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Abstract Performance of industrial microorganisms

as cell factories is limited by the capacity to channel

nutrients to desired products, of which optimal

production usually requires careful manipulation of

process conditions, or strain improvement. The focus

in process improvement is often on understanding and

manipulating the regulation of metabolism. Nonethe-

less, one encounters situations where organisms are

remarkably resilient to further optimization or their

properties become unstable. Therefore it is important

to understand the origin of these apparent limitations

to find whether and how they can be improved. We

argue that by considering fitness effects of regulation,

a more generic explanation for certain behaviour can

be obtained. In this view, apparent process limitations

arise from trade-offs that cells faced as they evolved to

improve fitness. A deeper understanding of such trade-

offs using a systems biology approach can ultimately

enhance performance of cell factories.

Keywords Biotechnology industry � Evolution �
Fitness �Metabolic shift � Systems biology � Trade-off

Introduction

Among the several microorganisms used in the food

and biotechnology industry, Escherichia coli, by far

the most widely studied microorganism, is an excel-

lent work-horse for the production of several high

value products (Table 1). Other work-horses include

Bacillus subtilis, lactic acid bacteria, yeast (Saccha-

romyces cerevisiae), fungi (Aspergilli) and mamma-

lian cell lines, each utilized for the production of a

wide range of products that are directly or indirectly an

inherent part of our daily lives.

Not all of these organisms had the complete set of

desired traits to start with. Multiple methods are

employed to obtain the preferred properties, including

evolutionary engineering, classical mutagenesis and

screening, rational and reverse metabolic engineering,
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Table 1 Summary of various organisms used as industrial work horses, the shifts in metabolic strategies they exhibit, their industrial

applications and the mechanisms of regulation

Microorganism Metabolic shifts/trade-offs Application Mechanism of regulation

Escherichia
coli

Recombinant proteins

(Leuchtenberger et al. 2005), amino

acids (Park and Lee 2010), vaccines

(Shiloach and Rinas 2009) and

immobilized enzymes (Synowiecki

et al. 2006)

Limitations in the carboxylic acid

cycle due to limited oxygen and

carbon source availability, tight

regulation of the CoA pool and

environmental conditions

(Wolfe 2005)

Redox ratio: need to regenerate

NAD? in the absence of oxygen

(Vemuri et al. 2006)

Global regulators (CcpA, CodY and

TnrA) exerting control at the

transcriptional level of catabolic

genes and operons (Fujita 2009;

Sonenshein 2007; Stülke and Hillen

2000)

Phosphoenolpyruvate-pyruvate-

oxaloacetate node dynamics

(Sauer and Eikmanns 2005)

Bacillus
subtilis

Vitamins, heterologous proteins and

enzymes (Pohl and Harwood 2010;

Shimizu 2008)

Lactic acid

bacteria

Dairy and fermented foods, probiotics,

bulk and fine chemicals (Teusink

and Smid 2006)

Triggered by carbon source limitation

(Thomas et al. 1979) and oxygen

concentration (Jensen et al. 2001)

Balance of the NADH/NAD? ratio

(Cocaign-Bousquet et al. 1996)

Allosteric effects of fructose-1,6-

bisphosphate (FBP) and triose

phosphates on mixed acid branch

enzyme activities, inhibition of

alcohol dehydrogenase by adenine

nucleotide pool (Neves et al. 2005)

Modulations of certain transcripts and

protein levels (Kowalczyk and

Bardowski 2007)

Yeast

(Saccharo-

myces
cerevisiae)

Baking, brewing, wine-making,

bioethanol, bulk and fine chemicals,

recombinant proteins (van Dam

et al. 2002; Nevoigt 2008)

Low affinity and high capacity of

pyruvate decarboxylase compared

with pyruvate dehydrogenase

enzymes (Postma et al. 1989;

Pronk et al. 1996)

Post-translational regulation (Daran-

Lapujade et al. 2007; Pronk et al.

1996)

Differential gene expression (Pronk

et al. 1996)

Flux-sensing via FBP (Huberts et al.

2012)

Balance of the NADH/NAD? ratio

(Vemuri et al. 2007)
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global transcription machinery engineering or genetic

modification (Nevoigt 2008), and more recently syn-

thetic biology (Khalil and Collins 2010). Numerous

successes in substantial improvement of processes and

strains have been reported in the past decades (Brock-

meier et al. 2006; Donalies et al. 2008; Ikeda 2006;

Park and Lee 2010; Smid et al. 2005). Nevertheless,

common practical problems are encountered due to the

shifts in metabolic strategies during growth (Table 1).

Industrial strains need to have and retain the

required properties to maintain high production rates.

However, the one process that none of these strains can

evade is their evolution, governed by their ‘‘fitness’’ in

the respective environments. Microorganisms are

subject to selection and the selection pressure is often

on specific growth rate. In a fermentor the fastest

growing strain produces the most progeny and there-

fore is likely to invade most of the population. How

well microorganisms flourish in terms of competing

with other strains, is called their fitness. Most often,

the strain properties necessary for industrial produc-

tion processes are not the same as those that enable the

cell to attain maximal fitness. Hence, identifying the

selection pressures and strategic decisions that micro-

organisms can make, will help in tuning their

environment so as to align their cellular objectives

with the production process objective, and ensure

constancy in biotechnological applications.

Understanding physiology from the perspective

of optimized fitness

The end result of microbial physiology is a direct

consequence of adaptations that improve fitness,

which can be mimicked in silico by adopting some

optimality criterion for a microorganism in its envi-

ronment. The premise of this approach is that cells will

adapt, often surprisingly fast, and move towards some

optimal fitness if cultivated under constant conditions.

Such an in silico optimality approach has been used

frequently over the years, and is often also disputed:

microorganisms might not be optimal for specific

tasks. At the end of this section, we will show a

counterexample of this optimality assumption.

Nearly two decades ago, physiological observa-

tions of E. coli were explained by optimization of

growth within stoichiometric constraints (Varma et al.

1993) using the well-known modelling approach for

analysing biochemical networks: Flux Balance Anal-

ysis (FBA) (Orth et al. 2010). In the post-genome era,

this approach was extended to genome-scale

Table 1 continued

Microorganism Metabolic shifts/trade-offs Application Mechanism of regulation

Filamentous

fungi

(Aspergilli)

Proteins, enzymes bulk and fine

chemicals (Meyer et al. 2011)

Environmental influences triggering

transcriptional regulation

Regulation by global regulators

Sporulation associated signal

transduction (Hoffmeister and Keller

2007)

Mammalian

cell lines

(Myeloma,

Hybridoma,

etc.)

Recombinant proteins, monoclonal

antibodies, nucleic acid-based drugs

(Lim et al. 2010; Reiter and Blüml

1994; Vives et al. 2003)

Warburg effect: lactate production via

enhanced glycolysis despite the

presence of adequate oxygen

(Warburg 1956)

Increase in glucose transporters and

kinases, post-translational

modifications of enzymes, hypoxia-

inducible factor: HIF, mitochondrial

defects (Gatenby et al. 2010;

Gatenby and Gillies 2004; Gillies

et al. 2008; Gillies and Gatenby

2007)

Regulation by metabolic enzymes

(Diaz-Ruiz et al. 2011)
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metabolic networks. An early example successfully

demonstrated that optimizing metabolic network

fluxes to maximize growth could explain physiolog-

ical metabolic behaviour in E. coli (Edwards et al.

2001). In this approach, measured nutrient uptake

rates are used to constrain the metabolic network

which is then optimized for maximal growth, to

generate predictions of growth and product formation

rates. The in silico predictions of growth of E. coli on

acetate and succinate were found to be consistent with

experimental measurements. Microorganisms are thus

limited by environmental constraints and the afore-

mentioned studies reinstate that the resulting physio-

logical behaviour is a consequence of an underlying

optimality objective which improves their fitness.

However, not all physiological states can be

described by growth optimization. This is because

under varying environmental settings, cells often

exhibit suboptimal behaviour where their resulting

growth rate is very different from what a standard FBA

would predict. Schuetz et al. (2012) showed that a

multidimensional objective can attempt to explain

suboptimal behaviour. Additionally, as pointed out by

Teusink et al. (2006), growth optimization in FBA is in

fact yield optimization (Fig. 1a) and therefore in

scenarios where yield optimization is not the objec-

tive, standard FBA approaches will invariably fail to

predict observations (Santos et al. 2011; Schuster et al.

2008). This is to be expected for biotechnologically

relevant conditions such as high concentrations of

rapidly fermentable sugars that lead to ATP-inefficient

metabolism. Indeed, in the seminal paper from the

group of Palsson, it was shown that E. coli evolves

towards an in silico predicted ‘‘line of optimality’’ on

glycerol, but, on glucose, the evolved cells increased

their growth rate but moved away from the FBA-

predicted line of optimality by producing acetate

(Ibarra et al. 2002). The same difference between

glucose and glycerol was observed for Lactobacillus

plantarum (Teusink et al. 2006, 2009).

FBA applies only a limited set of constraints, being

mass-balance constraints (steady state assumption) and

some capacity constraints (usually on input fluxes) to

bound fluxes through the network. New approaches

which apply additional constraints routed in physics and

chemistry have to be used to understand metabolic

strategies that FBA cannot explain. Beg et al. (2007) for

the first time, used the macromolecular crowding or

solvent capacity constraint on the metabolic network of

E. coli. This constraint limits the total intracellular space

available for enzymes in cytoplasm. With this constraint,

FBA was able to reproduce acetate production in E. coli.

Subsequently, this approach was used to model prolif-

erating mammalian cells to explain the Warburg effect

(Shlomi et al. 2011; Vazquez et al. 2010). These

approaches extend the notion of metabolic efficiency

being analogous to stoichiometric ATP-yield only:

different flux distributions have different implementation

consequences (costs if you will), that should also be

taken into account when computing optimal behaviour,

as we will elaborate on later.

Flux balance analysis (FBA) of multiple species

Microorganisms seldom live in isolation and analys-

ing single species metabolic networks in isolation

(a)

(b)

Fig. 1 Yield and rate. a Why flux balance analysis (FBA) is in

fact a yield optimization problem rather than a rate optimization

problem. b Trade-off between biomass yield and substrate

uptake rate for a number of exponentially growing yeast species:

Reprinted by permission from Macmillan Publishers Ltd:

[Heredity] (MacLean 2008)
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provides little insight into microbial interactions in

communities. Consequently there have been recent

efforts to model competition, co-existence, and strain

and species interactions using multispecies stoichi-

ometric metabolic modelling. Zomorrodi and Mar-

anas (2012) recently developed a comprehensive

FBA framework, OptCom, capable of capturing the

trade-offs between individual and community fitness

criteria. This approach uses a multi-level, multi-

objective optimization routine that allows for con-

straints of individual species in a larger scaffold

of community-level objective maximization. The

authors use genome-scale metabolic models of a

two-species microbial system and quantify the syn-

trophic interaction in terms of the extent and direction

of transfer of metabolites and electrons between

species. Simpler approaches were also used to predict

metabolic fluxes, interspecies electron transfer and the

ratio of constituent species for anaerobic microorgan-

isms (Stolyar et al. 2007) and in subsurface environ-

ments (Zhuang et al. 2011a). Tzamali et al. (2011)

used a graph-theoretic approach to identify metabolic

interactions and their importance on growth in E. coli

strain communities. Their results suggest that in

certain communities, cross-feeding enhances the

growth rate of participating species. The main issues

in all of these approaches, that are currently being

actively investigated, are how to balance fluxes that

are catalyzed by species with different abundances in

the population, and what would be a realistic objective

for such a community. In summary, multispecies

metabolic modelling is an emerging field that aims to

quantify metabolic interactions, identify trade-offs

and to provide insights into the impact of different

substrate availability on species abundance in micro-

bial communities. Some powerful approaches are

starting to develop and are getting ready for use in

biotechnological applications.

Cheaters and unexpected strategies

in communities

At times, the outcome of optimization of microbial

fitness can be surprisingly intricate: an important

additional attribute of the optimum is that it should

be (evolutionarily) stable. In one such example,

Lactococcus lactis excretes an extracellular protease

to degrade milk proteins into free utilizable peptides, a

feat required when the peptides in the environment are

insufficient for growth. Under these conditions, one

would intuitively expect this trait to be selected for.

However, this protease is extracellular and the

peptides produced do not merely benefit the cell

secreting the protease, but in part also diffuse away

from it, becoming accessible to neighbouring cells. To

grow well, it would indeed be beneficial if all cells

produce this protease, but imagine a scenario where

one cell does not. This ‘‘cheater’’ cell will still

consume peptides released by neighbouring cells but

will have more resources (not allocated to protease

production) available for growth and reproduction.

This, on average, will lead to more progeny and a

spread of the protease-negative trait in the population.

In fact, it was shown experimentally that this leads to a

population that completely loses the protease-positive

trait and depending on the conditions, grows much

slower (Bachmann et al. 2011). A similar study in

yeast showed that the trait for enzymatic breakdown of

sucrose by secreted invertase is selected against,

because the glucose and fructose formed thereafter

diffuse away, and can be used by other individuals

(Gore et al. 2009). This is a very counter-intuitive

outcome of the effect of selection on the physiology of

a species, even under constant conditions. A detailed

theoretical analysis of this cooperative and cheating

behaviour and its implications on biotechnological

applications was reviewed recently (Schuster et al.

2010).

Trade-offs: the role of physical and biochemical

constraints

In the previous section we discussed a modelling

framework (FBA) using empirically derived uptake

flux constraints and additionally an intracellular space

constraint. The latter results in a shift, from efficient

use of potential chemical energy in the substrate

through oxidative phosphorylation to inefficient use

through aerobic glycolysis, in a model of human

cancer cells (Shlomi et al. 2011; Vazquez et al. 2010).

In this example there are constraints (to obtain a

certain flux some intracellular space is required) and

limits (there is a limited amount of intracellular space),

which necessitate a choice between oxidative phos-

phorylation and aerobic glycolysis and this we call a

trade-off. Essentially, trade-offs call for a choice

between two incompatible features, either of which if
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chosen, automatically leads to forfeiting the other.

There are several biological examples of trade-offs:

cells can invest in growing bigger or producing new

cells, cells can be optimized for their current environ-

ment, or be prepared for possible future changes, just

to mention a few.

There could be similar constraints and limits that

influence the uptake rate. For example, retaining

membrane integrity requires a certain percentage of

lipids (Molenaar et al. 2009) and there might be

restrictions on the kinetic constants of enzymes

(Heinrich et al. 1991). A limit on the uptake flux might

arise because higher uptake flux requires more trans-

porter synthesis that is limited by availability of

precursors and cellular machinery. Hence, to answer

‘why’ organisms regulate their metabolism, one needs

to identify constraints that actually limit cellular

function, namely, physical or biochemical constraints.

These constraints can stem from thermodynamic laws,

solubility of proteins or stability of DNA. More

information about these constraints is rapidly becom-

ing available on web-databases like BioNumbers (Milo

et al. 2010). Furthermore, these constraints that govern

trade-offs also have an origin in the physics of

biological materials. As we try to find these more

profound explanations, rather than taking observed

constraints for granted, we also obtain a more funda-

mental understanding of observed cellular behaviour.

Trade-offs in microbial and industrial processes

Some trade-offs are relatively obvious, such as the

examples discussed in the previous section. Occasion-

ally, however, a trade-off appears indirectly because we

observe species specialized in one trait or in another trait,

but never in both. One less obvious trade-off is the one

between catabolic rate and ATP-yield (Pfeiffer et al.

2001). This trade-off is well described for a metabolic

pathway (Aledo and del Valle 2002; Angulo-Brown

et al. 1995; Waddell et al. 1997). In a pathway, the free-

energy of the substrate can be used either to produce high

free-energy intermediates or to drive the pathway

quickly, making yield and rate incompatible features.

But does this argument also hold for the trade-off

between catabolic rate and ATP-yield, considering the

numerous pathways and cellular processes involved?

Several microorganisms exhibit inefficient (low-

yield) metabolism during fast growth. Above a critical

growth rate and corresponding glucose concentration,

S. cerevisiae ferments glucose (Postma et al. 1989). A

similar metabolic shift to a regime with decreasing

ATP-yield and increasing catabolic rate is observed in

lactic acid bacteria (Thomas et al. 1979) and in

mammalian cells (see table 1). MacLean (2008)

showed that biomass yield plotted against glucose

consumption rate of several exponentially growing

yeast species shows a negative slope, with none

present at the high yield high consumption region

(Fig. 1b), suggesting a trade-off between catabolic

rate and ATP-yield.

Trade-offs in industrial processes are not uncom-

mon either, the most classic one being the choice

between batch and continuous fermentation. Batch

fermentations bear a lower contamination risk and a

higher cost due to additional cleaning cycles, whereas

continuous fermentations offer the advantages of

steady-state operation, longer runs with shorter down-

times, better product consistency, easier process

control, and steady utility demands (Shuler and Kargi

2002; Wang et al. 2005). But because continuous

fermentations run longer, and cells might experience

selection pressures different from those previously

experienced, the cells will evolve. This can lead to

undesirable side-effects and loss of strain productivity

(Douma 2010). Another trade-off is seen in the dairy

industry, where yogurt production requires strains that

excrete exo-polysaccharide (EPS) for good texture and

mouth-feel. But this trait leads to higher viscosity that

can be quite problematic during starter culture

production due to difficulties in downstream process-

ing. Hence a single application entails two conflicting

objectives. A similar trade-off exists for the produc-

tion of cheese-starter culture and yeast. The final use

of these cultures is the production of lactic acid and

flavour compounds for cheese, ethanol for beverages,

and CO2 for fluffy breads. However, during the initial

start-up or growth phase of the fermentation process as

well as for starter culture suppliers, the aim is to

maximize biomass production without compromising

adequate functionality of the resulting strain. Thus

growing fast with high biomass yields versus achiev-

ing high levels of end products represents a trade-off.

To predict the outcome of evolution, merely iden-

tifying a trade-off is insufficient, since we still do

not know which incompatible trait the strain will

specialize in. For instance, at high substrate concen-

trations, species will evolve towards higher growth
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rates, and—one may suspect—a low biomass yield.

Alternatively, when the selection pressure is for a high

yield, as is the case for cells in biofilms living in close

proximity with their relatives (Kreft 2004), species will

attain a high yield but probably a lower growth rate.

That the evolution of species depends on the selection

pressure exerted by the environment is important to

realise when evolving species in the laboratory or

improving strains for bio-industry, because an envi-

ronment that improves one trait might compromise

another. Thus, to improve a trait, it becomes extremely

important to find conditions with the right selection

pressure. A fascinating example illustrating this is

improving accumulation of storage polymers via feast-

famine cycles (Chiesa et al. 1985; van Loosdrecht et al.

1997). The condition comprises subjecting cells to

cycles of short-time in high substrate environment and

long-time without substrate. This condition selects for

cells that store substrate during the feast regime and use

it in the famine regime.

From regulatory mechanisms to the underlying

generic causation: fitness

A plethora of regulatory mechanisms involved in

causing and regulating metabolic shifts in various

organisms exist in the literature (see Table 1 for a brief

summary). These studies have provided a wealth of

knowledge in understanding metabolic shifts. While it

is crucial to identify the regulatory and molecular

mechanisms of metabolic shifts, they are different

instantiations of the same phenotype that these cells

seems to be selected for. In cancer this is most

obvious: whilst different tumours have vastly different

mutations, most of them display the Warburg effect

(Hanahan and Weinberg 2011). Therefore, besides

identifying the mechanisms of metabolic shifts, we

want to find a global explanation of why we see certain

patterns of behaviour. In order to get a better

understanding of its long-term behaviour it is also

important to think about ‘why’ such a regulation

system arose in the first place, in other words, what

contribution it had to the fitness of the organism.

As we saw earlier, trade-offs might be an underlying

cause for metabolic shifts, but identifying the key trade-

offs can be difficult. Several explanations suggested for

growth-rate-related metabolic shifts in microorganisms

are discussed in subsequent sub-sections (Fig. 2). The

advantage of the ATP-efficient pathway seems relatively

clear because it produces more energy per substrate. We

will therefore first discuss explanations for the use of

ATP-inefficient pathways.

Chemical warfare

End products of inefficient metabolism are often toxic

and inhibit growth of neighbouring species, for

instance, in lactic acid bacteria (Loesche 1986) and

yeast (Piskur et al. 2006). Groups of microorganisms,

at a cost of reduced efficiency, produce these inhib-

itory compounds to reduce competition (Fig. 2a).

However, if a mutated cell uses the ATP-efficient

pathway in an inefficient population, it could gain

higher fitness. This is because its neighbours would

still produce ethanol and intoxicate competitors, and

the efficient mutant would benefit from the toxic effect

on the population without itself bearing the burden of

producing ethanol, thereby gaining an advantage with

higher ATP availability. But this ATP-efficient strain

should—under the assumption in this scenario—grow

faster and take over the population, a fundamental flaw

in the hypothesis of ‘‘chemical warfare’’.

Yeast can also use its fermentation product, ethanol,

as a substrate. Based on this observation, a make-

accumulate-consume strategy comprising first producing

ethanol and later consuming it when glucose is depleted

was proposed (Piskur et al. 2006). Such behaviour is also

seen in E. coli (Koser 1923) and B. subtilis (Speck and

Freese 1973) and suggested in lactic acid bacteria that

can use mixed acid fermentation products as substrate

(Hols et al. 1999). This strategy may seem clever but, if

the cells waste part of the energy obtainable from the

substrate to accumulate fermentation products for later

consumption, they will have a lower fitness if they never

encounter glucose depletion. In addition, there could be

‘‘cheaters’’ not producing, but consuming ethanol pro-

duced by others. This hypothesis also seems to suffer

from the same cheater-invasion problem as the chemical

warfare hypothesis does.

The danger of reactive oxygen species

At high growth rates, though respiration is more ATP-

efficient, it could also have serious disadvantages

leading to prohibitive constraints. A putative issue

with respiration is the formation of reactive oxygen

species as a natural by-product (Fig. 2b). In yeast and
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mammalian cells, cells can ferment during the DNA

replication phase because respiration causes DNA

damage (Anastasiou et al. 2011; Chen et al. 2007).

This does not directly explain why cells respire during

slow growth, although time spent on DNA replication

is much less at lower growth rates. But it is a challenge

to determine whether increase in DNA replication

time and metabolism at high growth rates quantita-

tively explain shifting to fermentation, because the

dependency of ROS production on respiration is rather

complicated (Kowaltowski et al. 2009).

The previous hypotheses address the prevalence of

inefficient metabolism due to the useful impact of its

by-product(s) or the negative impact of efficient

metabolism. The following explanations all assume

a trade-off between growth yield and growth rate.

Subsequently, if the selection pressure acts on growth

rate, only inefficient pathway usage is expected to

prevail, simply because it is faster. Under such

presumptions, the use of efficient metabolism at low

growth rates needs to be explained!

Spatial structure

Modelling efforts show that the existence of spatial

structure in a population (due to incomplete mixing or

biofilm formation) can select for efficient metabolism

(Aledo et al. 2007; Kreft 2004; Pfeiffer et al. 2001)

because it increases substrate availability, benefiting

closely-related neighbours (Fig. 2c). Inside these non-

motile populations, cheater cells using inefficient metab-

olism might still evolve, but if cells disperse often

enough to start a new colony, efficient metabolism can

still prevail (Kreft 2004). Cooperation with related cells

is even stronger for multicellular organisms, except

obviously for cancer cells. Experiments confirm that

spatial organization promotes efficient metabolism while

well-mixed cultures sustain inefficient metabolism (Ma-

cLean and Gudelj 2006). Nonetheless, even in well

mixed cultures, efficient to inefficient metabolism shift is

observed (Hollywood and Doelle 1976; Postma et al.

1989; Snay et al. 1989; Thomas et al. 1979), rendering

this hypothesis incomplete, if not questionable.

Ethanol as an inhibitor of fermentation

In a competition experiment between fermenting and

respiring yeast cells, addition of extracellular fermen-

tation products had a negative influence on the

fermenters (MacLean and Gudelj 2006). The pre-

sumption is that at higher extracellular ethanol con-

centrations, ethanol export is more difficult for

fermenters, resulting in high and toxic intracellular

ethanol concentrations (Fig. 2d). But higher accumu-

lation of intracellular ethanol in fermenters in com-

parison with respirers is not proven yet, leaving this

hypothesis open. Besides, it is unlikely that this is a

universal explanation, because bacteria shifting

between mixed acid and homolactic fermentation

need to export either acetate and formate, or lactate,

and it is unclear which products are more harmful.

So far we have summarized explanations for the use

of inefficient pathways: chemical warfare and the

danger of reactive oxygen species, and efficient

pathways: spatial structure and toxic effects of

ethanol. But often, efficient metabolism is observed

at low growth rates and inefficient metabolism at high

growth rates. In the forthcoming sub-sections we will

review approaches that attempt to explain the meta-

bolic shift as a function of growth rate.

Limited space

Intracellular space

As described in Sect. 3, intracellular space constraints

can impose a metabolic shift with increasing nutrient

uptake in cancer cell models. The hypothesis is that

Fig. 2 Different hypotheses and trade-offs involved, for

growth rate (and substrate (S)) related ATP-efficient and

inefficient metabolism. a Chemical warfare: at the cost of

ATP production, toxic compounds are produced in order to

inhibit the growth of competitors. b The danger of reactive

oxygen species (ROS): additional ATP production via respira-

tion concomitantly generates ROS that can damage DNA.

c Spatial structure: spatial structure promotes ATP-efficient

substrate usage but lone individual cells can grow faster as long

as sufficient substrate is available. d Ethanol as an inhibitor of

fermentation: substrate can be used efficiently but slowly or fast

but inefficiently and the latter strategy produces toxic com-

pounds that are exported but nonetheless accumulate more

inside the cells producing them. e Limited intracellular space:

due to limited intracellular space and bulky respiratory

machinery, the flux through respiration cannot match high

substrate uptake rates and a gradual shift to inefficient

metabolism occurs. f Limited membrane space: the membrane

can be used to produce additional ATP from substrate via the

electron transport chain (ETC.) or to take up more substrate.

g An economical approach: substrate can be used slowly and

efficiently but this requires a lot of proteins, or it can be

consumed fast but inefficiently which requires much less

proteins

b
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respiration machinery requires more space and cannot

match a high uptake flux, resulting in a shift to lactate

production (Fig. 2e). It remains to be shown that

intracellular space is indeed limiting, as cells can

change size or shape to tweak the uptake relative to

intracellular space.

Membrane space

Under varying circumstances, the electron transport

chain and glucose transporters compete for the limited

membrane space (Fig. 2f). Thus transport rate depends

on the space occupied by transporters and the electron

transfer chain in the membrane. Flux balance analysis

on the E. coli metabolic network with this dynamic

constraint predicts that maximum growth is possible

with efficient metabolism at low growth rates and

inefficient metabolism at high growth rates, which is

in agreement with experimental results (Zhuang et al.

2011b). Thus membrane constraints can explain

metabolic shifts, but only in bacteria containing

efficient pathway components in their membrane,

and it can perhaps be adjusted to explain the shift in

eukaryotes containing limited mitochondrial mem-

brane space. This hypothesis cannot, however, explain

the shift in lactic acid bacteria involving only cytosolic

enzymes.

An economical approach

Molenaar et al. (2009) hypothesized that the meta-

bolic shift is in fact due to a resource allocation

problem for optimal fitness, with growth rate as a

proxy for fitness. They introduced a self-replicator

model; a simple representation of a cell with efficient

and inefficient metabolic pathways that gives insight

into which strategy leads to fastest growth. By taking

into account that the efficient pathway actually needs

more cellular machinery to operate (a longer pathway

in lactic acid bacteria, an electron transport chain in E.

coli and mitochondria in yeast), the self-replicator

model predicts that at low substrate concentrations

efficient metabolism leads to a higher growth rate, and

at high substrate concentrations inefficient metabo-

lism leads to a higher growth rate (Fig. 2g). This

approach takes both the benefits (ATP efficiency) and

the associated costs into account when considering

alternative metabolic strategies and thus introduces a

hypothesis for the metabolic shift as a function of

nutrient availability and hence, growth rate. However,

it remains to be shown that the difference in pathway

costs can indeed cause this shift in optimal strategy in

biological systems.

The cycle of systems biology

It remains a challenge to validate or falsify the

hypotheses described in the previous section. Many of

them look at only a specific aspect of metabolism.

Nevertheless, these hypotheses call for an integrative

approach, since fitness-associated costs are a systems

property and cannot be inferred by studying a single

component in isolation. Even then, efforts to approx-

imate the costs of protein synthesis (Dekel and Alon

2005; Shachrai et al. 2010; Stoebel et al. 2008) have

remained inconclusive. Yet, to understand microbial

physiology we believe that a systems biology

approach is the best, perhaps the only, option avail-

able. Systems biology aspires to capture how systems

properties emerge from orchestrated interactions

between individual components in an organism, using

iterative cycles of quantitative experimental data

generation and mathematical modelling (Fig. 3).

Systems biology studies have shown the ability to

address similar problems in the past. Wessely et al.

(2011) incorporated genome-wide ‘omics’ data into

the genome-scale metabolic network of E. coli using

various network and optimization tools to link protein

investment and transcriptional regulation of path-

ways. With this integrative approach they identified

and suggested an evolutionary trade-off between

protein investment and rapid response time. From

the industrial perspective, there have been quite a

number of successes in systems metabolic engineer-

ing combining systems biology, synthetic biology and

evolutionary engineering principles (Lee et al. 2011).

Accumulated knowledge has been used to perform

guided evolution comprising a combination of clever

knockouts and selection pressures to produce indus-

trially important compounds via stable processes.

Finally and ultimately, a systems biology approach

should connect environmental conditions to genes,

transcriptional regulation, transcription factor interac-

tions and protein production to metabolism in a single

model. One such example exists that proposes cell

regulation via flux sensing metabolites in E. coli
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(Kotte et al. 2010). This is a good example of how

integrated models could look, as closed-loop systems

comprising all levels in the cell. Such studies are

currently restricted to model organisms such as E. coli

as it has been studied for decades and can boast of a

rich source of detailed knowledge, unlike other

microorganisms. This necessitates multi-level omics

studies in the latter to be able to investigate them with

realistic models. There is hope that we can translate

such kinetic models developed for model organisms to

less-well studied organisms through what we have

called comparative systems biology (Levering et al.

2012).

Concluding remarks

We have discussed industrially-relevant examples of

metabolic shifts exhibited by organisms, summarized

the underlying regulatory mechanisms, emphasized

the existence and role of trade-offs in these metabolic

choices, and scrutinized various hypotheses and their

pitfalls in explaining the fitness advantage of meta-

bolic shifts. Systems biology, we believe, is the best

approach we currently have to tackle such complex-

ities of cell factories. Nevertheless, one must proceed

with caution in the midst of current high-throughput

data generation methods and avert sinking in oceans

of data by regularly stepping back to recapitulate the

greater objective. We firmly believe that the func-

tional perspective, i.e. the contribution of the observed

adaptive mechanisms to fitness, in the light of

constraints and trade-offs, provides a powerful con-

text to our understanding of the physiology of

microbial cell factories. We are still quite at the tip

of the iceberg but with constant consolidated systems

biological efforts we can aim to reach a deeper

understanding that will guide future major innova-

tions in biotechnology and medicine.

Acknowledgments This work is supported by the Dutch

Technology Foundation STW which is part of the Netherlands

Organisation for Scientific Research (NWO) and partly funded

by the Ministry of Economic Affairs, Agriculture and

Innovation (Grant 08080), the Kluyver Centre for Genomics

of Industrial Fermentation and the Netherlands Consortium for

Systems Biology (NCSB), within the framework of the

Netherlands Genomics Initiative (NGI)/NWO.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the

original author(s) and the source are credited.

References

Aledo JC, del Valle AE (2002) Glycolysis in wonderland: the

importance of energy dissipation in metabolic pathways.

J Chem Educ 79:1336
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