increase cancer
proliferation in some studies by the induction of β-adrenergic receptor expression [62].
Kynurenine was also largely identified in urine samples (Table 3), where it is typically
excreted and used in diagnostic tests for cardiovascular disease as a marker of inflam-
mation [80]. Certain lipid derivatives, such as LysoPC’s and 3-hydroxybutyrate (3-HB)
were found exclusively in blood-related specimen types (plasma and serum), as these
molecules are typically free in circulation when not being taken up by tissues (3-HB) or
being incorporated into membranes (LysoPC’s) [81]. Although the data we collected did
not demonstrate strong differentiation in every metabolite between different specimen
types, metabolic profiles are known to differ even inter-individually between specimen
types, which can even somewhat differ between similar specimen types such as serum and
plasma [82]. Additionally, concentrations of metabolites in specimens such as urine can
vary based on circadian rhythm and diet, and thus standardization of collection time and
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control for differential patterns of nutrient consumption, as well as specimen type, could
be an important consideration in future studies [83,84].

3.9. Stool Studies and Gut Microbiota/Microbial Metabolites in CRC

An emerging trend in CRC metabolic biomarker research is to analyze the interplay
between these metabolites and the subject’s intestinal microbial composition in stool speci-
mens through genomic analysis methods. This is due to significant correlation between gut
microbial composition and CRC incidence, where it is well-known that these bacteria can
produce their own oncogenic metabolites and inflammatory factors that may contribute to
the overall pathogenesis of CRC [85–87]. Several metabolite classes have been previously
characterized as up or downregulated in CRC in fecal metabolomic studies, including sec-
ondary bile acids, short chain fatty acids (SCFAs), and polyamines [20,88]. Secondary bile
acids are produced by bacteria in the gut through modification of endogenously produced
primary bile acids [89]. Many secondary bile acids can be carcinogenic and if produced
in too high quantities, may lead to pathogenesis of CRC [88,90]. Polyamines, a class of
biomolecule containing multiple amino groups typically produced by gut microbes, are
often found to be upregulated in cancer pathology due to carcinomas’ increased need
for cell growth and proliferation [91]. Conversely, SCFAs (acetate, propionate, and bu-
tyrate), typically demonstrate an inverse correlation with CRC incidence, likely acting as
anti-inflammatory and apoptosis-inducing factors [88]. Although microbial metabolites
typically intermix with all major human biospecimens, the fecal metabolome serves as an
especially powerful model of the gut metabolome as many gut metabolites are excreted
with stool [92]. Genetic analyses of CRC patients have identified certain bacterial genera
as positively associated with CRC, including Fusobacterium, Bacteroides, and Enterococ-
cus [19,93,94]. Negatively correlated genera include Lachnospiracaea and Clostridium [93,94].
Some of these bacteria were identified in our six identified metabolomic studies using
stool samples as the primary biological specimen. For instance, Fusobacterium was identi-
fied in 16S ribosomal RNA gene sequency to be more abundant in CRC samples by Yang
et al. and Sinha et al. while Clostridium was found to be less abundant in CRC samples
by Yang et al. and Sinha et al. Lachnospiracaea was found to be less abundant in CRC
samples by Yang et al. and Sinha et al. while found to be more abundant in CRC by
Kim et al. (Figure 5a) [33,46,48]. We identified six studies that employed metabolomics
to recognize many metabolites associated with CRC incidence and correlated them with
corresponding 16S ribosomal RNA gene analyses of gut bacteria genera [33,34,37,44,46,48].
For instance, Kim et al. identified upregulated bile acid-related metabolites in CRC pa-
tients including deoxycholate and bilirubin [33]. Weir et al. identified propionic acid (a
derivative of SCFA propionate) as differentially regulated in CRC patients, but curiously
identified it being upregulated in CRC [44]. Conversely, Yang et al. found propionic acid
downregulated in CRC [46]. Additionally, Yachida et al. identified several polyamines as
differentially expressed in CRC vs. control patients, including N1,N8-Diacetylspermidine
and N1, N12-Diacetylspermine [37]. The most identified (upregulated in CRC) metabolites
in stool studies were lysine, sphinganine, and palmitic acid (Table 3), while the most upreg-
ulated genera were Akkermansia and Clostridium (Figure 5a). The metagenomic analyses in
conjunction with metabolite measurements were able to generate impressive predictive
models of CRC, including Kim et al.’s combined genomic/metabolic dataset generating a
diagnostic model exhibiting an AUC of 1.0 [33]. In Figure 5b, we characterize all reported
correlations between genomic measurements of bacterial genera identified across five stool
specimen studies (Yachida et al. did not report correlation between individual metabo-
lites and bacterial genera), as well as differentially regulated bacterial genera identified in
multiple studies [37].

3.10. Factors That May Influence Metabolic Biomarkers

Metabolomics, contrary to proteomics, genomics, or transcriptomics, represents a
transient phenotypic state that may fluctuate rapidly. Metabolites can vary widely by
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age, weight, sex, diet, and even circadian rhythm [95,96]. This provides both advantages,
in that it can reflect a more accurate up-to-the-minute phenotype of the organism, and
disadvantages in its sometimes-inconsistent results that can be affected by confounding
factors outside those being studied [97]. For instance, CRC incidence as well as gut
microbiota makeup can be significantly increased by poor diet and lack of exercise [98–100].
These same poor lifestyle factors can lead to a host of other metabolic dysregulation, which
may cause CRC-associated metabolic pathway alterations that exist in some patients but
not others. Additionally, analytical platform, specimen type, and workflow deviances may
affect metabolomics results. Other limitations of this review include lack of a universal,
standardized metabolomics workflow for clinical application, regional clustering of studies
in Asian populations that may not lead to universal applicability, and lack of external
biomarker validation in many studies [101]. In addition to limitations posed by the selected
studies, the summary of this systematic review may be limited by imperfect identification
of relevant studies, publication bias, or lack of heterogeneity in data reporting or lack of
data availability of the individual publications.

3.11. Future Directions

Metabolomics represents a promising technique for biomarker identification in CRC
pathogenesis. However, its lack of standardization in procedure, biospecimen choice, and
use of external validation sets leaves work to be done before defining a standard clinical
biomarker panel for diagnosis. We believe this review may serve as a foundation for future
studies to conduct more targeted analyses of already identified metabolites in particular
biospecimen categories. For instance, our review identified palmitic acid, lysine, and
sphinganine to be consistently upregulated in stool, while kynurenine was found to be
consistently upregulated in urine (Table 3). The framework we lay out here may guide
the eventual progression of metabolomics studies beyond validation stages of biomarker
discovery and toward development of clinical metabolomics assays. Additionally, standard-
ization of sample collection and analysis protocols as well as normalization of potentially
confounding variables such as BMI, diet, and exercise may assist to drive further homo-
geneity in biomarker identification. For instance, Zhu et al. included smoking and alcohol
consumption of patients as factors driving their predictive model [47].

In addition to diagnosis, metabolomics may be used to drive advances in cancer
treatment. For instance, a major hallmark of KRAS mutation-driven CRC is its upregulation
of glutaminase 1, which converts glutamine to glutamate [5]. This metabolic dysregulation
is largely represented by the data we have collected, showing glutamic acid/glutamate
upregulated in CRC in the majority of studies, while glutamine is downregulated in CRC in
the majority of studies. Glutaminase 1 inhibitor treatment in many studies has been found
to induce cell death and limit proliferation. Administered vitamin C may also have bearing
on KRAS driven CRC due to its antioxidant properties, depleting glutathione and leading to
arrest of glycolysis [5]. Additional metabolically linked inhibitors of CRC proliferation may
be identified by metabolomics with further study. Of additional concern is the elucidation
of how metabolites may relate to genomic or protein-related markers of CRC. Some studies
have begun to be published in this field, such as a study linking mutated KRAS in mice to
increased glutaminolysis and glutamine transport, leading to increased DNA methylation,
WNT upregulation, and resistance to 5-fluorouracil [102]. However, this field is still in early
stages of development and is certainly in need of additional consideration, especially in the
realm of integrated metabolomics, proteomics, and transcriptomics research.

4. Conclusions

Altogether, metabolomics presents a new and innovative method of non-invasive
screening for colorectal cancer. As current diagnostic methods are either invasive or lack
sensitivity, the utilization of metabolic biomarkers for detection of both colorectal adenomas
and adenocarcinomas seems promising. However, current studies have yet to concur on
a standard biomarker panel of metabolites. This likely reflects the lack of progression
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beyond the exploratory or validation stages of metabolite biomarker discovery into later
stages of biomarker assay development, such as longitudinal repository or cancer control
trials. We propose that a movement into these later stages of biomarker establishment,
or at least a use of targeted metabolomics assays for metabolites we have identified as
often perturbed in CRC pathogenesis, may soon be warranted, with the caveat that certain
metabolite biomarkers may selectively apply to specific biospecimens or conditions. With
more consistent workflow for sample collection and instrument usage as well as consistent
validation of models, future studies may begin to solidify the differences in the metabolic
profiles between colorectal adenomas, adenocarcinomas, and healthy patients, as well as
early onset versus late onset colorectal cancer, allowing for progression towards clinical
validation of metabolic biomarkers. Additionally, the further characterization of the gut
microbiome and metabolome may shed light on metabolic drivers of cancer pathogenesis.
Altogether, metabolomics represents a promising method of biomarker detection for col-
orectal cancer and may present itself as a useful diagnostic tool in the clinical setting in the
near future.

Author Contributions: Conceptualization, A.G., N.J., X.M., and J.Z.; methodology, A.G. and J.Z.;
formal analysis, A.G. and F.C.; investigation, A.G.; resources, J.Z.; data curation, A.G. and F.C.;
writing—original draft preparation, A.G.; writing—review and editing, A.G., N.J., X.M. and J.Z.;
visualization, A.G. and J.Z.; supervision, J.Z.; funding acquisition, X.M. and J.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Institute of General Medical Sciences of the
National Institutes of Health (R35GM133510) and National Cancer Institute (P30 CA016058). Andrew
Gold is a recipient of The Ohio State University’s University Graduate Fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Colorectal Cancer Statistics|How Common Is Colorectal Cancer? Available online: https://www.cancer.org/cancer/colon-rectal-

cancer/about/key-statistics.html (accessed on 29 September 2021).
2. Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal Carcinoma: Pathologic Aspects. J. Gastrointest. Oncol. 2012, 3,

153–173. [CrossRef] [PubMed]
3. Yamagishi, H.; Kuroda, H.; Imai, Y.; Hiraishi, H. Molecular Pathogenesis of Sporadic Colorectal Cancers. Chin. J. Cancer 2016,

35, 4. [CrossRef] [PubMed]
4. Yoshie, T.; Nishiumi, S.; Izumi, Y.; Sakai, A.; Inoue, J.; Azuma, T.; Yoshida, M. Regulation of the Metabolite Profile by an APC

Gene Mutation in Colorectal Cancer. Cancer Sci. 2012, 103, 1010–1021. [CrossRef] [PubMed]
5. La Vecchia, S.; Sebastián, C. Metabolic Pathways Regulating Colorectal Cancer Initiation and Progression. Semin. Cell Dev. Biol.

2020, 98, 63–70. [CrossRef]
6. Clish, C.B. Metabolomics: An Emerging but Powerful Tool for Precision Medicine. Cold Spring Harb. Mol. Case Stud. 2015,

1, a000588. [CrossRef]
7. Testing for Colorectal Cancer|How Is Colorectal Cancer Diagnosed? Available online: https://www.cancer.org/cancer/colon-

rectal-cancer/detection-diagnosis-staging/how-diagnosed.html (accessed on 29 September 2021).
8. Elsafi, S.H.; Alqahtani, N.I.; Zakary, N.Y.; Al Zahrani, E.M. The Sensitivity, Specificity, Predictive Values, and Likelihood Ratios

of Fecal Occult Blood Test for the Detection of Colorectal Cancer in Hospital Settings. Clin. Exp. Gastroenterol. 2015, 8, 279–284.
[CrossRef]

9. Tan, K.; Ipcho, S.V.S.; Trengove, R.D.; Oliver, R.P.; Solomon, P.S. Assessing the Impact of Transcriptomics, Proteomics and
Metabolomics on Fungal Phytopathology. Mol. Plant Pathol. 2009, 10, 703–715. [CrossRef]

10. Dalal, N.; Jalandra, R.; Sharma, M.; Prakash, H.; Makharia, G.K.; Solanki, P.R.; Singh, R.; Kumar, A. Omics Technologies for
Improved Diagnosis and Treatment of Colorectal Cancer: Technical Advancement and Major Perspectives. Biomed. Pharmacother.
2020, 131, 110648. [CrossRef]

11. Klassen, A.; Faccio, A.T.; Canuto, G.A.B.; da Cruz, P.L.R.; Ribeiro, H.C.; Tavares, M.F.M.; Sussulini, A. Metabolomics: Definitions
and significance in systems biology. In Metabolomics: From Fundamentals to Clinical Applications; Advances in Experimental
Medicine and Biology; Sussulini, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–17, ISBN 978-3-319-
47656-8.

12. Erben, V.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Metabolomics Biomarkers for Detection of Colorectal Neoplasms: A
Systematic Review. Cancers 2018, 10, 246. [CrossRef]

13. Liesenfeld, D.B.; Habermann, N.; Owen, R.W.; Scalbert, A.; Ulrich, C.M. Review of Mass Spectrometry–Based Metabolomics in
Cancer Research. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2182–2201. [CrossRef]

https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html
https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html
http://doi.org/10.3978/j.issn.2078-6891.2012.030
http://www.ncbi.nlm.nih.gov/pubmed/22943008
http://doi.org/10.1186/s40880-015-0066-y
http://www.ncbi.nlm.nih.gov/pubmed/26738600
http://doi.org/10.1111/j.1349-7006.2012.02262.x
http://www.ncbi.nlm.nih.gov/pubmed/22380946
http://doi.org/10.1016/j.semcdb.2019.05.018
http://doi.org/10.1101/mcs.a000588
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/how-diagnosed.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/how-diagnosed.html
http://doi.org/10.2147/CEG.S86419
http://doi.org/10.1111/j.1364-3703.2009.00565.x
http://doi.org/10.1016/j.biopha.2020.110648
http://doi.org/10.3390/cancers10080246
http://doi.org/10.1158/1055-9965.EPI-13-0584


Cancers 2022, 14, 725 22 of 25

14. Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Han, Y.; Wang, X. Metabolomics in Diagnosis and Biomarker Discovery of Colorectal
Cancer. Cancer Lett. 2014, 345, 17–20. [CrossRef]

15. Ivanisevic, J.; Want, E.J. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS
Metabolomics Data. Metabolites 2019, 9, 308. [CrossRef]

16. Zhang, F.; Zhang, Y.; Zhao, W.; Deng, K.; Wang, Z.; Yang, C.; Ma, L.; Openkova, M.S.; Hou, Y.; Li, K. Metabolomics for Biomarker
Discovery in the Diagnosis, Prognosis, Survival and Recurrence of Colorectal Cancer: A Systematic Review. Oncotarget 2017, 8,
35460–35472. [CrossRef]

17. Yusof, H.M.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Metabolomics Profiling on Different Stages of Colorectal
Cancer: A Systematic Review. Malays. J. Med. Sci. MJMS 2018, 25, 16–34. [CrossRef]

18. Amir Hashim, N.A.; Ab-Rahim, S.; Suddin, L.S.; Ahmad Saman, M.S.; Mazlan, M. Global Serum Metabolomics Profiling of
Colorectal Cancer (Review). Mol. Clin. Oncol. 2019, 11, 3–14. [CrossRef]

19. Jahani-Sherafat, S.; Alebouyeh, M.; Moghim, S.; Ahmadi Amoli, H.; Ghasemian-Safaei, H. Role of Gut Microbiota in the
Pathogenesis of Colorectal Cancer; a Review Article. Gastroenterol. Hepatol. Bed Bench 2018, 11, 101–109.

20. Peng, Y.; Nie, Y.; Yu, J.; Wong, C.C. Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites 2021,
11, 159. [CrossRef]

21. Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; The PRISMA-P Group.
Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation.
BMJ 2015, 349, g7647. [CrossRef]

22. Geijsen, A.J.M.R.; van Roekel, E.H.; van Duijnhoven, F.J.B.; Achaintre, D.; Bachleitner-Hofmann, T.; Baierl, A.; Bergmann, M.M.;
Boehm, J.; Bours, M.J.L.; Brenner, H.; et al. Plasma Metabolites Associated with Colorectal Cancer Stage: Findings from an
International Consortium. Int. J. Cancer 2020, 146, 3256–3266. [CrossRef]

23. Liu, T.; Peng, F.; Yu, J.; Tan, Z.; Rao, T.; Chen, Y.; Wang, Y.; Liu, Z.; Zhou, H.; Peng, J. LC-MS-Based Lipid Profile in Colorectal
Cancer Patients: TAGs Are the Main Disturbed Lipid Markers of Colorectal Cancer Progression. Anal. Bioanal. Chem. 2019, 411,
5079–5088. [CrossRef]

24. Cross, A.J.; Moore, S.C.; Boca, S.; Huang, W.-Y.; Xiong, X.; Stolzenberg-Solomon, R.; Sinha, R.; Sampson, J.N. A Prospective Study
of Serum Metabolites and Colorectal Cancer Risk. Cancer 2014, 120, 3049–3057. [CrossRef]

25. Crotti, S.; Agnoletto, E.; Cancemi, G.; Di Marco, V.; Traldi, P.; Pucciarelli, S.; Nitti, D.; Agostini, M. Altered Plasma Levels of
Decanoic Acid in Colorectal Cancer as a New Diagnostic Biomarker. Anal. Bioanal. Chem. 2016, 408, 6321–6328. [CrossRef]

26. Deng, L.; Ismond, K.; Liu, Z.; Constable, J.; Wang, H.; Alatise, O.I.; Weiser, M.R.; Kingham, T.P.; Chang, D. Urinary Metabolomics
to Identify a Unique Biomarker Panel for Detecting Colorectal Cancer: A Multicenter Study. Cancer Epidemiol. Prev. Biomark. 2019,
28, 1283–1291. [CrossRef]

27. Di Giovanni, N.; Meuwis, M.-A.; Louis, E.; Focant, J.-F. Specificity of Metabolic Colorectal Cancer Biomarkers in Serum through
Effect Size. Metab. Off. J. Metab. Soc. 2020, 16, 88. [CrossRef]

28. Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A
Validated Metabolomic Signature for Colorectal Cancer: Exploration of the Clinical Value of Metabolomics. Br. J. Cancer 2016, 115,
848–857. [CrossRef]

29. Gu, J.; Xiao, Y.; Shu, D.; Liang, X.; Hu, X.; Xie, Y.; Lin, D.; Li, H. Metabolomics Analysis in Serum from Patients with Colorectal
Polyp and Colorectal Cancer by 1H-NMR Spectrometry. Dis. Markers 2019, 2019, 3491852. [CrossRef]

30. Gumpenberger, T.; Brezina, S.; Keski-Rahkonen, P.; Baierl, A.; Robinot, N.; Leeb, G.; Habermann, N.; Kok, D.E.G.; Scalbert, A.;
Ueland, P.-M.; et al. Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer
and Colorectal Adenomas. Metabolites 2021, 11, 119. [CrossRef]

31. Holowatyj, A.N.; Gigic, B.; Herpel, E.; Scalbert, A.; Schneider, M.; Ulrich, C.M. Distinct Molecular Phenotype of Sporadic
Colorectal Cancers Among Young Patients Based on Multi-Omics Analysis. Gastroenterology 2020, 158, 1155–1158.e2. [CrossRef]
[PubMed]

32. Jing, Y.; Wu, X.; Gao, P.; Fang, Z.; Wu, J.; Wang, Q.; Li, C.; Zhu, Z.; Cao, Y. Rapid Differentiating Colorectal Cancer and Colorectal
Polyp Using Dried Blood Spot Mass Spectrometry Metabolomic Approach. IUBMB Life 2017, 69, 347–354. [CrossRef] [PubMed]

33. Kim, D.J.; Yang, J.; Seo, H.; Lee, W.H.; Ho Lee, D.; Kym, S.; Park, Y.S.; Kim, J.G.; Jang, I.-J.; Kim, Y.-K.; et al. Colorectal Cancer
Diagnostic Model Utilizing Metagenomic and Metabolomic Data of Stool Microbial Extracellular Vesicles. Sci. Rep. 2020, 10, 2860.
[CrossRef] [PubMed]

34. Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; et al.
Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal
Cancer Pathogenesis. mBio 2020, 11, e03186-19. [CrossRef]

35. Long, Y.; Sanchez-Espiridion, B.; Lin, M.; White, L.; Mishra, L.; Raju, G.S.; Kopetz, S.; Eng, C.; Hildebrandt, M.A.T.; Chang, D.W.;
et al. Global and Targeted Serum Metabolic Profiling of Colorectal Cancer Progression. Cancer 2017, 123, 4066–4074. [CrossRef]

36. Martín-Blázquez, A.; Díaz, C.; González-Flores, E.; Franco-Rivas, D.; Jiménez-Luna, C.; Melguizo, C.; Prados, J.; Genilloud, O.;
Vicente, F.; Caba, O.; et al. Untargeted LC-HRMS-Based Metabolomics to Identify Novel Biomarkers of Metastatic Colorectal
Cancer. Sci. Rep. 2019, 9, 20198. [CrossRef]

http://doi.org/10.1016/j.canlet.2013.11.011
http://doi.org/10.3390/metabo9120308
http://doi.org/10.18632/oncotarget.16727
http://doi.org/10.21315/mjms2018.25.5.3
http://doi.org/10.3892/mco.2019.1853
http://doi.org/10.3390/metabo11030159
http://doi.org/10.1136/bmj.g7647
http://doi.org/10.1002/ijc.32666
http://doi.org/10.1007/s00216-019-01872-5
http://doi.org/10.1002/cncr.28799
http://doi.org/10.1007/s00216-016-9743-1
http://doi.org/10.1158/1055-9965.EPI-18-1291
http://doi.org/10.1007/s11306-020-01707-w
http://doi.org/10.1038/bjc.2016.243
http://doi.org/10.1155/2019/3491852
http://doi.org/10.3390/metabo11020119
http://doi.org/10.1053/j.gastro.2019.11.012
http://www.ncbi.nlm.nih.gov/pubmed/31730769
http://doi.org/10.1002/iub.1617
http://www.ncbi.nlm.nih.gov/pubmed/28322027
http://doi.org/10.1038/s41598-020-59529-8
http://www.ncbi.nlm.nih.gov/pubmed/32071370
http://doi.org/10.1128/mBio.03186-19
http://doi.org/10.1002/cncr.30829
http://doi.org/10.1038/s41598-019-55952-8


Cancers 2022, 14, 725 23 of 25

37. Yachida, S.; Mizutani, S.; Shiroma, H.; Shiba, S.; Nakajima, T.; Sakamoto, T.; Watanabe, H.; Masuda, K.; Nishimoto, Y.; Kubo, M.;
et al. Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal
Cancer. Nat. Med. 2019, 25, 968–976. [CrossRef]

38. Shu, X.; Xiang, Y.-B.; Rothman, N.; Yu, D.; Li, H.-L.; Yang, G.; Cai, H.; Ma, X.; Lan, Q.; Gao, Y.-T.; et al. Prospective Study of Blood
Metabolites Associated with Colorectal Cancer Risk. Int. J. Cancer 2018, 143, 527–534. [CrossRef]

39. Tan, B.; Qiu, Y.; Zou, X.; Chen, T.; Xie, G.; Cheng, Y.; Dong, T.; Zhao, L.; Feng, B.; Hu, X.; et al. Metabonomics Identifies Serum
Metabolite Markers of Colorectal Cancer. J. Proteome Res. 2013, 12, 3000–3009. [CrossRef]

40. Uchiyama, K.; Yagi, N.; Mizushima, K.; Higashimura, Y.; Hirai, Y.; Okayama, T.; Yoshida, N.; Katada, K.; Kamada, K.; Handa, O.;
et al. Serum Metabolomics Analysis for Early Detection of Colorectal Cancer. J. Gastroenterol. 2017, 52, 677–694. [CrossRef]

41. Udo, R.; Katsumata, K.; Kuwabara, H.; Enomoto, M.; Ishizaki, T.; Sunamura, M.; Nagakawa, Y.; Soya, R.; Sugimoto, M.; Tsuchida,
A. Urinary Charged Metabolite Profiling of Colorectal Cancer Using Capillary Electrophoresis-Mass Spectrometry. Sci. Rep. 2020,
10, 21057. [CrossRef]

42. Wang, Z.; Lin, Y.; Liang, J.; Huang, Y.; Ma, C.; Liu, X.; Yang, J. NMR-Based Metabolomic Techniques Identify Potential Urinary
Biomarkers for Early Colorectal Cancer Detection. Oncotarget 2017, 8, 105819–105831. [CrossRef]

43. Wang, Z.; Cui, B.; Zhang, F.; Yang, Y.; Shen, X.; Li, Z.; Zhao, W.; Zhang, Y.; Deng, K.; Rong, Z.; et al. Development of a Correlative
Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics. Anal.
Chem. 2019, 91, 2401–2408. [CrossRef]

44. Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool Microbiome and Metabolome Differences
between Colorectal Cancer Patients and Healthy Adults. PLoS ONE 2013, 8, e70803. [CrossRef] [PubMed]

45. Wu, J.; Wu, M.; Wu, Q. Identification of Potential Metabolite Markers for Colon Cancer and Rectal Cancer Using Serum
Metabolomics. J. Clin. Lab. Anal. 2020, 34, e23333. [CrossRef] [PubMed]

46. Yang, Y.; Misra, B.B.; Liang, L.; Bi, D.; Weng, W.; Wu, W.; Cai, S.; Qin, H.; Goel, A.; Li, X.; et al. Integrated Microbiome and
Metabolome Analysis Reveals a Novel Interplay between Commensal Bacteria and Metabolites in Colorectal Cancer. Theranostics
2019, 9, 4101–4114. [CrossRef] [PubMed]

47. Zhu, J.; Djukovic, D.; Deng, L.; Gu, H.; Himmati, F.; Chiorean, E.G.; Raftery, D. Colorectal Cancer Detection Using Targeted Serum
Metabolic Profiling. J. Proteome Res. 2014, 13, 4120–4130. [CrossRef]

48. Sinha, R.; Ahn, J.; Sampson, J.N.; Shi, J.; Yu, G.; Xiong, X.; Hayes, R.B.; Goedert, J.J. Fecal Microbiota, Fecal Metabolome, and
Colorectal Cancer Interrelations. PLoS ONE 2016, 11, e0152126. [CrossRef]

49. Brown, D.G.; Rao, S.; Weir, T.L.; O’Malia, J.; Bazan, M.; Brown, R.J.; Ryan, E.P. Metabolomics and Metabolic Pathway Networks
from Human Colorectal Cancers, Adjacent Mucosa, and Stool. Cancer Metab. 2016, 4, 11. [CrossRef]

50. Goedert, J.J.; Sampson, J.N.; Moore, S.C.; Xiao, Q.; Xiong, X.; Hayes, R.B.; Ahn, J.; Shi, J.; Sinha, R. Fecal Metabolomics: Assay
Performance and Association with Colorectal Cancer. Carcinogenesis 2014, 35, 2089–2096. [CrossRef]

51. Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.; Takenawa, T.; et al. A
Novel Serum Metabolomics-Based Diagnostic Approach for Colorectal Cancer. PLoS ONE 2012, 7, e40459. [CrossRef]
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