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Salidroside reduces tau
hyperphosphorylation via up-regulating
GSK-3β phosphorylation in a tau transgenic
Drosophila model of Alzheimer’s disease
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Abstract

Background: Alzheimer’s disease (AD) is an age-related and progressive neurodegenerative disease that causes
substantial public health care burdens. Intensive efforts have been made to find effective and safe treatment
against AD. Salidroside (Sal) is the main effective component of Rhodiola rosea L., which has several
pharmacological activities.
The objective of this study was to investigate the efficacy of Sal in the treatment of AD transgenic Drosophila
and the associated mechanisms.

Methods: We used tau transgenic Drosophila line (TAU) in which tau protein is expressed in the central nervous
system and eyes by the Gal4/UAS system. After feeding flies with Sal, the lifespan and locomotor activity
were recorded. We further examined the appearance of vacuoles in the mushroom body using immunohistochemistry,
and detected the levels of total glycogen synthase kinase 3β (t-GSK-3β), phosphorylated GSK-3β (p-GSK-3β), t-tau and
p-tau in the brain by western blot analysis.

Results: Our results showed that the longevity was improved in salidroside-fed Drosophila groups as well as
the locomotor activity. We also observed less vacuoles in the mushroom body, upregulated level of p-GSK-3β
and downregulated p-tau following Sal treatment.

Conclusion: Our data presented the evidence that Sal was capable of reducing the neurodegeneration in tau
transgenic Drosophila and inhibiting neuronal loss. The neuroprotective effects of Sal were associated with its
up-regulation of the p-GSK-3β and down-regulation of the p-tau.
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Background
Alzheimer’s disease (AD) is a progressive and fatal brain
disorder, and affects approximately 36 million people
worldwide. This number is expected to double during
the next 20 years [1]. Neuropathologically, it is charac-
terized by accumulation of extracellular senile plaques
consisting of deposits of beta-amyloid (Aβ) and intracellular
neurofibrillary tangles consisting of hyperphosphorylated

tau protein, which ultimately lead to neuronal loss and
brain atrophy [2, 3].
In fact, the tau hypothesis suggests that neurofibrillary

tangles in the brain represent a major component of the
pathophysiology of Alzheimer’s disease [4], which is
attributable to an abnormal phosphorylation of tau pro-
tein in the brains of AD patients. Under normal circum-
stances, tau protein is a neuronal microtubule-associated
protein that has a crucial role in assemblage and
stabilization of microtubules on neuronal axons and
the inhibition of apoptosis [5, 6]. However, when tau is ab-
normally hyperphosphorylated, it destabilizes microtubules
by decreasing the binding affinity of tau, and consequently
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leads to microtubule destabilization, disruption of the
axonal transport system, and ultimately, the formation of
intracellular neurofibrillary tangles (NFTs). NFT formation
spreads to various brain areas during AD progression,
ultimately causing neuronal death [7–13]. Previous studies
have shown that increasing tau phosphorylation occurs
early in the development of AD [14, 15], and that Aβ
associated clinical cognitive decline is identified only
following such elevated tau phosphorylation [14, 16].
It is expected that intervening the formation of these
toxic assemblies would attenuate the appearance and
development of the symptoms of AD. Although many
researches have discovered a great deal of pharmaceutical
treatments for AD, no effective compound has been
found so far for this debilitating neurodegenerative
disease.
Over the past decades, drug therapies for AD primarily

aim at slowing down the cognitive decline and amelio-
rating the behavioral symptoms, but the pharmacological
effects of these drugs remain unsatisfactory. Salidroside
(Sal), as one of the active ingredients extracted from the
root of Rhodiola rosea L, which is extensively used in
traditional folk medicine in Asian and European countries
and has been reported to exhibit various strong pharma-
cological activities. The main effects of Sal are described
as anti-oxidative, anti-apoptosis, anti-inflammatory, anti-
cancer, and anti-fatigue effects [17–23]. Additional studies
have shown that Sal exerts a neuroprotective effect. For
example, Sal is able to protect neurons from apoptosis
induced by various factors [24–26]. It remains undem-
onstrated whether Sal exerts neuroprotection against
tau-induced toxicity in AD.
In the present study, we investigated the therapeutic

potential of Sal in tau transgenic AD model. We found
that Sal treatment could improve locomotor functions
and prolong lifespan of AD transgenic Drosophila. More-
over, we demonstrated that Sal could protect neurons
against tau-induced toxicity, which might be associated
with regulation of GSK-3β.

Methods
Reagents
Salidroside (Sal, Purity > 99.7%) was obtained from the
Green Valley Pharmaceutical Corporation (Shanghai,
China). It was dissolved in PBS to a stock concentra-
tion of 100 mM and stored at − 20 °C. Donepezil was
supplied by Eisai Pharmaceutical Co., Ltd. (Tokyo, Japan).
The following antibodies were used: Phospho-GSK-3β

antibody, GSK-3β antibody, Mouse monoclonal Phospho-
tau (ser396) antibody and tau (Cell Signaling Technology),
Mouse monoclonal anti-β-actin antibody (Sigma–Aldrich,
Clone AC-15), HRP-conjugated goat anti-mouse IgG
(Jackson Immuno Research Laboratories, PA, USA). All

chemicals were purchased from Sigma-Aldrich except
those noted otherwise.

Drosophila stocks
All Drosophila stocks were maintained at 25 °C under a
12:12 h light: dark cycle at constant 65% humidity as
previously described [27]. The flies were raised in 50 ml
plastic vials containing standard Drosophila medium.
Transgenic upstream activating sequence (UAS) carrying
human tau was obtained from Drosophila Stock Center
(Institute of Biochemistry and Cell Biology, Shanghai).

Longevity assay
New flies were collected within 24 h after eclosion for
the experiment. At least 100 flies of each genotype were
collected and divided into fresh food vials of 20 flies.
Food vials were changed every 2–3 days, and the number
of dead flies was counted at that time. The survival times
described were given as median standard error of the me-
dian. Survival curves were analyzed using Kaplan-Meier
estimation and log-rank statistical analysis.

Climbing assay
Locomotor function of Drosophila was measured accor-
ding to the climbing assay as previously reported [28].
Briefly, 10 male flies per 25 ml tube (n = 30 for each
group) were placed at the bottom, and given 30 min to
recover. After 10 s of climbing, the numbers of Drosophila
between the 0, 5, 10, 15, 20 and 25 ml scale marks were
recorded with a video camera. The experiment was
performed three times. The results for each group were
calculated by the formula below:

Climbing Index ¼ flies above 20 ml scale markð Þ � 1
þ flies between 15 and 20 ml scale marksð Þ � 0:8
þ flies between 10 and 15 ml scale marksð Þ � 0:6
þ flies between 5 and 10 ml scale marksð Þ � 0:4
þ flies below 5 ml scale markð Þ � 0:2:

Histological analysis
For immunostaining analysis, flies (n = 10 for each group)
were fixed in freshly prepared 4% paraformaldehyde,
processed to embed in paraffin blocks, and sectioned
at a thickness of 5 μm. Sections were placed on slides,
stained with hematoxylin and eosin, and examined by
bright field illumination using a Leica DM 2500
microscope at the magnification of 60×. The areas of
the vacuoles in the cell body or neuropil regions were
captured.

Western blot analysis
After treatment, fly heads (n = 50 for each group) were
homogenized in lysis buffer (50 mM Tris–HCl pH 8.0,
150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate,
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0.1% SDS) with protease inhibitor cocktail (Roche, Basle,
Switzerland) and 1 mM phenylmethyl sulfonyl-fluoride
(PMSF) for 30 min on ice. Total extracts were centrifuged
at 14,000 × g for 30 min and boiled in 4× SDS loading
buffer for 5 min. The samples were subjected to SDS
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to a polyvinylidene fluoride membrane (Millipore,
Bedford, MA, USA). The membranes were blocked using
5% skim milk in TBST for 1 h then incubated at 4 °C
overnight with respective primary antibodies to t-GSK-
3β(1:1000), p-GSK-3β(1:1000), t-tau (1:1000), p-tau (1:1000)
and β-actin (1:5000). After being washed three times with
TBST, the membranes were incubated with horseradish
peroxidase (HRP)-conjugated goat anti-rabbit/mouse anti-
body (1:10000) for 2 h at room temperature. Visualized
with the indicated antibodies using Immobilon Western
Chemiluminescent HRP Substrate (Millipore) and analyzed
by ImageJ (National Institutes of Health) software. All the
experiments were performed at least three times and the
most representative results were shown.

Statistical analysis
All statistical analysis was performed using SPSS software
19.0(SPSS Inc., Chicago, IL). The Kaplan–Meier test was
used to assess the difference in the lifespan curves. Two-
group comparisons were analyzed using Student t-test. A
comparison of three or more groups was performed using
one-way ANOVA followed by Tukey’s test. All experi-
ments were carried out in triplicate (n = 3) and results
were expressed as the mean ± standard error of the mean
(SEM). Calculated comparisons were at confidence inter-
val (CI) 95%. A P-value < 0.05 was considered statistically
significant.

Results
Sal prolonged the lifespan of AD transgenic flies
Drosophila AD models were generated by expressing
human tau, which have been assisted in the identification

of novel targets for therapy [29]. These models show intra-
cellular neurofibrillary tangles consisting of hyperpho-
sphorylated tau protein and ultimately significant reduction
in longevity [29, 30]. To assess the effect of Sal in living
organisms, we firstly fed human tau transgenic flies
with Sal in various concentrations (2 μM, 6 μM and
20 μM) or Donepezil (10 μM, the clinically approved
drug for the treatment of AD) as positive control and
measured their survival duration. We found that the
lifespan of Sal-treated flies was more prolonged compared
to that of the untreated flies. Sal treatment increased both
the survival rate and the median survival time of flies,
which is comparable to the improving effect of Donepezil
(Fig. 1).

Sal treatment improved locomotor activity in AD flies
Locomotor assay is a behavioral paradigm to assess the
neural functional abnormalities based on the negative
geotaxis against gravity. We fed tau flies with Sal or Done-
pezil at different time points (10, 20, 30, and 40 days), and
we found Sal treatment improved the climbing ability of
these AD transgenic flies significantly in a dose dependent
manner after 30 days compared to the control (the ctrl
group) (Fig. 2). However, no obvious difference was ob-
served between the treated and non-treated groups at time
points of 10 and 20 days (Fig. 2).

Effects of Sal on neuronal loss in AD flies
The tau flies were able to replicate the features of human
in progressive neurodegeneration with some extent as
previously reported [31]. The appearance of vacuoles in
the brain is thought as a hallmark of neurodegeneration in
Drosophila, which represents the neuronal loss of brain
[27]. As seen in Fig. 3, the transgenic AD fly model
showed numerous vacuoles and exhibited loosely packed
neurons all over the mushroom body at postnatal 30 days.
Sal treatment in the dose of 6 μM was able to prevent
these histological abnormalities in vacuoles and neuronal

Fig. 1 Salidroside treatment improves lifespan of AD transgenic Drosophila. a Survival trajectories of TAU flies with different treatment.
b Salidroside treatment prolonged survival time of tau transgenic flies. Donepezil was used as positive Control. Kaplan-Meier cumulative survival
analysis was applied to the survival data. Data are presented as mean ± SEM of 3 independent experiments. *P < 0.05, ***P < 0.001
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packing phenotype, which appeared a better therapeutic
effect than that in Donepezil- treated group.

Sal regulated GSK-3β phosphorylation
To explore the signaling pathways that may be involved
in Sal effects, we next assessed whether Sal affected
GSK-3β phosphorylation and tau phosphorylation in
flies, as GSK-3β signal pathway exerts a crucial role in
promoting neuronal survival under a variety of circum-
stances, while tau hyperphosphorylation and microtubule
destabilization is widely acknowledged in AD [32–34]. We
detected GSK-3β protein expression in Drosophila brain
after Sal or Donepezil treatment, and found that Sal
increased the level of p-GSK-3β effectively while de-
creased the level of p-tau, a downstream target of GSK-3β
(Fig. 4). This result indicates that the neuroprotective

effects of Sal in the tau transgenic AD flies might be asso-
ciated with the regulation of GSK-3β.

Discussion
During the last decade, Drosophila has emerged and been
recognized as a powerful model to study human neurode-
generative diseases including AD. Although this model
can not detect memory and cognitive function, the short
generation time and short lifespan make it particularly
amenable to study such age-related disorders [30, 35–37].
In the present study, we showed that Sal treatment pro-
longed the lifespan and improved locomotor abilities in a
tau-expressing transgenic Drosophila model. Furthermore,
we demonstrated that Sal could dramatically attenuate the
neuronal loss in the brains. As far as we know, this is the
first evidence for Sal play an important protective role in
neurons through up-regulatingGSK-3β phosphorylation in
transgenic flies. As Sal was reported with property of non-
toxic and mitigated neurotoxicity [38], our study provides
a potential promising drug candidate for AD therapy.
In the last two decades, drug discovery and develop-

ment efforts for AD have been dominated by the “amyloid
cascade hypothesis,” focusing on targets defined by this
hypothesis and proposing amyloid as the main cause of
neural death and dementia. Unfortunately, several clinical
trials with anti-Aβ agents failed, thus challenging the
hypothesis that Aβ accumulation is the initiating event in
the pathological cascade of AD, so we need to explore
some novel therapeutic approaches and targets [39]. In
recent years, tau-based treatments for AD have become a
point of increasing focus and future investigational thera-
pies [40]. Inhibition of the toxicity of tau in the brain may
offer significant promise for the treatment of this disease.
Our experiments in tau-expressing transgenic Drosophila
showed that Sal attenuated tau-induced cytotoxicity

Fig. 2 Salidroside increases the locomotor activity. The climbing
ability of flies at 10 days, 20 days,30 days and 40 days after eclosion.
TAU flies without any treatment showed an activity decrease with
increased age but the treatment of Sal and Donepezil enhanced
the activity of TAU flies at 30 days or 40 days. The values are
mean ± SEM. #P < 0.01 compared to the control group with one-way
ANOVA analysis followed by Tukey test

Fig. 3 Effect of salidroside on tau-induced neurotoxicity in vivo. Treatment of Sal and Donepezil rescued the neurodegeneration in TAU
flies. Hematoxylin and eosin staining of a TAU fly brain (a). Hematoxylin and eosin staining of the brain of a TAU fly without any treatment (b), TAU
fly treated with Sal (c), and TAU fly treated with Donepezil (d). Arrowheads indicate neurodegeneration. Bar:50 μm. Right-panels, Bar: 10 μm

Zhang et al. Translational Neurodegeneration  (2016) 5:21 Page 4 of 6



effectively, suggesting a novel effect of Sal through inhibi-
ting the tau phosphorylation in AD brain.
GSK-3β is a ubiquitously expressed serine/threonine

kinase that plays a key role in the pathogenesis of AD.
GSK-3β phosphorylates tau in most serine and threonine
residues hyperphosphorylated in paired helical filaments
[41]. The effect of Sal in the flies increased GSK-3β
phosphorylation significantly, while inhibiting tau phos-
phorylation simultaneously. These results suggest a
possible causal relationship for Sal effect between tau
hyperphosphorylation and the regulation of GSK-3β
phosphorylation. Taken together, the findings of these
experiments support the proposition that Sal plays an
important role in providing the neuroprotection for AD
by regulating tau phosphorylation.

Conclusion
In summary, we demonstrated that the treatment with
Sal relieved the behavioral and pathological changes in a
tau transgenic Drosophila model, and the mechanism
was associated with its reducing tau hyperphosphory-
lation via up-regulating GSK-3β phosphorylation. These
findings suggest that the Sal may protect neurons
from degeneration in brains of AD models, and pro-
vide a potential approach in prevention and treatment
of AD models. Although Sal has been prescribed to
patients with cardiovascular disease and exhibited

various pharmacological activities, further multiple
studies should be carried out to evaluate the efficacies
of Sal against AD.
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