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Abstract

Green and white sturgeon are species of high conservational and economic interest,
particularly in the San Francisco Bay Delta (SFBD) for which significant climate change-
derived alterations in salinity and nutritional patterns are forecasted. Although there is pau-
city of information, it is critical to test the network of biological responses underlying the
capacity of animals to tolerate current environmental changes. Through nutrition and salinity
challenges, climate change will likely have more physiological effect on young sturgeon
stages, which in turn may affect growth performance. In this study, the two species were
challenged in a multiple-factor experimental setting, first to levels of feeding rate, and then
to salinity levels for different time periods. Data analysis included generalized additive mod-
els to select predictors of growth performance (measured by condition factor) among the en-
vironmental stressors considered and a suite of physiological variables. Using structural
equation modeling, a path diagram is proposed to quantify the main linkages among nutri-
tion status, salinity, osmoregulation variables, and growth performances. Three major
trends were anticipated for the growth performance of green and white sturgeon in the juve-
nile stage in the SFBD: (i) a decrease in prey abundance will be highly detrimental for the
growth of both species; (ii) an acute increase in salinity within the limits studied can be toler-
ated by both species but possibly the energy spent in osmoregulation may affect green stur-
geon growth within the time window assessed; (iii) the mechanism of synergistic effects of
nutrition and salinity changes will be more complex in green sturgeon, with condition factor
responding nonlinearly to interactions of salinity and nutrition status or time of salinity expo-
sure. Green sturgeon merits special scientific attention and conservation effort to offset the
effects of feed restriction and salinity as key environmental stressors in the SFBD.
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Introduction

As global change biologists forecast the impacts of global climate change on contemporary
species, consideration of interactive and possibly synergistic stressors is of critical importance
[1-2]. Current predictions include temperature rise [3] accompanied by increases in sea level
[4], followed by increments in salinity across some estuaries worldwide [5]. The distribution
and abundance of organisms will shift according to their thermal tolerance limits and adjust-
ment ability, with the consequent changes through the trophic cascade [6-9]. Among species
of special concern [10-11] in estuaries, green sturgeon (Acipenser medirostris) and white stur-
geon (A. transmontanus) will likely be affected by climate change derived alterations such as sa-
linity, and prey type and abundance. In addition, nutrient availability and composition may be
affected in water bodies. To date, there has not been a systematic study designed to establish
the relationship between nutritional status, as an indicator of dietary quality and quantity, and
growth and physiological performances of green and white sturgeon, when faced with salinity
changes. This study takes advantage of relatively new modelling techniques [12-14] to test the
network of direct and indirect causal relationships among these climate change derived stress-
ors, physiological variables, and the growth performance of these two species of high conserva-
tional, recreational, and economic interest.

Significant changes in salinity and nutritional patterns are forecasted across the distribution
area of green sturgeon (Mexico to the Bering Sea), and white sturgeon (Mexico to the Gulf of
Alaska), particularly in estuary areas [15]. The San Francisco Bay Delta (SFBD) system is par-
ticularly relevant because both species of sturgeon are native and likely to be most impacted by
global change. The SFBD is greatly affected by changes in oceanic conditions with a multitude
of well-documented abiotic and biotic changes occurring over a variety of time scales [16-17].
The effects of global climate change in SFBD include increasing salinity as a result of sea level
rise and seawater intrusion into the Delta, changes in precipitation patterns, and a smaller
snowpack, contributing to a lower spring freshwater runoff and nutrients. Of particular impor-
tance to sturgeon, salinity is projected to change in magnitude, timing, and space in the SFBD
[18-21].

In addition, food webs are changing globally and locally. Increased water temperature de-
creases global phytoplankton production at a projected rate of 1% per year [22] disturbing the
synchrony between phytoplankton and zooplankton [23]. Food web dynamics in the Pacific
Ocean and SFBD have been under extensive transformation over the past few decades due to
shifts in phytoplankton and zooplankton communities as well as an increase in exotic species
dominance. While food webs in the SFBD system are changing [24-26], sturgeon diets can
shift to reflect availability and abundance of prey. The recent tendency of white sturgeon con-
suming mainly clam species introduced to the west coast of the USA is an example of this [27].

Climate change may have physiological and biochemical effects on sturgeon through nutri-
tion and salinity challenges, which in turn reduces growth performance or fitness [28]. Assess-
ing physiological tolerance ranges and thresholds to stressors may determine whether sturgeon
have enough resilience to respond to climate change [29]. Emphasis has to be placed on early
animal life-stages, which may be more sensitive to environmental stressors than adults [30].
Young sturgeon stages are poorly understood and the success of young fish as they move
through the SFBD is likely dependent on their nutritional status and on the timing of develop-
ment of physiological mechanisms matched to their migration habitats.

Previous studies have examined nutrition status effect on some osmoregulation variables in
fish. For example, Atlantic salmon (Salmo salar) exhibited an increase in plasma ions and re-
duction in enzymatic activities following six- and eight-week food deprivation periods [31-32],
whereas coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha)
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osmoregulation were not affected after 16 weeks of food deprivation [33]. Osmoregulation re-
sponses have also been examined in sturgeon species [34-44], suggesting that metabolic cost of
osmoregulation can vary with salinity, especially during juvenile stages [45-47]. Recently, the
effect of nutritional status on several osmoregulation variables in juvenile green sturgeon were
evaluated [48]. To date considerable progress in determining single responses of physiological
variables to nutritional status and salinity has been achieved.

Moving beyond single-variable responses, it is critical to determine the mechanisms under-
lying the capacity of animals to tolerate environmental changes [49]. Moreover, there are spe-
cies-specific responses that must be considered, even when assessing closely related species,
like green and white sturgeon. In this study, growth performance of juvenile green and white
sturgeon were assessed following nutrition and salinity changes, elucidating cause-and-effect
relationships among these key-changes and a suite of biological responses. The two sturgeon
species were challenged in a multiple-factor experimental setting, first to levels of feeding rate,
and then to salinity levels for different time periods. The study aimed to: (i) compare juvenile
green and white sturgeon in their growth performance, body composition and plasma metabo-
lites; (ii) assess the effect of feeding rate, species, and their interaction on the biological vari-
ables; (iii) select predictors of growth performance in juvenile green and white sturgeon
following feeding rate and salinity changes; and (iv) quantify how nutrition status, salinity, and
osmoregulation interact to influence growth performance in both species. The study hypothe-
sized that: (i) the biological performance (growth, body composition, plasma metabolites)
would differ in juvenile green and white sturgeon with the same nutritional status; (ii) growth
performance in juvenile green and white sturgeon would be determined by different factors re-
garding nutrition and salinity changes, and osmoregulation variables; (iii) besides direct effects,
nutrition and salinity would affect growth performance in both species indirectly through rela-
tionships with osmoregulation variables.

Materials and Methods
Fish source

Juvenile green sturgeon were obtained from captive F1 broodstock, reared from wild-caught
Klamath River and they were spawned in 1999-2000 [50] and held in the Center for Aquatic
Biology and Aquaculture at the University of California, Davis, USA. The female (1999 year
class) was tank spawned with two males from the 2000 year class [51]. Juvenile white sturgeon
were donated by a local fish farmer who spawned them from one domesticated female (~46 kg,
12 years old) and four domesticated males (~28 kg, 8 years). The progenies of the two species
were reared in two flow through systems of degassed ground water and fed the same commer-
cial salmonid starter diet including a variety of salmonid feeds until they reached a desired size
for the experiment. The two species were fed according to a model of optimal feeding rate
(OFR) for green [52] and white [53] sturgeon.

First phase—nutrition challenge

This experiment phase was initiated at 214 and 189 days post hatch in green and white stur-
geon, respectively, and was replicated similarly for the two species. For each species, 840 juve-
nile sturgeons (green: 174.0 + 0.4 g, white: 173.2 £ 0.6 g; mean * SE) were randomly chosen
and released into 12 circular, flow through fiberglass ~787 L tanks, resulting in 70 fish per tank
(Fig 1). Fish were acclimatized to the tanks for 8 days and fed at the OFR (2.0 mm sinking pel-
let, Skretting, Tooele, UT, USA). Feeds were given using a 24-h belt feeder to ensure continuous
food availability [54]. Holding tanks were located outdoors and had a fiberglass cover with a
hatch allowing access of feed and sunlight of natural photoperiod. An angled spray-bar
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Fig 1. Experimental design. First phase (top): Four levels of one treatment, feeding rate (12.5, 25, 50,
100%). Second phase (bottom): Four levels of the treatment salinity (0, 8, 16, 24/32 ppt), and three levels of
the exposure time to salinity levels (12, 72, 120 h). The experimental design was the same for the two
species, except that maximum salinity was different for white (W) and green (G) sturgeon.

doi:10.1371/journal.pone.0122029.g001

supplied degassed well water (8-10 L min™") to increase circulation and feed dispersion.
Water temperature (18.1 to 18.7°C), dissolved oxygen (7.5 to 9.0 mg L"), and ammonia (0.1 to
0.2 mg L'!) were maintained throughout the trial.

Upon the end of the acclimatization period, the average initial body weight (BW;) per tank
of sturgeon were measured to adjust feed quantity prior to initiation of a four-week nutrition
challenge trial. Twelve experimental tanks per species were then randomly assigned to one of
the four levels of feeding rate (FR) treatment (12.5%, 25%, 50%, 100% of OFR; [53, 55]), result-
ing in three tanks per treatment per species (Fig 1, top). Diet proximate compositions for the
acclimatization period and the nutrition challenge trial were 8.7% moisture, 42% crude protein,
26.7% crude lipids and 9.9% ash, as determined by the Association of Official Analytical Chem-
ists method (AOACGC; [56]).

After the four-week nutrition challenge, growth performance variables, body composition,
and plasma metabolites were determined as follows. One data unit per variable was determined
for each tank. First, final body weight (BWy) per tank was derived from the average of all the
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fish in the tank. Fish total length (cm) and liver weight (g) were determined (precision: + 0.01,
in both measurements) from six fish per tank that were euthanized.
Growth performance metrics were calculated as:

o Specific growth rate (SGR) = 100 x (In (BW¢/BW;) /Dy);

o Feed efficiency (FE) = 100 x (BW—BW;) /F; where BW; and BW were the average initial
and final body weight (g), D, was trial length in days (26), and F, was total average weight of
feed (g) given to each tank throughout the trial.

« Condition factor (CF) = BW¢/ L’ where L was total body length (cm);
« Hepato-somatic index (HSI) = 100 x liver weight (g) /BWy; calculated after fish euthanasia.

Body composition and plasma metabolites following the nutrition challenge were deter-
mined from the six fish euthanized per tank. Three of these fish were pooled and sampled for
whole body proximate composition (AOAC method, [56]) to determine crude lipid, crude pro-
tein, and moisture. The remaining three fish were sampled individually for assessment of plas-
ma metabolites (glucose, triglycerides, and protein) concentrations followed by an average
calculation per metabolite. Blood was collected from the caudal vein using a 6 ml blood collec-
tion tube with dry lithium heparin and a 21-gauge hypodermic needle and was centrifuged at
1500 g for five minutes at room temperature. Plasma was transferred to 1.5 m1 micro-centri-
fuge tubes, snap frozen in liquid nitrogen and stored at -80°C for later analysis. Plasma glucose
concentrations were determined with a commercially available assay kit. Plasma triglycerides
were measured by a quantitative enzymatic measurement using a serum triglyceride determi-
nation kit (Sigma Aldrich, St. Louis, MO, USA). Plasma total protein concentration was deter-
mined by the Sigma Aldrich Micro-Lowry, Onishi & Barr modification method.

Second phase—Salinity challenge

Following the nutrition challenge trial, a salinity challenge with different exposure times was
subsequently conducted and replicated similarly for green and white sturgeon (Fig 1 bottom).
Four salinities were selected for both species trials, differing in the highest level only, i.e., 0, 8,
and 16 ppt for both species, and 24 or 32 ppt for white and green sturgeon, respectively. The
salinity levels were selected on the basis of life histories of juvenile green and white sturgeon
[57-59]. The four salinity levels were applied in four separate systems for each species, each
consisting of four tanks (97 cm diameter, 160 L): one flow-through freshwater system (0 ppt),
and three separate recirculating systems (8, 16, and 32 or 24 ppt) where salinity was manipulat-
ed using synthetic sea salt.

Each of the four tanks per salinity level was then assigned to one of four FR (12.5%, 25%,
50%, or 100% of OFR) and occupied with 18 fish from that FR (Fig 1 bottom). Fish were acute-
ly exposed to different salinity levels and were not fed for one day prior to salinity exposure
and throughout the trial. Water quality (e.g., temperature, dissolved oxygen, ammonia) was
maintained at optimum conditions during the trial. Osmoregulation variables, including pylo-
ric caeca and gill Na*/K"-ATPase activities (PCNKA, GNKA, respectively), muscle moisture,
hematocrits, plasma osmolality, lactate, and glucose were then determined at 12, 72, and 120 h
following the salinity exposure (Fig 1 bottom). Additional details (e.g., analytical procedures)
are provided in [48].

Ethics Statement

This study was carried out in strict accordance with the recommendations in the protocol ap-
proved by the Campus Animal Care and Use Committee of the University of California, Davis
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(Protocol Number: 16541). The Committee approved this study and verified that the living
conditions of the animals were appropriate for the species, that the use of pain-relieving drugs
is adequate, and that the number of animals was the minimum necessary to complete the proj-
ect. Fish euthanasia was performed under an overdose of buffered MS-222 (6 g NaCl, 420 mg
NaHCO3 and 500 mg tricaine methanesulfonate/L, Argent Inc., Redmond, WA, USA).

Data analysis
Biological responses to nutritional changes

For comparison of the biological responses in green and white sturgeon to nutritional

changes, the metric for each variable was standardized between 0 and 1 using the equation v’ =
(Vi—Vmin) / (Viax—Vmin); Where v; is each value (untransformed) and v,,;,, and v,,,,, are the mini-
mum and maximum for that variable.

Before analysis, some variables were transformed to approach normality and homoscedas-
ticity assumptions. HSI, lipids, body protein, and moisture were arcsiny/(x)-transformed.
Using the equation v’ = (v;*-1)/A, the Box-Cox family of transformations was used on each i
value to find the best transformation [60-61] on glucose (A = -1.43), triglycerides (A = 0.02),
and protein (A = -1.55). Main effects and interactions of FR and species on SGR and CF were
tested using one two-factor ANOVA per response. A permutation version of the test with 5000
randomizations was conducted for other responses, using ImPerm package in R [62].

Predictors of growth performance in sturgeons faced with nutritional and
salinity changes

Condition factor was used as the response for two separate models on the effect of salinity on
growth performance for the two species. Calculated from the relationship between weight and
length, CF is widely used in fisheries and fish biology studies as an excellent indicator of the de-
gree of food sources availability and general well-being [63-64]. The relationship between CF
and explanatory variables was explored using Generalized Additive Models (GAM; [65-66])
with identity link to account for potential non-linearities in CF responses. A few clear outliers
were determined and omitted after initial exploratory data analysis using boxplots and Cleve-
land dotplots [67]. For green sturgeon, five outliers were omitted, three for CF and two for
muscle moisture (N = 277). For white sturgeon, 12 outliers were omitted for CF (N = 276).
Spearman’s correlations between the variables in the models were all < |0.30], indicating that
there were no co-linearity problems. Prior to statistical analysis, PCNKA and GNKA were log-
transformed to approach normality and to reduce the influence of a few large values. For the
analysis, FR, time, and salinity were treated as factors. All calculations were carried out using
R [68]. The mgcv package [65] was used to fit GAM, using penalized regression splines with
the optimal amount of smoothing estimated by generalized cross validation (GVC).

For both species of sturgeon, a full model of GAM was fitted with ten variables, i.e., FR, sa-
linity, time, PCNKA, GNKA, moisture, lactate, osmolality, glucose, and hematocrit. The full
model included FR x time X salinity interactions, followed by backward elimination of non-sig-
nificant (p > 0.05) variables [66] to remove each main term in turn. The significance of each
parametric and smooth term was assessed using Wald like tests (mgcv package; [69-70]).
Model adequacy was evaluated by plotting residuals vs fitted values and explanatory variables
and model fit by the percentage of the deviance explained.
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Fig 2. Standardized values (0 to 1) of biological responses to nutritional changes. Green and white dots denote green and white sturgeon, respectively.
For each biological parameter (y-axis), fishes were challenged with four levels of feeding rate (12.5, 25, 50, 100%; right y-axis). Three observations were
collected per FR level per species.

doi:10.1371/journal.pone.0122029.9002

Linkages between best predictors of growth performance

Structural equation modeling (SEM; [71-72]) was used to separately examine the linkages be-
tween significant terms in GAM related to CF. Additionally, SEM highlighted indirect effects
not revealed by GAM. Using the software IBM SPSS Amos, a path diagram was constructed
first based on theory using the exogenous variables for CF. Error terms were added as needed
[71], and regression weights were examined to iteratively add (based on modification indices)
or remove (based on p-values) linkages from the model. Once a good model fit was achieved,
based on both the minimum discrepancy [73] and the root mean square error of approxima-
tion, CF was added as an endogenous variable with linkages from all other variables. Bayesian
estimation was then used on the retained paths to fit the model, and linkages to CF were itera-
tively removed based on the posterior distributions of the regression weights. Linkages were re-
moved if their 80% credible interval included zero (considered supportive of a model derived
from maximum likelihood procedures).
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Table 1. Significance levels of main effects and interactions for feeding rate and species on biological responses.

Factors
Variable Response Feeding rate Species Feeding rate x Species
Growth performance Specific growth rate EX 20 *xx Py
Feed efficiency * ¥ % e
Condition factor *%K % NS
Hepato-somatic index *% K%K %
Body composition Lipids *%% *x% .
Body protein *%% *x% e
Moisture *xk *x% o
Plasma metabolites Glucose % * %% e
Triglycerides %% *%% e
Plasma protein *¥% %% o

For specific growth rate and condition factor ANOVA were conducted whereas for other responses p-values were generated from permutation

ANOVA analyses.
*** < 0.001

** <0.01
*=0.05

NS > 0.05.

doi:10.1371/journal.pone.0122029.t001

Results
Biological responses of green and white sturgeon to nutritional changes

Green and white sturgeon had in general contrasting results concerning measured factors of
growth performance, body composition, and plasma metabolites (Fig 2). Body moisture was
the only variable clearly greater for green than for white sturgeon independent of feeding rate.
Regarding growth performance, CF was the response without any overlap between species
across FR levels.

For all biological variables, the effect of FR was significant and the response of the two spe-
cies differed (Table 1). Moreover, the FR X species interaction was not significant only for CF,
indicating that the effect of FR on CF was probably comparable as it followed a similar pattern
for green and white sturgeon across FR levels. At 12.5 and 25% of OFR, white sturgeon always
showed better biological performance for all the variables. At 50 and 100% of OFR, some over-
lap was found between species for several biological variables. Noticeably, at 100% of OFR,
mean performance of green sturgeon was greater regarding specific growth rate and feed effi-
ciency (Fig 2). During the nutrition challenge three fish mortalities occurred for green sturgeon
over the fourth week, one at 12.5% and two at 50% of OFR.

Predictors of growth performance in green and white sturgeon faced with
nutrition and salinity challenges

In green sturgeon, evaluation of the significance of predictors of CF as an indicator of growth
performance resulted in the sequential dropping of FR X time x salinity interaction, FR X time
interaction, lactate, GNKA, glucose, hematocrit, and osmolality. The resulting model included
FR x salinity and time X salinity interactions, along with PCNKA and muscle moisture

(Table 2). The effect of salinity on CF was therefore not the same for all feeding rates or expo-
sure times (Fig 3). Fitted values of CF tended to be higher as FR increases, except that for 8 ppt
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Time

O O N W W

edf
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df
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(DE = 32.20%; GCV = 0.002)

F
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2.09
3.58
F
3.37
217

F
40.22
3.77

o
<0.0001
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0.052
0.030
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p

0.027
0.041

p
<0.0001

0.024

doi:10.1371/journal.pone.0122029.t002

salinity level CF values were similar at 12.5% and 25% of OFR (Fig 3A). Condition factor did
not differ among exposure times to salinity but mean fitted CF at 12 h was lower than for lon-
ger exposures (72, 120 h) at 32 ppt salinity only (Fig 3B). Pyloric caeca NKA enzyme activities
greater than ~10 pmol ADP mg protein' h™" tended to be associated with a steeper decrease in
CF (Fig 3C). Also, as muscle moisture increased, CF showed a non-linear decreasing trend (Fig

3D).

The two models explain growth performance measured by condition factor in juvenile

green and white sturgeons challenged in a multiple-factor setting with levels of feeding rate
(FR; 12.5, 25, 50, 100%), salinity (0, 8, 16, 24 ppt for white and 32 ppt green sturgeon), and
time of exposure to salinity (12, 72, 120 h). Seven osmoregulation parameters were tested as
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Fig 3. Generalized additive model fits and 95% confidence intervals from the optimal model for green sturgeon. Relationships between growth
performance of juvenile green sturgeon, measured by condition factor, and each explanatory variable (FR x salinity interaction, time x salinity interaction,
pyloric ceca NKA, and muscle moisture). Sturgeons were challenged in a multiple-factor setting, first to levels of feeding rate (12.5, 25, 50, 100%), and then to
salinity levels (0, 8, 16, 32 ppt) for a given time (12, 72, 120 h). W = weight; L = length.

doi:10.1371/journal.pone.0122029.9003
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Fig 4. Generalized additive model fits and 95% confidence intervals from the optimal model for white
sturgeon. Relationships between growth performance, measured by condition factor, and each explanatory
variable are illustrated. Sturgeons were challenged in a multiple-factor setting, first to levels of feeding rate
(12.5, 25, 50, 100%), and then to salinity levels (0, 8, 16, 24 ppt) for a given time (12, 72, 120 h). Only feeding
rate and time were kept in the final model. W = weight; L = length.

doi:10.1371/journal.pone.0122029.g004

covariates. DE = deviance explained; GCV = generalized cross validation score; edf = effective
degrees of freedom.

In white sturgeon, all treatments’ (FR, salinity, time) interactions were removed in turn, fol-
lowed by PCNKA, salinity, glucose, hematocrit, muscle moisture, and lactate. The final model
included FR and time of exposure to salinity only as the best predictors of CF (Table 2). Condi-
tion factor increased with increments in FR level (Fig 4A). Conversely, CF fitted values were
greater for fish exposed to salinity levels for 12 h than over 120 h, whereas the 72 h effect on CF
was intermediate (Fig 4B). During the salinity challenge 13 fish mortalities occurred for green
sturgeon at 72h salinity exposure, seven at 12.5%, five at 25%, and one at 50% of OFR.

Linkages between best predictors of growth performance using SEM

A variety of linkages were present among significant predictors of CF in juvenile green stur-
geon (Fig 5). The terms that significantly affected CF were the same as those identified by the
GAM, except that FR x salinity interaction was dropped based on the posterior distribution of
its regression weight. Feeding rate had the greatest direct effect on CF. In addition to direct ef-
fects, several indirect effects (those connecting predictor variables) were identified where the
variable’s effect on CF was mediated by another variable. Among indirect effects, feeding rate-
muscle moisture and salinity-PCNKA were clearly the strongest linkages, with regression
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rectangle). Solid rectangles: treatments; dashed rectangles: osmoregulation parameters. Arrows represent causal pathways between variables, each having
a standardized partial regression coefficient (sign indicates whether the relationship is positive or negative for that direct effect).

doi:10.1371/journal.pone.0122029.9005

weights > [0.60|. All linkages retained in the model had coefficients with a 95% credible inter-
val, except salinity-CF for which the cutoff of 80% was used. The final SEM had a posterior pre-
dictive p = 0.55, indicating a good fit [12]. The SEM was advantageous in identifying both
unique and synergistic contributions of CF predictor variables. For white sturgeon, because
only FR and time were selected by GAM as significant predictors of CF, SEM was not used.

Discussion

Recently, progress has been made in determining individual responses of biological variables in
fish to climate change derived stressors. Broadly, the contribution of animal physiology in the
study of global climate change has been highlighted [74-77] unveiling physiological thresholds
and tipping points. Clear links have been established between changes seen at the ecosystem
level and physiological limitations detected through well-controlled laboratory experiments
[41, 78]. For example, it has been recently shown that exposure of a variety of aquatic species
to climate change relevant stressors results in dramatic changes at the biochemical level but
also subtle changes in growth patterns, many of which were not initially predictable from
whole organism studies [79-81]. However, most studies do not include network analysis of di-
rect and indirect causal relationships among environmental stressors, physiological variables,
and growth performance. In this study, a summarized path diagram is proposed to quantify
the main linkages among nutrition status, salinity, main osmoregulation variables, and growth
performances of juvenile green and white sturgeon assessed by CF (Fig 6). As hypothesized, be-
sides direct effects, nutrition and salinity affected growth performance indirectly through rela-
tionships with osmoregulation variables. Furthermore, comparison of the species showed that
the linkages were species-specific. The differences may explain why these two species, in spite
of their sympatry and taxonomic proximity, may respond differently to potentially novel envi-
ronmental stressors caused by global change.
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Fig 6. Schematic overview of the primary results. The main relationships among the principal variables
identified in this study are summarized as affecting directly or indirectly the growth performance of green and
white juvenile sturgeon when challenged with levels of their feeding rate, salinity, and exposure time to
salinity. Solid circles: treatments; dashed circles: osmoregulation parameters; double-line circles: growth
performance measured by condition factor (CF). The sign associated with each arrow indicates whether the
relationship is positive or negative for that effect. Wider arrows refer to the most significant relationships in
this study.

doi:10.1371/journal.pone.0122029.9g006

Impact of nutrition change on biological performance of juvenile
sturgeon

Overall, feeding rate was the most relevant factor affecting the biological responses considered,
whether after the nutritional challenge or following the salinity challenge. To date, individual
response of several aspects of biological performance in fish to nutrition status have been wide-
ly studied [31, 53-54, 82-86]. In all studies, feed restriction per se proved to be a crucial stressor
influencing directly many responses of fish ecophysiology. This study followed the same trend,
in which feeding rate appeared to be a determinant for all 10 biological variables considered
after the nutritional challenge. Moreover, the first hypothesis that growth performance, body
composition, and plasma metabolites would differ between the two sturgeon species with the
same nutritional status was in general supported. Furthermore, the effects across the levels of
feeding rate were not the same for both species. Green sturgeon were generally less tolerant to
feed restriction compared to white sturgeon. Conversely, at an optimal feeding rate, specific
growth rate and feed efficiency were greater for green compared to white sturgeon. These re-
sults align well with [87] documenting that green sturgeon grow faster and larger than white
sturgeon at early life stages.
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Synergistic effects of nutrition and salinity changes on growth
performance of juvenile sturgeon

Overall, increasing the feeding rate in green sturgeon had a strong negative effect on muscle
moisture content, likely causing a more subtle negative effect of muscle moisture on condition
factor. The GAM analysis showed that the latter was a nonlinear decrease. The direct response
of muscle moisture to feeding rate is in line with recent research in green sturgeon [48, 88], but
a possible indirect effect on CF mediated by muscle moisture was first quantified. Juvenile
green sturgeon with lower nutritional status (12.5, 25% of OFR) have been shown to have
greater muscle moisture, regardless of salinity level [48]. In the current study, juvenile white
sturgeon muscle moisture did not show a significant relationship to CF. Regardless of feeding
rate and salinity factors, the data also showed noticeable inherent differences between the two
species in terms of body composition, with juvenile white sturgeon having greater lipid and
lower moisture. Greater lipid proportion supported the energy requirements of osmoregulatory
process [89], measured by muscle water content in this case, without growth performance
being affected.

This study demonstrated a mechanism by which an acute exposure to salinity affected
growth performance of juvenile green sturgeon but may have not influenced white sturgeon
growth performance. The strongest effect of salinity augment was a spike in PCNKA activity,
which in turn led to a subtle negative effect on CF in green sturgeon (Fig 6). The GAM analysis
showed that the latter was a nonlinear decrease, especially marked following a certain value of
ceca enzyme activity. Although an increment in PCNKA activity following salinity exposure,
regardless of feeding rate, was documented before [48] the likely indirect effect on CF mediated
by PCNKA was first quantified in the present study. Broadly, an increase in the activity of this
enzyme is characteristic of many euryhaline species following salinity changes [90-91], indicat-
ing good acclimatization to a new ambient salinity [41, 92]. Examining single-variable re-
sponses, most authors highlight the capacity of green sturgeon to respond to salinity challenges
which is well established at a relatively young age [38, 40, 59, 88]. This study showed that this
ability of juvenile green sturgeon to respond to unpredictable salinity fluctuations, such as
those predicted to occur in SFBD with a changing global climate, occur at the cost of loss of
growth performance. In white sturgeon, salinity exposure duration affected significantly the
growth performance, adding to the effect of feeding rate.

Juvenile green and white sturgeon will likely be affected differently by forecasted larger and
less stable salinity regimes coupled with shifts in prey abundance in the SFBD. Although the sa-
linity exposure lasted for five days and did not simulate the biological consequences of long-
term hyperosmotic exposure, the analysis enabled insights into comparing the mechanisms un-
derlying the tolerance of the two species following both short and long-term nutrition and sa-
linity changes. Three major trends can be anticipated for the growth performance (as
measured by CF) of green and white sturgeon in the sensitive juvenile stage in the SFBD: (i) a
decrease in prey abundance will be highly detrimental for the growth of both species; (ii) an
acute increase in salinity within the limits studied can be tolerated by both species but the ener-
gy spent in osmoregulation may affect green sturgeon growth within the time window assessed;
(iii) the effects of nutrition and salinity changes will be more complex in green sturgeon, with
CF responding nonlinearly to interactions of salinity and nutrition status or time of salinity ex-
posure. Green sturgeon would merit further scientific investigation to offset the effects of feed
restriction and salinity as environmental stressors in the SFBD.
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