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Abstract

Characterisation of the T cell receptors (TCR) involved in immune responses is important

for the design of vaccines and immunotherapies for cancer and autoimmune disease. The

specificity of the interaction between the TCR heterodimer and its peptide-MHC ligand

derives largely from the juxtaposed hypervariable CDR3 regions on the TCRα and TCRβ
chains, and obtaining the paired sequences of these regions is a standard for functionally

defining the TCR. A brute force approach to identifying the TCRs in a population of T cells is

to use high-throughput single-cell sequencing, but currently this process remains costly and

risks missing small clones. Alternatively, CDR3α and CDR3β sequences can be associated

using their frequency of co-occurrence in independent samples, but this approach can be

confounded by the sharing of CDR3α and CDR3β across clones, commonly observed within

epitope-specific T cell populations. The accurate, exhaustive, and economical recovery of

TCR sequences from such populations therefore remains a challenging problem. Here we

describe an algorithm for performing frequency-based pairing (ALPHABETR) that accommo-

dates CDR3α- and CDR3β-sharing, cells expressing two TCRα chains, and multiple forms

of sequencing error. The algorithm also yields accurate estimates of clonal frequencies.

Author Summary

Our repertoires of T cell receptors (TCR) give our immune system the ability to recognise

a huge diversity of foreign and self antigens, and identifying the TCRs involved in infec-

tious disease, cancer, and autoimmune disease is important for designing vaccines and

immunotherapies. The majority of T cells express a TCR made up of two chains, the

TCRα and TCRβ, and high-throughput sequencing of samples of T cells results in the loss

of this pairing information. One can identify TCRαβ clones using single-cell sequencing,

but this is costly and typically probes only part of the diversity of T cell populations. Statis-

tical approaches are potentially more powerful by sequencing the TCRα and TCRβ in

multiple samples of T cells and pairing them using their frequency of co-occurrence.

However, T cells involved in immune responses frequently share TCRα and TCRβ chains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005313 January 19, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lee ES, Thomas PG, Mold JE, Yates AJ

(2017) Identifying T Cell Receptors from High-

Throughput Sequencing: Dealing with Promiscuity

in TCRα and TCRβ Pairing. PLoS Comput Biol

13(1): e1005313. doi:10.1371/journal.

pcbi.1005313

Editor: Bjoern Peters, La Jolla Institute for Allergy

and Immunology, UNITED STATES

Received: June 27, 2016

Accepted: December 15, 2016

Published: January 19, 2017

Copyright: © 2017 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper, its Supporting Information files

and in publicly available repositories as described

in the manuscript. An implementation of the

algorithm is available as an R package, with

vignettes, from http://github.com/edwardslee/

alphabetr.

Funding: This study was funded by Arthritis

Research UK and the NIH (R01 AI 093870). The

funders had no role in study design, data collection

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005313&domain=pdf&date_stamp=2017-02-02
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/edwardslee/alphabetr
http://github.com/edwardslee/alphabetr


with other responding cells. This promiscuity, combined with a high prevalence of T cells

with two TCRα chains and sequencing errors, presents significant challenges to fre-

quency-based pairing methods. Here we present a new algorithm that addresses these

challenges and also provides accurate estimates of the abundances of T cell clonotypes,

allowing us to build a more complete picture of T cell responses.

Introduction

The ability of T cells to recognise antigens is conferred by a process of gene rearrangement

that generates a diverse repertoire of T cell receptors (TCR), or clonotypes. Identifying the clo-

notypes involved in responses against pathogens and tumours or those involved in autoim-

mune disease can guide the design of vaccines and immunotherapies. In addition, the breadth

of a T cell response correlates positively with the efficiency of control in many viral infections

[1–3]. Thus, a method to characterise the diversity of antigen-specific responses—that is,

the participating TCRs and their relative abundances—may yield potential correlates of

protection.

The αβ TCR is a heterodimer, generated by a combination of ordered recombination of V,

D, and J gene segments for the β chain and V and J gene segments for the α chain, together

with random nucleotide insertions and deletions between the gene segments. The hypervari-

able CDR3α and CDR3β regions contact the peptide-loaded MHC (pMHC) most closely and

so are considered the primary source of specificity in binding. From hereon we will use the

term ‘chain’ interchangeably with the CDR3 region of the TCRα or TCRβ. Historically, the

CDR3β has been thought to contribute more to the interaction with pMHC due to its greater

theoretical diversity. However, studies of crystal structures have demonstrated that CDR3α
loops can have equal or greater contact with pMHC, as measured by buried surface area [4].

Epitope-specific immune responses also show biases for certain V and J segments in both α
and β chains [5, 6], suggesting both chains contribute to the binding affinity. The α chain may

even play a dominant role in the recognition of certain antigens [7]. Characterising the true

extent of clonal diversity within T cell populations therefore requires resolving the paired

CDR3α and CDR3β sequences within them.

Standard methods of multiplex PCR and high-throughput sequencing lose this pairing

information and as a result are commonly used to analyze either the α or β chains alone [8–

11]. More recent studies have used single-cell sequencing approaches to identify TCRαβ pairs,

and, analogously, the paired CDR3 sequences from the heavy and light chains of the B cell

receptor. These approaches include using single-cell sorting and RT-PCR [12–14], also with

barcoding [15–18]; and variations of emulsion techniques to isolate single cells and amplify

with PCR [18–20]. Drawbacks of these techniques include limited scalability, the risk of under-

sampling rare clones and so underestimating diversity, imprecise information regarding clonal

abundances, and the need to use customised equipment [18, 21].

An alternative strategy is to use statistical methods to associate the CDR3α and CDR3β
sequences obtained from bulk sequencing of multiple subsamples of T cells taken from the

parent population of interest [22]. This approach exploits the fact that paired chains will tend

to appear together in samples and uses the frequencies of these co-occurrences to associate

them. A similar approach has been used to pair the heavy and light chains of B cells [23].

Because frequency-based pairing can be applied to large samples of cells, it has the potential to

recover antigen receptors in greater depth and more economically than single-cell approaches,

as well as providing more precise estimates of clonal frequencies. However, several properties
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of antigen-specific T cell populations present difficult challenges to this method. First, there is

accumulating evidence from single-cell sequencing studies that, within an individual, T cell

clonotypes specific for a given pMHC can exhibit sharing of both α and β chains [13, 14, 17,

19]. Second, between 10–30% of T cells possess two productive α chains [13, 24, 25] and 6–7%

of T cells possess two productive β chains [25, 26]. The combination of sharing of α or β
chains, dual TCRs, and sequencing errors can confound frequency-based methods that assume

unique pairings. To illustrate, frequent co-occurrences of the three chains α1α2β in samples

may derive from a single clone possessing two α chains or two clones α1β and α2β present at

similar abundances, and the two possibilities are difficult to distinguish.

Here we describe a novel approach to frequency-based pairing that addresses these issues

and identifies TCRαβ clones and their relative abundances using high-throughput sequencing

of CDR3α and CDR3β regions. Our approach is optimised for antigen-specific populations

and designed for use with cells recovered from typically-sized human blood samples. It is spe-

cifically designed to deal with promiscuity in αβ pairing, dual TCRα clones, and high rates of

sequencing errors. By drawing on bulk sequencing data, we increase the efficiency of detection

of rare responding clones and reduce the costs associated with single-cell high-throughput

sequencing methods. The method also goes beyond other currently available approaches,

yielding estimates of the frequencies of clones within their parent populations.

Results

Sharing of TCRα and TCRβ chains across epitope-specific clones within

an individual is common

Performing frequency-based pairing is in principle relatively straightforward if each clone is

identified by two unique TCRα and TCRβ chains. However, single-cell analyses of epitope-

specific T cell populations in mice and humans have revealed significant levels of sharing of

both CDR3α and CDR3β sequences at the amino acid level across clones within individuals

(Table 1).

The current upper limits on estimates of the number of unique TCRβ chains in the naive

CD4 or CD8 pools are 106 in mice [27] and 108 in humans [28]. As a consequence, sequencing

of samples of naive T cells typically results in nearly every cell possessing a unique TCRβ (see

S1 Text, Section 1). Nevertheless, the true diversity of the naive repertoire may be even greater;

due to the sequence of events involved in the generation of the TCR in the thymus, we expect

each TCRβ to be shared with many TCRα within the naive CD4 and CD8 T cell pools. In

mice, thymocytes undergo 6–9 divisions following TCRβ rearrangement at the DN3 stage [29–

32], generating 64–512 cells which then undergo independent TCRα rearrangements. Assum-

ing 5% of these TCRαβ precursors survive selection [33–36] leaves TCRβ clone sizes of 3–25

cells post-selection [27]. Thymocytes may undergo 1 or 2 divisions at the single-positive CD4

or CD8 stage before leaving the thymus [36]; if we assume a 2-fold expansion here on average,

each αβ T cell precursor at DN3 generates 6–50 new naive cells with identical TCRβ chains,

comprising 3–25 unique TCRαβ clones of typically 2 cells. Comparable estimates of TCRβ
clone sizes have been obtained elsewhere [27, 32]. There is also evidence that TCRβ-clone sizes

can be augmented by convergent recombination of the TCRβ chain [8, 37]. If a particular

CDR3β contributes strongly to the affinity of binding to a given peptide-MHC, then because

the recruitment of naive antigen-specific T cells appears to be highly efficient [38], our rough

quantification of TCRαβ clonality in thymopoesis is consistent with the observation that

TCRβ-sharing is commonly found within epitope-specific populations (Table 1).

Because the rearrangement of the TCRα follows that of the TCRβ, any sharing of CDR3α
sequences across clones presumably arises from convergent recombination. Sharing then

Dealing with Complexity in TCRα and βChain Pairing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005313 January 19, 2017 3 / 25



would be expected to arise most frequently for sequences that are close to germline, containing

relatively few random N-nucleotide insertions. To examine this possibility, we immunised an

HLA-A2 human volunteer with the live attenuated yellow fever vaccine YFV-17D, took a

peripheral blood sample 15 days post-vaccination, and used dextramer staining and single-cell

RNAseq to recover paired TCRαβ sequences from CD8+ T cells specific for the immunodomi-

nant epitope HLA-A02:01/LLWNGPMAV (see Methods; data provided in S1 Dataset). Out of

Table 1. A summary of the degrees of sharing of CDR3α and CDR3β at the amino acid level across clones within epitope-specific T cell popula-

tions, found in published single-cell TCR sequencing data and our own. Unless indicated otherwise, the samples were obtained from influenza-infected

mice. The data clearly demonstrate that sharing of both α and β chains within an individual occurs in different infection/inoculation settings.

Citation Peptide/System Status Number of

clones

Number of

distinct α
chains

Number of

distinct β
chains

Number of

shared α
chains

Number of

shared β
chains

% of α chains

that are

shared

% of β chains

that are

shared

[13] KbPB1703 Immune 35 16 24 3 2 18.8 8.3

[17] Human CD4+

TILs

Colon

cancer

216 226 216 7 0 3.1 0.0

CD4+ T cells from

adjacent colon

305 239 237 15 0 6.3 0.0

[14] DbNP366 Naive 1 17 17 15 0 2 0.0 13.3

Naive 2 11 11 11 0 0 0.0 0.0

Naive 3 7 7 7 0 0 0.0 0.0

Naive 4 10 7 9 3 1 42.9 11.1

Naive 5 13 13 12 0 1 0.0 8.3

Naive 6 9 9 9 0 0 0.0 0.0

Immune 1 12 10 8 2 3 20.0 37.5

Immune 2 15 9 8 4 3 44.4 37.5

Immune 3 12 11 8 1 1 9.1 12.5

Immune 4 10 10 8 0 1 0.0 12.5

DbPA244 Naive 1 11 11 11 0 0 0.0 0.0

Naive 2 10 10 10 0 0 0.0 0.0

Naive 3 8 8 8 0 0 0.0 0.0

Naive 4 25 25 25 0 0 0.0 0.0

Naive 5 43 40 43 2 0 5.0 0.0

Immune 1 17 15 15 2 1 13.3 6.7

Immune 2 27 21 20 5 6 23.8 30.0

Immune 3 14 14 12 0 2 0.0 16.7

Immune 4 20 14 20 3 0 21.4 0.0

DbPB1-F262 Naive 1 13 13 13 0 0 0.0 0.0

Naive 2 13 12 13 1 0 8.3 0.0

Naive 3 9 9 9 0 0 0.0 0.0

Naive 4 41 41 41 0 0 0.0 0.0

Naive 5 21 21 21 0 0 0.0 0.0

Naive 6 24 22 23 2 1 9.1 4.4

Naive 7 16 16 16 0 0 0.0 0.0

Immune 1 9 9 8 0 1 0.0 12.5

Immune 3 11 11 11 0 0 0.0 0.0

Immune 4 20 15 17 1 2 6.7 11.8

Immune 5 16 15 16 1 0 6.7 0.0

This

study

Human CD8+

YFV

Immune 184 169 179 15 3 8.9 1.7

doi:10.1371/journal.pcbi.1005313.t001
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256 cells, we observed 169 unique CDR3α, with 15 (8.9%) of them shared between two or

more clones (Fig 1A). We examined the numbers of nucleotide insertions at the V-J junction

of the CDR3α and indeed saw significantly fewer in CDR3α sequences that were shared

between two or more clones (mean 2.04 insertions, n = 23) than in sequences that were unique

to a single clone (mean 3.62 insertions, n = 154; p< 0.005, Wilcoxon rank sum test; Fig 1B). In

summary, it appears that convergent TCRα recombination may derive at least in part from the

reduced junctional diversity of clones possessing CDR3 regions that are closer to germline.

Experimental overview and computational approach

Motivated by this promiscuity of TCRα and TCRβ pairings, we developed a semi-heuristic

procedure ALPHABETR (ALgorithm for Pairing alpHA and BEta T cell Receptors) that recovers

TCRαβ pairs from high-throughput sequencing data. Fig 2 shows the algorithm schematically.

The experimental procedure is to sequence the CDR3α and CDR3β regions from multiple

samples of T cells from the same parent population (Fig 2A–2C). The input to the algorithm is

a list of these unpaired sequences (Fig 2C), each associated with the sample it belonged to (e.g.

a given well in one or more 96-well plates). Fig 2C illustrates amino acid sequences as inputs,

but the algorithm can be applied equally well to data comprising nucleotide sequences and/or

the addition of V(D)J segment information. The number of cells in each well can be freely var-

ied, and indeed as we describe below, varying the sample size across the plate(s) helps to

increase both the number and accuracy of pairings. Given this information, ALPHABETR then

calculates association scores between every α and every β chain found in a randomly chosen

subsample of wells. This score is the sum of the number of co-occurrences of chains in each

well, each weighted inversely by the total number of chains recovered from that well (Fig 2D

(ii)). The weighting factor reflects the intuitive idea that our confidence that a co-occurring α
and β pair derive from the same clone decreases as the number of unique chains recovered

from that well increases. The algorithm then solves a linear sum assignment problem within

each well based on these plate-wide association scores to generate a list of candidate pairs of α
and β sequences within each well (Fig 2D(iii)). This is a list of αβ pairs in which each α is

paired with only one β, and vice versa, such that the sum of the association scores is maxi-

mised. After repeating this assignment for every well in the subset, we generate a matrix of

dimensions n ×m where n and m are the total numbers of unique α and β chains recovered

across the plate(s), respectively, and whose entries are the number of times that each candidate

pair αi βj (i 2 {1. . .n}, j 2 {1. . .m}) have been associated. Sharing of chains across clones is now

possible in this list. Those αβ pairs that appear in a number of wells greater than the mean of

the non-zero elements of this matrix are retained as a refined list of candidate pairs. The pair-

ing and filtering process is repeated on subsets of the data (Fig 2D), and a consensus list of

putative paired CDR3 sequences comprises those appearing in more than a threshold propor-

tion of these lists (Fig 2E). This pseudo-jacknife procedure acts to reduce the effect of very

common clones pushing up the threshold for inclusion in the filtered list and increases the effi-

ciency of pairing of rarer clones, while minimising the inclusion of incorrect αβ pairs. Steps

A-D are described in more detail in Methods.

The algorithm then uses a maximum likelihood approach to estimate the relative frequen-

cies of the clones associated with each candidate αβ pair (Fig 2F; Methods). These estimated

frequencies are then used with the patterns of co-occurrences of chains to distinguish between

β-sharing and dual TCRα clones (see Methods). This step also yields refined estimates of the

frequencies of dual TCRα clones. The output of the algorithm is a list of single or dual TCRα
clones together with estimates of their abundances within the parent population (Fig 2G).

Dealing with Complexity in TCRα and βChain Pairing
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Fig 1. Analysis of TCRα usage in human, YFV-specific peripheral-blood CD8+ T cells. (A) Observed

distribution of relative clone sizes within the population specific for the HLA-A02:01/LLWNGPMAV epitope.

Clones expressing a unique CDR3α are shown in grey; clones that share a CDR3α are coloured, and the

numbers in the coloured boxes represent the number of clones sharing each CDR3α. (B) The distributions of

CDR3α nucleotide insertion lengths in clones with shared CDR3α (left hand panel) and unique CDR3α (right

hand panel).

doi:10.1371/journal.pcbi.1005313.g001

Dealing with Complexity in TCRα and βChain Pairing
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Testing on synthetic datasets

To test the performance of ALPHABETR, we first used artificially generated datasets mimicking

the bulk sequencing of CDR3α and CDR3β regions from polyclonal T cell populations. We

assumed skewed distributions of clone sizes, with between 5 and 50 clones comprising the

most abundant 50% of the population and the remainder, approximately 2000 clones, forming

a flat tail at low frequency (see Methods). These distributions were chosen to reflect plausible

Fig 2. An overview of the implementation of ALPHABETR. (A) From the population of interest, multiple samples of 10–300 T cells are sorted into 96-well

plates. This design allows for a given clone to be sampled in multiple wells. (B) Multiplex RT-PCR is used to create cDNA libraries of CDR3α and CDR3β
from each well, and (C) high-throughput sequencing is used to recover the unpaired CDR3α and CDR3β sequences of the clones sampled in each well. (D)

(i) A random subset of the wells is chosen, (ii) association scores between every unique α and β found across the wells within this sample are calculated,

and (iii) the set of unique αβ pairs that maximises the sum of association scores is identified using the Hungarian algorithm [39]. Step (iii) is illustrated for a

particular set of CDR3α and CDR3β recovered from one well, as a matrix of association scores calculated across all wells in the subsample. (E) Steps D(i)-

(iii) are repeated to generate a consensus list of pairs, filtering out candidates that appear rarely across replicates. (F) The frequencies of each remaining

candidate αβ pair within the parent population are estimated using a maximum-likelihood approach, assuming only sharing (no dual TCR). Dual TCRα
clones α1 α2 β1 are then distinguished from clones apparently sharing a TCRβ chain (α1 β1 and α2 β1), by examining the patterns of co-occurrences of the

three chains, and the frequencies of these clones are re-calculated. (G) The output of the algorithm is a list of single and dual TCRα clones, each with their

estimated frequency within the parent population. See text and Methods for more details.

doi:10.1371/journal.pcbi.1005313.g002
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immunodominance hierarchies within T cell responses, motivated by analysis of epitope-spe-

cific cells recovered from human subjects immunised with live attenuated yellow fever virus

vaccine (our analysis and ref. [11]). We also analysed different sizes of parent populations (see

S1 Text, Section 2). Within these hierarchies we allowed the virtual clones to exhibit sharing

of CDR3α and CDR3β at ranges of frequencies consistent with published single-cell TCR

sequencing studies (Table 1) and our own data (Fig 1A). We also allowed between 10% and

30% of clones to express two productive TCRα chains and 6% of clones to express two produc-

tive TCRβ chains. The sequences in each ‘well’ were then generated by sampling between 10

and 300 T cells from the parent population with replacement. Selecting an optimal pattern of

sampling is an issue we return to below.

To assess the robustness of ALPHABETR, we simulated the properties of two forms of sequenc-

ing error: dropping of chains and productive in-frame sequencing errors. Dropping of chains

represents the failure of CDR3α and/or CDR3β regions to amplify or be detected, a process

which likely has both purely random and clone-specific elements [22]. To model this, each

clone was assigned a drop rate at random from a lognormal distribution with mean 0.15 and

standard deviation of 0.01, with the rate capped at 0.9. Each instance of a CDR3α and CDR3β
from that clone was then removed from the well with probability equal to the drop rate. To

model productive in-frame sequencing errors, every unique CDR3α and CDR3β was assigned

an error rate randomly drawn from a lognormal distribution with mean 0.02 and standard

deviation 0.005. Each instance of a sequence at the per-cell level was replaced at random by

one of three erroneous ‘daughter’ sequences, unique and specific to the parent sequence, with

probability equal to the sequence-specific in-frame error rate. Thus on average each CDR3α
and CDR3β generated mutant offspring sequences at the rate of 2% per instance in each cell in

the plate(s).

We then assigned identifiers to the remaining CDR3α and CDR3β sequences, associating

them with the sample’s location in a virtual 96-well plate. The input to the algorithm is the list

of these unpaired CDR3α and CDR3β sequences together with their well-identifiers. This pro-

cess was repeated for different sampling strategies (varying the sample sizes within each well,

and using one or five 96-well plates); different clonal size distributions; and different degrees

of CDR3α and CDR3β sharing. Under these ranges of conditions, the algorithm was tested for

the following:

1. Overall depth, the number of αβ pairs that were correctly identified, as a proportion of the

total number in the parent population (here a dual TCRα clone αj αk β is treated as two

clones αj β and αk β—see points 4 and 5)

2. Depth of top clones, the proportion of those clones that comprise 50% of the population

after ranking by abundance that were correctly identified

3. False pairing rate, the proportion of identified αβ pairs that were incorrect

4. Adjusted dual depth, a measure of how well dual TCRα clones can be identified from candi-

date pairs:

¼
# correctly identified dual TCRa clones

# true dual TCRa clones whose two a chains are in the list of candidate ab pairs

5. False dual rate, the proportion of candidate dual TCRα clones that were incorrectly

identified.

Dealing with Complexity in TCRα and βChain Pairing
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ALPHABETR does not attempt to identify dual TCRβ expressing cells because dealing with this

relatively infrequent phenomenon together with dual TCRα chains and sharing of both TCRα
and TCRβ chains across clones is extremely challenging algorithmically. However, we include

dual TCRβ cells in our simulated data at the level of 6% to establish their impact on the algo-

rithm’s performance.

A mixed sampling strategy with stringent co-incidence criteria strikes a balance of

depth and accuracy of pairing. Fig 3 shows the depth and accuracy of pairing using simu-

lated data. These were generated by sampling from parent populations of 2100 clonotypes

exhibiting sharing of both TCRα and TCRβ chains, with drop rates and in-frame error rates of

the CDR3α and CDR3β sequences drawn from lognormal distributions as described above. To

test the algorithm robustly, we assumed 30% of clones expressed two TCRα, a prevalence at

the upper limit of estimates from the literature [24]. We tested the ability of the algorithm to

associate CDR3α and CDR3β sequences for different distributions of clonal frequencies and

for different sampling strategies, using fixed numbers of cells per well (10, 25, 50, 100) or two

mixed strategies (Table 2). We also show results for different degrees of consensus required for

pair selection. For each set of conditions, performance metrics were computed by averaging

the results of 100 simulated experiments.

With only a single plate, the most abundant 50% of clones can be recovered with depths

between 62% and 89% with a moderate threshold of 0.6 and the mixed sampling strategies,

improving with less skewed distributions (Fig 3A). Coverage of rare clones (Fig 3B, left panels)

is much more limited, particularly—and unsurprisingly—for sparse sampling strategies, but

improves with a more lenient consensus threshold of 0.3. Using five plates boosts the recovery

of rare clones considerably (Fig 3B, right panels), providing up to 61% depth with a threshold

of 0.6 and 70% with a threshold of 0.3. As a result, for all sampling strategies, the effect of

increasing the number of plates—and hence total sample size—is to increase overall depth (Fig

3C), almost entirely through greater recovery of rarer clones.

Increasing the number of plates also significantly reduces the false pairing rate (Fig 3D),

which can be as low as 3.1% for 5 plates and a stringent threshold of 0.9 (Fig 3D, lower right

panel). In general, and as expected, increasing the stringency threshold reduces false pairing

rates. However, the stringency of the threshold can be relaxed if there is no significant presence

of dual TCRβ clones in the T cell population of interest (S1 Text, Section 2 and Fig F).

Increasing the stringency (threshold) of the pseudo-jacknife procedure—that is, requiring a

high frequency of occurrence of candidate pairs across subsets of the data—results in a lower

false pairing rate at the cost of lower depth, largely for rarer clones (Fig 3C and 3D). This is

because rarer clones will be excluded from the jacknife replicates more often than common

ones; as the stringency of pair selection is increased, rare clones will therefore tend to be fil-

tered out.

In summary, mixed sampling strategies with moderate to high acceptance thresholds yield

the lowest false pairing rates (Fig 3D) while maintaining good depth of recovery of rare clones

(Fig 3B). The high-mixed strategy requires a larger overall sample size and thus achieves

greater depths, particularly of rare clones.

Sampling strategies for epitope-specific T cells may be constrained by the ability to

recover sufficient cells. In practice, the availability of cells may place constraints on the sam-

pling strategy. For example, with five plates the high- and low-mixed strategies require a total

of 64,000 and 33,000 cells respectively. A typical sample of four tubes (approximately 30ml) of

human blood yields roughly 3 × 107 PBMCs, of which roughly half are αβ T cells. With such a

sample, numbers of T cells specific for immunodominant epitopes of highly immunogenic

infections such as Epstein-Barr virus and cytomegalovirus [40–43], numbers are unlikely to be

limiting. A conservative estimate is that to acquire 100,000 cells with which to implement the

Dealing with Complexity in TCRα and βChain Pairing
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Fig 3. Depth and accuracy of αβ pairings generated by ALPHABETR, for a range of overall sample sizes, sampling

strategies and underlying distributions of clone sizes. Simulations were performed using in silico data sets of one or five

plates using six different sampling strategies (see text) and different degrees of skewness in clonal frequencies, as indicated

by the number of clones comprising 50% of the population when ranked by frequency. ‘Threshold’ refers to the stringency of

pair association, T (see Methods). (A) The proportion of the most abundant 50% of clones that were identified. (B) The

proportion of the least abundant 50% of clones that were identified. (C) The overall depth was influenced strongly by the tail

depth, indicating that data from one plate may be sufficient for recovering the most common clones. (D) The rate at which

CDR3α and CDR3β sequences were incorrectly paired (false positive rate, FPR).

doi:10.1371/journal.pcbi.1005313.g003
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high-mixed sampling strategy on five 96-well plates requires epitope-specific frequencies in

excess of 1% of αβ T cells, or 0.5% of PBMC. Frequencies below this may dictate fewer plates

and/or a sparser sampling strategy (S1 Text, Section 2).

Exploring different degrees of TCRα- and TCRβ-sharing, richness in clonal structure,

and prevalence of dual TCRβ. Our simulation approach allowed us to explore other plausi-

ble datasets. We simulated populations exhibiting sharing at the high and low ends of the levels

quoted in the literature, as well as different levels of clonal diversity (S1 Text, Section 2). For

mixed sampling strategies with five plates, higher sharing levels increased the false pairing rate

by at most 4% in absolute terms, although the magnitude of this effect decreased as the strin-

gency of pair selection was increased (S1 Text, Fig B). Lower levels of sharing decreased the

false pairing rate by approximately 1% in absolute terms (S1 Text, Fig C). In both cases, the

depths of recovery were very similar to those presented in Fig 3.

Simulations of populations with higher diversity (3000 clones) show similar false pairing

rates, similar top depths, and slightly lower tail depths to those for 2000 clones, while simu-

lations of populations with 500 clones show slightly lower top depths, higher tail depths,

and higher false pairing rates (S1 Text, Fig D and E). Populations comprising fewer clones

overall will by definition display higher relative abundances, and as we discuss below, in

such situations frequency-based pairing approaches will benefit from sparser sampling

strategies.

Although ALPHABETR does not identify dual TCRβ clones, we performed simulations to com-

pare how the presence of such clones in the parent population affects the ability of ALPHABETR

to associate TCRα and TCRβ correctly (S1 Text, Fig F). The presence of dual TCRβ clones at a

frequency of 6% increases the false pairing rate by approximately 3% in absolute terms, while

not affecting the top and tail depths. Since significant levels of dual TCRβ clones have been

shown in only a small number of studies sequencing antigen-specific T cell populations [25,

26], we believe this represents an upper bound on the effect of dual TCRβ clones on the perfor-

mance of ALPHABETR.

Precise estimation of frequencies of common clones benefits from sparse or mixed sam-

pling strategies. The probability that all chains associated with a clone co-appear in a given

number of wells can be calculated straightforwardly from the binomial distribution. We can

then use maximum likelihood to estimate this clone’s abundance within the parent population

(see Methods).

We used this procedure to assess the ability of ALPHABETR to estimate clonal abundances

over a range of clonal size distributions and sampling strategies (Fig 4). We show results only

for the most abundant clones making up 50% of the population. The left and right panels of

Fig 4A show typical sets of abundance estimates for populations with moderately and highly

skewed clonal distributions, with 25 and 5 clones respectively making up the top 50% of clones

by size. We tested the method of construction of point estimates and confidence intervals

using simulated data and confirmed that close to 95% of such intervals contained the true fre-

quency (results not shown).

Table 2. The mixed sampling strategies used in the simulations.

Sampling Strategy Number of plates Number of wells × number of cells per well

High-Mixed 1 26 × 20 13 × 50 19 × 100 19 × 200 19 × 300

5 128 × 20 64 × 50 96 × 100 96 × 200 96 × 300

Low-Mixed 1 26 × 15 6 × 20 13 × 30 19 × 50 19 × 100 19 × 150

5 96 × 15 32 × 20 64 × 30 96 × 50 96 × 100 96 × 150

doi:10.1371/journal.pcbi.1005313.t002
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Fig 4B summarises the precision of the abundance estimation for a variety of sampling

strategies and skewnesses. We quote an approximate coefficient of variation (CV) ŝ=f̂ , where

ŝ is estimated using a quadratic approximation to the 95% confidence interval, 3.92ŝ, and f̂ is

the estimated abundance. The procedure yielded CVs in the range 0.13–0.41 for one plate and

0.07–0.20 for five plates (Fig 4B).

Intuitively, the impact of skewness arises because we maximise the information regarding

a given clone’s abundance when sample sizes are such that the clone appears in an intermedi-

ate proportion of wells. Sampling low numbers of cells is therefore optimal for determining

the abundance of highly immunodominant clones, and larger numbers are optimal for deter-

mining the abundance of rare clones. For the clone distributions considered here, for com-

mon clones the sparsest sampling strategy (uniformly 10 cells/well) gives the greatest

precision. In general, however a mixed sampling strategy strikes a balance between precision

over a wide range of abundances (Fig 4B, bottom row in each panel), false pairing rates, and

depth.

Fig 4. Assessment of the precision of clonal frequency estimation. (A) Point estimates of clonal abundances generated

by ALPHABETR, derived from representative simulations using five plates and distributions with 25 and 5 clones in the top 50%

(left and right panels respectively). (B) The coefficient of variation (precision) of abundance estimates for a range of

skewnesses of clone sizes and sampling strategies. Values quoted are averages over 100 simulations.

doi:10.1371/journal.pcbi.1005313.g004

Dealing with Complexity in TCRα and βChain Pairing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005313 January 19, 2017 12 / 25



The clonal abundances shown in Fig 4A depend on prior knowledge or estimation of the

mean drop rate, or the mean probability that any CDR3α or CDR3β of a clone will fail to be

sequenced (see Methods). Neglecting this error rate yields lower bounds on clonal abundances

(S1 Text, Section 3).

Efficient discrimination of dual TCRα and TCRβ-sharing clones requires a mixed sam-

pling strategy and distinct methods for common and rare clones. The final step in the

algorithm is to decide whether each candidate pair of clones that share a β chain (e.g. α1β and

α2β) are indeed two clones or derive from one clone with a dual TCRα (α1α2β). To do this, we

exploit the fact that the patterns of co-occurences of all three chains will be different under the

two hypotheses. Initially, we use the estimated frequencies of a putative β-sharing clone pair α1

β and α2 β to calculate the expected number of wells in which all three chains should co-occur.

Essentially, the three chains will tend to co-occur more frequently if they derive from a dual

TCRα clone than if they derive from two β-sharing clones. We construct the ratio of the

expected to the observed numbers of three-way co-occurrences for each β-sharing pair and

perform k-means clustering on these ratios. The cluster of higher values forms the first list of

candidate dual TCRα clones. See Methods for details and S1 Text, Section 5 for a visual exam-

ple of the clustering of clones into two groups.

However, performing k-means clustering on only the numbers of three-way occurrences is

inefficient at discriminating β-sharing and dual TCRα clones that are relatively abundant

because the expected frequencies of co-occurrences become indistinguishable, particularly for

rich sampling strategies in which the three chains co-occur in many wells. We therefore added

a second step which utilises more information from the plates, calculating the likelihoods of all

three- and two-way concurrences of α1, α2 and β under both hypotheses. Exact computation of

these likelihoods is only practical for the low-occupancy wells (less than 50 cells/well), which

conveniently are also the wells that contain maximal information regarding common clones.

As a result, this second approach can be performed only when using sparse sampling strategies

or the low-occupancy wells used in the mixed sampling strategies. We determined empirically

that differences in the log-likelihoods of more than 10 distinguish the β-sharing and dual

TCRα hypotheses.

The ability of these procedures to identify dual TCRα clones depends on ALPHABETR associat-

ing both TCRα chains with the TCRβ chains of these clones (e.g. associating α1 and α2 with β
for a dual α1α2β clone). We therefore assess the efficiency of the discrimination using the

‘adjusted dual depth’—the number of correctly identified dual TCRα clones divided by the

number of true dual TCRα clones whose constituent chains appeared in the candidate list of

αβ pairs (that is, those dual TCRα clones α1α2β for which α1 and α2 were both paired with β in

the first stage of the algorithm). We also calculate the false dual rate (FDR)—the proportion of

the putative dual TCRα clones that were incorrectly identified.

Fig 5 summarises the ability of the algorithm to distinguish TCRβ-sharing and dual TCRα
clones. Common clones are identified through the three-way likelihood approach, and mixed

sampling strategies give the best results in this case, with adjusted depths of up to 79% for less

skewed distributions (Fig 5A). The likelihood approach still performs relatively poorly with

very highly skewed populations, distinguishing dual TCRα from β-sharers correctly at most

34% of the time for population with 5 clones making up the top 50% of the population (Fig

5A). Under these circumstances, the statistics of co-incidence of the three chains are very simi-

lar under the two hypotheses of dual TCRα or TCRβ-sharing clones. In contrast, the k-means

procedure achieves adjusted depths of 93–99% for rare clones when using 5 plates and the

high-mixed strategy (Fig 5B). Averaging over all clones, this strategy gives false dual rates of

between 10–13% (Fig 5C).
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Extensive single-cell sequencing is required to achieve equivalent overall depth to

ALPHABETR. A key issue is whether implementing ALPHABETR improves upon single-cell

approaches. One way to assess this would be to take a sample of antigen-specific cells, perform

single-cell sequencing on a subset of these cells, and apply ALPHABETR to the remainder to com-

pare their performance on the same set of parent clones. An alternative, which we perform

here, is to simulate both scenarios. The advantages of the simulation approach are that it allows

us to (i) triangulate both methods with the gold-standard of the true sequences, which are not

known in practical settings due to dropping of chains and in-frame sequencing errors, and (ii)

explore levels of single-cell sequencing that are currently prohibitively costly.

We simulated the sequencing of between 96 and 9600 single cells sampled from the same

synthetic T cell populations used for evaluating ALPHABETR, and using the same model of

sequencing errors. Fig 6 compares the performance of the two methods for a population of

2100 clones, with 25 clones making up the top 50% by abundance. ALPHABETR was implemented

with the high-mixed sampling strategy of five plates and with a stringency threshold T = 0.6.

We show performance comparisons using other distributions of clone sizes in S1 Text, Section

7. Under the conditions used for Fig 6, almost double the number of single-cell sequencing

runs was required to achieve the same top depth yielded by ALPHABETR with five plates, and

more than 100 plates of single cells are required to approach ALPHABETR’s level of recovery of

Fig 5. Discriminating between dual TCRα and β-sharing clones. We assess the degree of recovery of dual TCRα clones with

the ‘adjusted depth,’ which is the proportion of dual TCRα clones correctly assigned out of the list of candidate dual TCRα and

TCRβ-sharing clones. Panel (A) shows the adjusted depth of common clones; panel (B), rare clones. For common clones, we

used likelihood-based discrimination; for rare clones we used a clustering approach. Both procedures are detailed in Methods.

Panel (C) shows the false dual rate averaged over all clones—the proportion of identified dual TCRα that are incorrect. All results

are shown for a threshold of 0.3 with 30% prevalence of dual TCRα and are averages over 100 simulations.

doi:10.1371/journal.pcbi.1005313.g005
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rare clones. With the same clone size distribution, even a single plate analysed with ALPHABETR

yields top depths from 78% to 92%, depending on the threshold parameter used (Fig 3A),

whereas 96 single cells yield a top depth of 60% (Fig 6A). Single-cell sequencing will exhibit a

false positive rate that is approximately twice the mean of the in-frame error rate, or 4% in our

simulations, an accuracy that is comparable to that of ALPHABETR at its most stringent.

Applying ALPHABETR to real sequencing data. Using simulated data allowed us to assess

the performance of ALPHABETR directly using the gold standard of known TCRαβ sequences

and under a range of plausible experimental conditions. However, to illustrate a real-world

application, we applied ALPHABETR to a published dataset derived from the TCRs of tumour-

infiltrating lymphocytes (TILs) from human subjects [22]. The study also used a frequency-

based method to pair the TCRα and TCRβ obtained by sampling TILs from nine different

tumours into the wells of one 96-well plate and sequencing the CDR3α and CDR3β chains

found in each. One tumour (Breast 1) yielded only 7 pairs, and we excluded it from the

analysis. We applied ALPHABETR to the chains from each of the remaining 8 tumours in turn. We

then compared the pairs determined by ALPHABETR to those identified explicitly by ref. [22]

(Table 3; see Section 8 of S1 Text for details). The true TCR clonotypes are unknown and so our

aim was to measure degrees of concordance and conflict between the two methods. In 6 out of

8 tumours, ALPHABETR recovered fewer clones; however we found average concordance rates of

77%, defined as the proportion of the pairs identified by ALPHABETR that were also identified in

ref. [22]. Perhaps more strikingly, we also found a very low incidence of conflicting pairs (mean

2% across tumours, as a proportion of all pairs identified by ALPHABETR). Conflicts were defined

as those clones determined by the two methods that have only one chain in common.

To compare the abilities of the two algorithms to identify rare or common clones, we strati-

fied the identified αβ chain pairs by the frequency with which they co-appeared in wells. With

Fig 6. Comparison of single-cell approaches and ALPHABETR. Single-cell sequencing was simulated by sampling from

the same populations used to evaluate ALPHABETR and including both the dropping of chains and in-frame sequencing

errors. In these simulations, the parent population contains 2100 clones with 25 clones representing the top 50% of the

clones ranked by abundance. The results were evaluated for (A) top depth, (B) tail depth, and (C) overall depth. The

dashed lines show the mean performance of ALPHABETR applied to five plates using the high-mixed sampling strategy and

a threshold of 0.6 (values taken from Fig 3). The single-cell sequencing results are averages of 200 simulations.

doi:10.1371/journal.pcbi.1005313.g006
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stringency thresholds greater than 0.7, we find that with a single 96-well plate and a sampling

strategy optimised for use by the algorithm described in ref. [22], ALPHABETR is less efficient at

identifying rare clones but identifies clones with moderate to high abundances—for which the

TCRα and TCRβ chains co-appear in more than a quarter of the wells—more efficiently (Fig 7;

see Fig J in S1 Text for a breakdown by tumour). The clones identified by ALPHABETR alone

exhibit moderate levels of sharing (TCRα-sharing, mean 16%, range 0–60%; TCRβ-sharing,

mean 13%, range 4–31%). Of the sharers, an average of 76% share a chain with a clone that

was identified by both methods.

Table 3. Recovery of tumour-infiltrating lymphocyte TCR pairs using ALPHABETR and data from ref. [22]. The data were processed by associating chains

with their tumour sources through exact matching of the CDR3 nucleotide sequences from the mixed tumour samples to CDR3 libraries obtained from blood

samples from each patient. The data were then simplified by selecting only those chains associated with one tumour. We then used ALPHABETR to identify

TCRαβ pairs. The numbers of pairs unambiguously identified in ref. [22] were determined by directly matching nucleotide sequences to the CDR3 libraries,

and only those pairs for which both chains could be directly associated with the corresponding tumour sample were included in the analysis.

Tumour

Sample

Number of pairs

identified by

ALPHABETR

Number of pairs

unambiguously identified

by ref. [22]

Number of

identical

identified pairs

Percentage of ALPHABETR

pairs agreeing with ref.

[22]

Number of

conflicting pairs

Number of novel

pairs from

ALPHABETR

Breast 2 98 85 74 75.5% 0 24

Breast 3 109 129 94 86.2% 1 14

Breast 4 50 85 26 52.0% 1 23

Kidney 1 74 112 58 78.4% 3 13

Kidney 2 145 286 126 86.9% 5 5

Kidney 3 213 282 166 77.9% 8 39

Kidney 4 157 176 131 83.4% 1 25

Lung 1 173 163 124 71.7% 1 48

doi:10.1371/journal.pcbi.1005313.t003

Fig 7. Comparison of well occupancy patterns of the clones identified by ALPHABETR and in ref. [22]. For

each method, TCRαβ pairs identified for all tumour samples were combined to estimate the distribution of the

number of wells in which the chains co-appeared. The differences between these distributions indicate the

relative efficiency with which the two algorithms identify clones, as a function of their abundance.

doi:10.1371/journal.pcbi.1005313.g007

Dealing with Complexity in TCRα and βChain Pairing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005313 January 19, 2017 16 / 25



Discussion

Applying high throughput single-cell sequencing technologies to very large numbers of T cells

is becoming increasingly within reach, but smaller-scale solutions using frequency-based sam-

pling potentially remain far more economical. While another implementation of this strategy

exists [22], the promiscuous nature of TCRα and TCRβ usage within epitope-specific popula-

tions presents multiple challenges to frequency-based methods that have not been addressed

to date, to our knowledge. The combination of ALPHABETR and relatively low-cost sequencing

strategies addresses these issues, being capable of handling a wide range of clonal structures—

skewed abundances, dual TCRα, sharing of both TCRα and TCRβ between clones—as well as

providing estimates of clonal abundances. The algorithm is available as a documented package

in R [44] from http://github.com/edwardslee/alphabetr.

Single-cell technologies clearly allow the identification of large clonal expansions within

populations. Our algorithm offers the potential to both identify these common clones as well

as achieve depths of coverage of rarer clones that far exceed those currently possible with rea-

sonable levels of single-cell sequencing. Given the correlation between diversity of immune

responses and protection, this characterisation of the full diversity of T cell responses may be a

better prognostic indicator than simply identifying common clones. Further, establishing the

levels of TCRα- and TCRβ-sharing within populations sheds light on mechanisms of antigen

recognition, repertoire diversity, and the efficiency of recruitment into immune responses.

Our analysis demonstrates that the most difficult of these challenges is to reliably distin-

guish between abundant TCRβ-sharing or dual TCRα clones within highly skewed populations

because the expected patterns of co-occurrences of the three chains under the two alternatives

are very similar when sequencing samples of a few tens of cells per well; all three chains typi-

cally appear in nearly all the wells. The difference in patterns can be magnified to an extent by

sampling very few numbers of cells per well, but this solution comes with the cost of a reduc-

tion in total sample size, sacrificing depth of recovery of rarer clones. One might suppose that

the high prevalence of dual TCRα clones in the naive T cell pool favours that scenario over

TCRβ-sharing. However, our immunological intuition here may be misleading. Naive T cell

precursor numbers may be in the range 10–1000 cells in mice [45–47], which we estimate is

comparable to or larger than the size of TCRβ-sharing populations exported from the thymus.

If the sharing of a TCRβ between clones confers overlap in their TCR specificities, and if

recruitment into immune responses is efficient, we might expect to see significant levels of

TCRβ-sharing within expanded, epitope-specific populations. Indeed, as shown in Table 1,

TCRβ-sharing has been seen to reach levels of up to 25% in responses to influenza epitopes in

naive mice [13, 14] and almost 40% in secondary responses [14]. It also occurred at a level of

2% in our analysis of TCRα and TCRβ usage among CD8+ cells specific for a YFV epitope in a

human volunteer. The TCRβ-sharing/dual TCRα ambiguity is therefore a robust feature of

epitope-specific responses, and is challenging to unravel fully with statistical approaches.

There are at least three ways to address this problem. One solution is to pair ALPHABETR with,

for example, one plate of single-cell samples. Since the ambiguity is only manifest strongly

with common clones, this limited amount of extra information may serve to resolve the issue.

A second approach is to exploit the fact that 30%-40% of clones will yield both an in-frame

and an out-of-frame CDR3α sequence [13]. Currently, out-of-frame sequences are not utilised

by ALPHABETR; one could extend it to include them and associate clones with their out-of-frame

sequences. Clones possessing one in-frame and one out-of-frame CDR3α could then be

excluded from the list of dual TCRα candidates, which would assist β-sharing/dual TCRα dis-

crimination. A third possibility is to extend the algorithm to exploit the sequence information

itself. If dealing with epitope-specific populations, we might expect more sequence similarity
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in the CDR3α in two β-sharing clones than in a dual TCRα case. In the latter, the two CDR3α
sequences are likely unrelated because presumably only one of the TCRα chains is involved in

antigen recognition and they rearrange independently.

In practice, one needs a strategy for implementing ALPHABETR on a given sample of T cells

with no a priori knowledge of the number or size distribution of clones. Assuming the number

of cells is not limiting, we advocate a high-mixed sampling approach that involves sampling

20–300 cells per well and deals efficiently with a wide range of clonal abundances. When

ALPHABETR is implemented as described here, a standard desktop computer with 16 Gb of RAM

is able to handle samples from parent distributions of up to 4000 clones. When sampling popu-

lations with much fewer clones, lower numbers of cells/well are needed to avoid high false

pairing rates. Assuming cell numbers are not limiting, bulk sequencing of the β chain could be

used to gain a rough estimate of the richness of the parent distribution and so indicate when a

sparse sampling strategy would be beneficial. In situations where cell numbers are limiting,

one approach could be to begin with a single plate of 10 cells/well to obtain a rough lower

bound on the richness of the distribution and apply a low or high mixed sampling strategy

with the remaining cells from the sample, as appropriate. The single plate of 10 cells/well is

then still usable for the pairing process and for frequency estimation.

While we have framed our analysis around the sequencing of epitope-specific populations,

ALPHABETR can equally well be applied more generally to T cell populations of restricted and

potentially skewed polyclonality, such as tumour infiltrating lymphocytes or T cells extracted

from sites of autoimmune responses. It therefore has immediate applications in cancer immu-

notherapy and other personalised immunomodulatory treatments. Until single-cell sequenc-

ing becomes more affordable, frequency-based pairing methods provide a rapid and

economical means of characterising the clonal structure of T cell populations.

Methods

Ethics statement

All experimental procedures were approved by the Regional Ethical Review Board in Stock-

holm, Sweden: 2008/1881-31/4, 2013/216-32, and 2014/1890-32.

Algorithm for TCRαβ pairing

Our approach exploits the fact that TCRα and TCRβ sequences (referred to as α and β chains)

will tend to appear together in wells. Let Nα be the total number of unique α chains, Nβ be the

total number of unique β chains, and the α and β chains found in the data set be labelled from

1 to Nα and from 1 to Nβ respectively. The degree of association between chains αi and βj is

measured by a score Sij,

Sij ¼
XW

k¼1

d
k
ij

ck
a

þ
d
k
ij

ckb

 !

; ð1Þ

where the wells in the data are labelled from 1, 2, . . ., W, the numbers of distinct α and β chains

in well k are ck
a

and ck
b

respectively, and d
k
ij is 1 if both αi and βj are found in well k and 0 other-

wise. Eq 1 sums the co-appearances in wells, each weighted inversely by the total number of α
and β chains recovered from the well. The scaling accounts for the fact that the larger the num-

ber of unique chains in a well, the lower our confidence that a co-occurring α and β pair derive

from the same clone.

The algorithm begins by sampling a proportion pJ of the wells in the data without replace-

ment. For all analyses presented here, we used pJ = 0.75, which provided a good balance between
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depth and false pairing rate. The algorithm computes the association scores between every

unique α and β chain using Eq 1 based on the sampled subset of wells. Let Ak denote the set of A
distinct α chains found in well k, that is Ak ¼ famk

1
; amk

2
; . . . ; amk

A
g, where the mk

i 2 f1; . . . ;Nag

are integers that denote the labels of the A TCRα chains found in well k. Similarly, let Bk

denote the set of B distinct β chains found in well k, that is Bk ¼ fbnk
1
; bnk

2
; . . . ; bnkB

g, where the

nk
i 2 f1; . . . ;Nbg subscripts denote the labels of the B TCRβ chains found in well k. The algo-

rithm solves the following linear assignment problem using the Hungarian algorithm [39]:

maximize
X

ai2Ak

X

bj2Bk

Sijxij

subject to
X

ai2Ak

xij ¼ 1 forbj 2 Bk

X

bj2Bk

xij ¼ 1 for ai 2 Ak

xij � 0; ai 2 Bk; bj 2 Ak;

ð2Þ

where xij = 1 indicates that αi and βj are assigned as a candidate TCR pair and xij = 0 otherwise.

A pair αiβj is defined as an assigned pair of well k if xij = 1 for Eq 2 associated with well k. The

number of assignments made for every pair of α and β is recorded as Xij, i.e. Xij equals the num-

ber of times xij = 1 from the solutions of Eq 2 for each well in the subset. We then calculate a fil-

ter level F that determines the minimum number of assignments required for an assigned

candidate pair of α and β chains to be determined as a true TCR pair. The filter-level F is chosen

to be the mean of the elements of the set {N(i, j) : N(i, j)> 0, i 2 1, 2, . . ., Nα, j 2 1, 2, . . ., Nβ},
where N(i, j) is the number of times αi βj are assigned to each other, The output of this algorithm

is then a list of candidate αβ pairs that may be associated with T cell clone. At this stage, dual

TCRα cells are not identified; thus a clone α1α2βmay be represented in this list as one or both of

α1β and α2β.

The procedure above is performed Nr times on random subsets of the wells (all simulations

in this paper use Nr = 100), and each replicate yields a list of candidate αβ pairs. We then per-

form a filtering or consensus step in which only αβ pairings that appear in more than a thresh-

old proportion T of these lists are retained as candidates. The simulations we present in the

text explore thresholds of T = 0.3, 0.6, and 0.9.

Maximum-likelihood estimation of clonal frequencies

We use maximum likelihood to infer clonal frequencies based on the number of wells in

which a pair of α and β chains both appear. Let N = {n1, n2, . . ., ns} be the set of s distinct sam-

ple sizes (ni cells per well) in all of the wells and W = {w1, w2, . . ., ws} where wi represents the

number of wells with samples of size ni cells. Let cij denote the clone with chains αi and βj and

let klij denote the number of wells of sample size nl cells per well that contain chains αi and βj.

The likelihood of the observations kð:Þij , given that the clone cij is present at frequency fij within

the population, is

Lðobserved incidence of clone cij j fijÞ ¼
Ys

l¼1

wl

klij

 !

1 � qlð Þ
klij q

wl � klij
l ð3Þ
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where ql is the probability of clone cij not being found in well l and is given by

ql ¼ 1 � fij
� �nl

þ
Xnl

m¼1

2�m � �2mð Þ
nl

m

 !

f mij 1 � fij
� �nl � m

: ð4Þ

Here � is the average probability that a CDR3 sequence in a cell fails to be amplified and

sequenced. For every clone cij, the algorithm maximises Eq 3 to estimate its frequency fij, and

95% confidence intervals are defined by the frequencies yielding logL ¼ logLmax � 1:96.

Details of the derivation of Eqs 3 and 4 are given in Section 4 of S1 Text.

This procedure is applied to every αβ pair identified in the first phase of the algorithm.

These estimated frequencies are used to distinguish TCRβ-sharing clone pairs from single

TCR clones expressing two TCRα. This procedure is described in the following section. When

a clone with two TCRα is identified, we revise the frequency estimate as follows. Let c(ij)t

denote a clone with chains αi, αj, and βt, and kl
ðijÞt denote the number of wells of size nl that con-

tain chains αi, αj, and βt. The likelihood of the observations given that clone c(ij)t has a fre-

quency f(ij)t 2 (0, 1] is

Lðobserved incidence of clone cðijÞt j fðijÞtÞ ¼
Ys

l¼1

wl

kl
ðijÞt

 !

1 � qlð Þ
kl
ðijÞt q

wl � klðijÞt
l ð5Þ

where ql is the probability of clone c(ij)t not being found in well l and is given by

ql ¼ 1 � fðijÞt
� �nl

þ
Xnl

m¼1

3�m � 3�2m þ �3mð Þ
nl

m

 !

f m
ðijÞt 1 � fðijÞt
� �nl � m

ð6Þ

where � is the mean drop rate as described above. Eq 5 is then maximised to estimate f(ij)t, and

again logL ¼ logLmax � 1:96 is used to calculate 95% confidence intervals.

Discriminating between dual TCRα and shared TCRα chains

If the algorithm yields two clones that appear to share a TCRβ (α1β and α2β), we must decide

whether this is indeed a β-sharing pair of clones or that the association derives from one dual

TCRα clone (α1α2β). To do this, we use the likelihoods of observed co-occurrences of the three

chains to assess the relative support for the two alternatives.

Let cij = (αi, βj) and ckj = (αk, βj) be two putative clones with a common TCRβ chain βj. We

count the number of wells containing all three-way, two-way, and single appearances of the

three chains. We then calculate the ‘full’ likelihoods of this pattern of occurrences under two

hypotheses: (A) that cij and ckj are indeed two β-sharing clones, with frequencies fij and fkj esti-

mated using Eq 3; and (B) that the chains derive from one dual TCRα clone c(ij)k present at fre-

quency f(ij)k, estimated using Eq 5. If the difference logLB � logLA � 10, we assume the three

chains derive from dual TCRα clone.

The calculation of these full likelihoods is in Section 6 of S1 Text but is computationally

tractable only for wells with less than 50 cells due to the need to calculate large multinomial

coefficients. The full-likelihood method is therefore only appropriate for estimating frequen-

cies of those relatively abundant clones that are commonly found in the wells with smaller

sample sizes. We use a more restricted likelihood-based approach for discriminating β-sharing

and dual TCRα among rare clones, which tend to appear only in larger samples. Let clones

cij = (αi, βj) and ckj = (αk, βj) be two clones with a common beta chain βj, and let fij and fkj be

their estimated frequencies. The algorithm calculates the ratio rjik of the observed to the

expected number of wells in which all three chains from the putative β-sharing pair cij and ckj
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co-appear, under the hypothesis that they are indeed two clones and not a dual TCRα:

R ¼ rjik ¼
A cij; ckj
� �

E cij; ckj
� � : i 6¼ k; j 2 1; 2; . . . ;Nb

8
<

:

9
=

;
ð7Þ

where A(cij, ckj) is the number of times clones cij and ckj are observed to appear in the same well

and Nβ is the number of distinct β chains, and the expected number is

E cij; ckj
� �

¼
Xs

l¼1

wl 1 � 1 � fij
� �nl

� 1 � fkj
� �nl

þ 1 � fij � fkj
� �nl� �

ð8Þ

(see S1 Text, Section 5 for a derivation and discussion of this equation). We then partition the

set of ratios R into two groups C1 and C2 using k-means clustering, where the mean of ratios of

C1 is greater than the mean of the ratios of C2 (see S1 Text, Fig G for an example). The clones

associated with the ratios in C1 are chosen as dual TCR clones, such that if rjik 2 C1, then clones

cij and ckj are removed from the list of TCR pairs and replaced with a dual TCRα clone αi αk βj.

Creation of in silico data sets for validation

We created synthetic data sets reflecting the properties of antigen-specific T cell populations

and sequencing errors. The data sets were sampled from a population of T cell clones where a

significant proportion of α and β chains are shared and 10%-30% of clones have dual TCRα
chains (e.g. three clones can have the following chains: αi βk, αj βk, and αj αh βl). The sharing of

β chains was set such that 85.9% of β chains were uniquely from one clone, 7.6% shared by two

clones, 3.7% shared by three clones, 1.9% by four clones, and 0.9% by five clones. The sharing

of α chains was set such that 81.6% of α chains were uniquely from one clone, 8.5% shared by

two clones, 2.1% shared by three clones, 0.7% shared by four clones, 3.3% shared by five clones,

0.5% shared by six clones, and 3.3% shared by seven clones. We determined these levels of

sharing by averaging those from the published single-cell data shown in Table 1.

The frequencies of the N clones were drawn from a skewed distribution in which ns clones

comprise a proportion ps of the population and the other N − ns clones evenly represent 1 − ps
of the population. The clone ranked ith in abundance then has frequency fi where

fi ¼
f1 þ r i � 1ð Þ if i ¼ 1; 2; . . . ; ns

ps=ðN � nsÞ if i ¼ ns þ 1; ns þ 2; . . . ; N
ð9Þ

(

where the frequency of the largest clone f1 and the step size r are determined by solving the

equations

Xns

i¼1

fi ¼ ps; fns ¼ 1:1�
ps

N � ns
: ð10Þ

The frequency of the smallest clone in the top 50%, fns
, is set to be 10% higher than the fre-

quency of the clones in the tail. All simulations were based on ps = 0.5. We varied the number

of top clones ns between 5 to 50 to test how skewness in the antigen-specific T cell population

impacts the performance of the algorithm.

In order to make the simulated data more realistic, experimental noise was included in the

forms of ‘dropped’ chain errors and in-frame sequencing errors. Dropped chains are CDR3

sequences that fail to be sequenced due to PCR errors and/or sorting problems, and studies

utilising both single-cell and many-cell techniques have reported average drop rates of 8% to
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10% [17, 22]. In the simulations, each clone was assigned a drop rate from a lognormal distri-

bution with a mean of 0.15 and standard deviation of 0.01, and every TCRα and TCRβ chain

belonging to that clone was assigned that drop rate. In-frame errors cause a CDR3 sequence to

be falsely identified with an incorrect productive nucleotide and/or amino acid sequence. In

the simulations, each distinct sequence was assigned an in-frame error rate drawn from a log-

normal distribution with a mean of 0.02 and a standard deviation of 0.005. The error model

was simulated as follows: when a cell is sampled into a virtual well, each of its chains fails to be

sequenced with probability equal to the pre-assigned, clone-specific drop rate. Every surviving

chain produces one of three randomly chosen, distinct, and chain-specific false sequences with

probability equal to that chain’s pre-assigned in-frame error rate.

TCR sequencing

A human volunteer was identified as HLA-A2+/HLA-B7+ and received the live attenuated yel-

low fever vaccine (YFV-17D). On day 15 post-vaccination, peripheral blood samples were

taken, and live CD3+CD8+ T cells were isolated by negative selection using magnetic columns

(Miltenyi Biotec, CD8+ T cell negative isolation kit). Cells were labeled with a panel of antibod-

ies and the HLA-A02:01/LLWNGPMAV dextramer representing the immunodominant

response. Single dextramer-specific CD3+CD8+ T cells were sorted into individual wells in 96

well plates containing a lysis buffer (0.4% Triton, RNAse inhibitor, dNTP, OligodT) and

immediately stored on dry ice. Single cell transcriptome libraries were subsequently generated

from these cells using an adapted version of the SMRT-Seq2 protocol [48]. Libraries were pre-

pared for sequencing by tagmentation and labelling individual single cell transcriptomes with

a custom Tn5 enzyme [49] and Nextera XT dual indexes. Pooled libraries were then sequenced

using an Illumina Hiseq2500 on high output mode (2 × 100bp or 2 × 125bp reads), and indi-

vidual TCRα and TCRβ chains were identified using the MiTCR algorithm with default

parameters. The default settings for MiTCR were used to align the CDR3 sequences. These

were then manually filtered to remove erroneous sequences (e.g. early stop codons and CDR3

sequences that were greater than 30 amino aids in length), and then BLAST was used on the

remaining sequences to check for mapping to other parts of the genome, removing as appro-

priate. All clones used in the comparative analysis of CDR3α lengths were curated manually to

exclude the possibility of contaminating TCR sequences.

CDR3 amino acid sequences are provided as a CSV file in S1 Dataset, and the raw reads are

deposited in the Gene Expression Omnibus (GEO), GSE75659; Sequence Read Archive (SRA),

SRP066963.
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43. Sester M, Sester U, Gärtner B, Kubuschok B, Girndt M, Meyerhans A, et al. Sustained high frequencies

of specific CD4 T cells restricted to a single persistent virus. J Virol. 2002; 76(8):3748–55. doi: 10.1128/

JVI.76.8.3748-3755.2002 PMID: 11907214

44. R Development Core Team. R: A Language and Environment for Statistical Computing; 2016.

45. Obar JJ, Khanna KM, Lefrancois L. Endogenous naive CD8+ T cell precursor frequency regulates pri-

mary and memory responses to infection. Immunity. 2008; 28(6):859–869. doi: 10.1016/j.immuni.2008.

04.010 PMID: 18499487

46. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naive CD4(+) T cell frequency

varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;

27(2):203–213. doi: 10.1016/j.immuni.2007.07.007 PMID: 17707129

47. Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the preimmune repertoire of T

cells specific for Peptide-major histocompatibility complex ligands. Annu Rev Immunol. 2010; 28:275–

94. doi: 10.1146/annurev-immunol-030409-101253 PMID: 20307209

48. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive

full-length transcriptome profiling in single cells. Nat Methods. 2013; 10(11):1096–8. doi: 10.1038/

nmeth.2639 PMID: 24056875

49. Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5 transposase and tagmen-

tation procedures for massively scaled sequencing projects. Genome Res. 2014; 24(12):2033–40. doi:

10.1101/gr.177881.114 PMID: 25079858

Dealing with Complexity in TCRα and βChain Pairing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005313 January 19, 2017 25 / 25

http://www.ncbi.nlm.nih.gov/pubmed/9366410
http://dx.doi.org/10.1073/pnas.87.7.2579
http://www.ncbi.nlm.nih.gov/pubmed/2138780
http://dx.doi.org/10.1016/0092-8674(81)90016-7
http://dx.doi.org/10.1016/0092-8674(81)90016-7
http://www.ncbi.nlm.nih.gov/pubmed/1868548
http://dx.doi.org/10.4049/jimmunol.180.4.2240
http://dx.doi.org/10.4049/jimmunol.180.4.2240
http://www.ncbi.nlm.nih.gov/pubmed/18250431
http://dx.doi.org/10.1073/pnas.1304859110
http://dx.doi.org/10.1073/pnas.1304859110
http://www.ncbi.nlm.nih.gov/pubmed/23858460
http://dx.doi.org/10.4049/jimmunol.1003898
http://www.ncbi.nlm.nih.gov/pubmed/21383244
http://dx.doi.org/10.1172/JCI41538
http://www.ncbi.nlm.nih.gov/pubmed/20440073
http://dx.doi.org/10.1002/nav.3800020109
http://www.ncbi.nlm.nih.gov/pubmed/9862375
http://dx.doi.org/10.1172/JCI4225
http://www.ncbi.nlm.nih.gov/pubmed/9788968
http://www.ncbi.nlm.nih.gov/pubmed/9820501
http://dx.doi.org/10.1128/JVI.76.8.3748-3755.2002
http://dx.doi.org/10.1128/JVI.76.8.3748-3755.2002
http://www.ncbi.nlm.nih.gov/pubmed/11907214
http://dx.doi.org/10.1016/j.immuni.2008.04.010
http://dx.doi.org/10.1016/j.immuni.2008.04.010
http://www.ncbi.nlm.nih.gov/pubmed/18499487
http://dx.doi.org/10.1016/j.immuni.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17707129
http://dx.doi.org/10.1146/annurev-immunol-030409-101253
http://www.ncbi.nlm.nih.gov/pubmed/20307209
http://dx.doi.org/10.1038/nmeth.2639
http://dx.doi.org/10.1038/nmeth.2639
http://www.ncbi.nlm.nih.gov/pubmed/24056875
http://dx.doi.org/10.1101/gr.177881.114
http://www.ncbi.nlm.nih.gov/pubmed/25079858

