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Abstract

SARS‐CoV‐2 is a newly discovered beta coronavirus at the end of 2019, which is

highly pathogenic and poses a serious threat to human health. In this paper, 1875

SARS‐CoV‐2 whole genome sequences and the sequence coding spike protein (S

gene) sampled from the United States were used for bioinformatics analysis to study

the molecular evolutionary characteristics of its genome and spike protein. The

MCMC method was used to calculate the evolution rate of the whole genome

sequence and the nucleotide mutation rate of the S gene. The results showed that

the nucleotide mutation rate of the whole genome was 6.677 × 10−4 substitution per

site per year, and the nucleotide mutation rate of the S gene was 8.066 × 10−4

substitution per site per year, which was at a medium level compared with other

RNA viruses. Our findings confirmed the scientific hypothesis that the rate of

evolution of the virus gradually decreases over time. We also found 13 statistically

significant positive selection sites in the SARS‐CoV‐2 genome. In addition, the re-

sults showed that there were 101 nonsynonymous mutation sites in the amino acid

sequence of S protein, including seven putative harmful mutation sites. This paper

has preliminarily clarified the evolutionary characteristics of SARS‐CoV‐2 in the

United States, providing a scientific basis for future surveillance and prevention of

virus variants.
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1 | INTRODUCTION

Coronaviruses (CoV) is an enveloped RNA virus, widely distributed

in humans and other mammals, and can cause a variety of diseases,

e.g., respiratory intestinal, liver, and nervous system diseases.1–6

There have been seven types of coronaviruses that infect humans,

including SARS‐CoV, MERS‐CoV, HCoV‐229E, HCoV‐HKU1,

HCoV‐NL63, HCoV‐OC43, and SARS‐CoV‐2,7 and the genome

sequence and spike protein structure of SARS‐CoV‐2 are similar to

that of SARS‐CoV.8–10 The receptor binding and membrane fusion

are the initial and critical steps in the SARS‐CoV‐2 infection cycle,

during which the SARS‐CoV‐2 spike protein (S protein) plays a key
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role. Therefore, it is very important to study the SARS‐CoV‐2 S

protein.11,12

As of July 2021, the number of SARS‐CoV‐2 infections has

reached 180 million people worldwide. As for the United States, more

than 33 million COVID‐19 cases have been diagnosed, which is close

to a quarter of the total number of confirmed cases worldwide. The

death toll in the United States exceeds 60 million.13

In previous studies, Li et al.12 analyzed the global evolution rate

of SARS‐CoV‐2 in the first month of the outbreak, with an estimated

mean nucleotide mutation rate ranging from 1.7926 × 10−3 to

1.8266 × 10−3 substitution per site per year. Four months after the

outbreak, the mutation rate became 3.95 × 10−4 per nucleotide per

year,14 which was almost seven times lower than the mutation rate

of SARS‐CoV and two times lower than that of MERS‐CoV.15–17

Motayo et al.18 reported that the evolution rate of SARS‐CoV‐2 in

Africa from February 24 to April 24 was 4.133 × 10−4 substitution

per nucleotide per year. The Nextstrain website estimates that the

annual nucleotide evolution rate is 8 × 10−4 substitution per nu-

cleotide per year based on current statistics.19 As for the evolution

rate of the gene encoding the S protein, Pereson et al.20 reported

that the global evolution rate was 2.19 × 10−3 nucleotide substitu-

tions per site per year as of April 2020, while the evolution rate

reduced to 1.08 × 10−3 as of September 2020.21 However, so far, no

relevant research has been reported on the US cases, so we initiate

this study.

2 | MATERIALS AND METHODS

2.1 | Sequence data collection

2.1.1 | Various coronavirus genome sequence data
for the phylogenetic analysis

A total of 15 whole genome sequences and the corresponding S gene

sequences were employed in this study from the NCBI database (https://

www.ncbi.nlm.nih.gov/) (Table S1), including SARS‐CoV‐2, SARS‐CoV,

MERS‐CoV, HCoV‐229E, HCoV‐OC43, HCoV‐NL63, HCoV‐HKU1, Bat

SARS‐like, Civet SARS‐CoV, Pangolin CoV, Murine hepatitis virus, Rat

CoV, Erinaceus CoV, Camel MERS‐CoV, and Bovine CoV.

2.1.2 | SARS‐CoV‐2 genome sequence and the
corresponding S gene sequence data collected from US
cases to study molecular evolution

A total of 2241 whole‐genome sequences of SARS‐CoV‐2 and the

corresponding S gene sequences (from 2020/2/27 to 2021/4/8) were

obtained from the severe acute respiratory syndrome coronavirus 2

data hub of NCBI Virus (https://www.ncbi.nlm.nih.gov/labs/virus/

vssi/#/) (Table S2). After removing the low‐quality sequences (with

more than 10 ambiguous nucleotides), 1875 SARS‐CoV‐2 genome

sequences were retained for further analysis, using MN908947 (iso-

late from Wuhan‐Hu‐1) as a reference sequence.

In addition, another 69 098 S protein amino acid sequences ob-

tained from the NCBI database were used for the mutation analysis of

amino acids, which were also retrieved from the SARS‐CoV‐2 cases in

the United States.

2.2 | Sequence alignment and phylodynamics
analysis

A multiple sequence alignment of the 1875 SARS‐CoV‐2 genome se-

quences was performed using MAFFT v7.464.22 ModelFinder was used

to analyze the optimal substitution model for the genome sequences

based on the results of Bayesian Information Criterion,23 with a result

of the best nucleotide substitution model to be GTR+F+G4.

Mutation rate can be defined as the number of mutations per cell

division, per generation or per unit time.24 Markov Chain Monte Carlo

(MCMC) method was used to reconstruct the maximum clade credibility

(MCC) tree and calculate the mutation rate by BEAST V2.6.2.25 To set

the time scale prior for the dataset, we used a constrained evolution

rate with a Log‐normal prior averaged at 10−3 by substitution per site

per year. We performed a phylogenetic Bayesian analysis using the

Relaxed Clock Log‐Normal molecular clock model and selected the

Coalescent Bayesian Skyline as the model of population size and growth

according to the relevant studies.26–28 The whole‐genome sequence

and the sequence coding spike protein sequence (S gene) were sepa-

rately analyzed by MCMC to calculate the mutation rate, with a length

of 4 × 108 steps, sampling every 4 × 104 steps. The convergence of all

the parameters (ESS >200, burn‐in 10%) was verified with Tracer

v1.7.1.29 The final MCC tree was generated by TreeAnnotator (a soft-

ware package in BEAST2) and displayed in Figtree v1.4.4 (http://tree.

bio.ed.ac.uk/software/figtree/).

2.3 | Adaptive evolution analysis and
recombination analysis

The SARS‐CoV‐2 MN908947 was used as the reference sequence,

which was aligned against the genome sequences of the other types

of coronavirus by MAFFT. IQ‐Tree 2.0.3 was used to establish the ML

tree.30 The CODEML program in PAML was used for the selection

pressure analysis.31 In the branch‐site model, the SARS‐CoV‐2 was

set as the foreground and the other viruses as the background. Full

genomes and S gene sequences were analyzed separately to detect

recombination events using RDP4 and SimPlot.32,33

2.4 | The S protein nonsynonymous or indel variant
biological function analysis

PROVEAN was used to predict whether nonsynonymous mutations of S

protein would affect its function,34 which can detect harmful substitution

of amino acid and predict whether the substitution will affect its pheno-

type. A PROVEAN score of −2.5 or lower indicates that amino acid sub-

stitution is harmful, and a score higher than −2.5 is considered neutral.
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3 | RESULTS AND DISCUSSION

3.1 | Mutation rate in SARS‐CoV‐2

According to the results of BEAST2, we obtained the mutation rate of

6.677 × 10−4 per site per year (95% highest posterior density [HPD]:

6.117 × 10−4 to 7.270 × 10−4) for the whole genome and of

8.066 × 10−4 per site per year (95% HPD: 5.969 × 10−4 to

1.038 × 10−3) for the sequence coding S protein. The first more in-

fectious mutation discovered by the scientists is D614G, which is

caused by the change of base A to G at position 23403.35 We

identified 12 high‐frequency mutations in the S gene among the

69 098 amino acid sequences, with the highest mutation frequency

to be 98.47% at the position of amino acid (AA) 614 (Figure 1).

Figure 2 shows the MCC tree with Bayesian phylogeographic

reconstruction of SARS‐CoV‐2 isolates. To make the image visual

effect clearer without losing the representativeness of the genomes,

we only show 380 genome sequences in Figure 2 to display the MCC

tree, and the MCC tree including the complete list of 1875 sequences

is shown in Figure S1. The detailed information obtained from

BEAST2 results is shown in Table S3. We estimate that November 5,

2019, is the time of the most recent common ancestor of SARS‐CoV‐

2 emerging in the United States, with the 95% HPD ranging from

September 21, 2019, to December 16, 2019. This conclusion is also

consistent with the first case reported in the literature on December

1, 2019.36

3.2 | Phylogenetic analysis of SARS‐CoV‐2

To explore the evolutionary selection pressure of SARS‐CoV‐2, a

phylogenetic analysis was carried out using MN908947 as the re-

ference sequence, and the whole genome of MN908947 was aligned

with the other 14 coronaviruses to establish the phylogenetic tree.

MN908947 was used as the foreground branch with the other 14

coronaviruses as the background branch for the branch‐site model.

The analysis results are shown in Table 1 and Table S4. Thirteen and

two statistically significant positive sites were detected in the whole

genome and S gene respectively (p < 0.005).

RDP4 and SimPlot were used to detect the recombination event

of the 15 coronaviruses. However, the results showed that no sta-

tistically significant recombination event was found.

3.3 | Harmful mutation detection in S protein
amino acids

We found that there were 101 nonsynonymous mutations in all the

69 098 protein sequences. The results showed that there were seven

harmful mutations (Table 2), while the remaining 94 were neutral.

4 | DISCUSSION

SARS‐CoV‐2 has evolved into thousands of variants worldwide. Al-

though the virus might mutate a lot, only a few could cause serious

harm to humans.37 Compared with other coronaviruses and RNA

viruses, the mutation rate of SARS‐CoV‐2 (6.677 × 10−4) is at a

medium level. Moreover, the mutation rate gradually decreased

during the subsequent infection process.12,14,18 The reason for this

may be that SARS‐CoV‐2 has its own copy “proofreading mechan-

ism”, which can correct some errors that may occur during the

copying process, leading to the decrease of the mutation rate of

SARS‐CoV‐2.38 On the other hand, harmful mutations may lead to a

certain degree of protein structure and functional changes, ultimately

affecting the reproduction of SARS‐CoV‐2. Under the pressure of

natural selection and with the accumulation of harmful mutations, the

number of viruses will gradually decrease and even mutational

meltdown may occur, leading to population extinction,39,40 with a

result of the relatively low evolution rate of SARS‐CoV‐2 (Table 3).

F IGURE 1 Distribution of mutations in the S protein. All mutations in the S protein are nonsynonymous, with position AA614 having the
highest frequency
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However, given that SARS‐CoV‐2 has not yet been effectively

controlled in the United States, we cannot rule out the possibility that

more new mutations will appear in the United States. Compared with

other coronaviruses, 13 positive selection sites were detected in the

SARS‐CoV‐2 genome, indicating that SARS‐CoV‐2 has a special

evolution pattern.

In addition, nonsynonymous mutations were found in many

samples of the S protein, with a harmful mutation proportion of

6.93%. These harmful mutations may affect the structure and func-

tion of the S proteins. Once the amino acid of RBD of S protein is

mutated, the binding affinity with the human ACE2 receptor may

change, which may cause the increase of the ability to infect humans

and also make the existing vaccines ineffective.54 Global mutation

data collected from the GISAID database revealed that mutations

occurred at almost every site of the S gene.55 However, further ex-

periments are needed to verify whether these mutations would in-

deed affect the function of the S protein.

Viruses are the masters of evolution, which create new variants

by mutating and recombining in an unpredictable way during each

F IGURE 2 Bayesian maximum clade credibility tree

TABLE 1 Results of branch‐site model for SARS‐CoV‐2

Model Ln L Parameter estimation model comparison
LRT p
values

Positive
selection site

Model A −157,747.79203 Site type 0 1 2a 2b Model A vs. Model

A null

0.00000 498V*

1,039M*
1,125V*
1,183 E*
1,388N*
1,592R*

1,968P*
2,001S*
2,020S*
2,169S*
2,233S*

2,257S*
2,360S*

Site Ratio f 0.41494 0.35320 0.12525 0.10661

Background
branch ω0

0.31558 1.00000 0.31558 1.00000

Detection of
branch ω1

0.31558 1.00000 65.38486 65.38486

Model
A null

−157,831.26325 1

TABLE 2 Seven harmful mutations detected in the S protein

Mutation Score Prediction (critical = −2.5)

P589S −3.966 Deleterious

T716I −3.293 Deleterious

D936Y −2.602 Deleterious

S939F −3.094 Deleterious

P1162S −2.722 Deleterious

C1236F −4.061 Deleterious

C1250F −5.057 Deleterious
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replication cycle. From the perspective of biological evolution, the

existence of viruses is a natural selection pressure for human beings.

The human body's immune response will produce a certain degree of

adaptability, which will promote the development of human beings in

a direction that is more conducive to human survival. However, the

evolution of the human immune system and various interventions

may also promote the adaptive mutations of the virus. Usually,

viruses become “mild” as they circulate in the same host because high

pathogenicity will lead to the death of the host, resulting in loss of

transmission and reproduction, which is not conducive to the survival

and reproduction of the virus itself. As mentioned above, the current

mutation rate of SARS‐CoV‐2 in the United States is lower than that

at the beginning of the outbreak. Obviously, this view is in line with

our expectations.

Experimental results showed that some variants of SARS‐CoV‐2

strains increased the infectivity, such as variants D614G, S477N, and

N439K, and these variants had higher transmission ability and faster

replication speed than that of the original viruses, however, their

pathogenicity did not increase.35,56–58

At present, more infectious variants of SARS‐CoV‐2 appearing

in the world include the first D614G variant B.1.5‐B.1.72, British

variant B.1.1.7, South African variant B.1.351, Brazilian variant P.1,

and Philippine variant P.3, as well as the two native varieties of the

United States, the California variety B.1.429/B.1.427 and New

York variety B.1.526. The spreading power, virulence, and immune

evasion ability of new variants have been increasing.59 Among

them, the British variant B.1.1.7 is a virus that has a relatively large

impact on the population. In December 2020, the new strain

B.1.1.7 was discovered in the UK for the first time, and its S gene

sequence accumulated 16 nucleotide mutations, resulting in 10

amino acid site changes (H69del, V70del, Y144del, N501Y, A570D,

D614G, P681H, T716I, S982A, and D1118H).60 According to the

data from PANGO lineages, B.1.1.7 mutant strain has been found

in more than 90 countries.61 Studies have shown that the in-

fectiousness of this mutant strain is more than 50% higher than

that of the current prevailing strains.62 As of April 10, the strain

has caused 20,915 confirmed infections in the United States and

has become the main type of transmission in the United States.59

The California variant B.1.429/B.1.427 discovered in July 2020

has a mutation site of L452R, which leads to a 20% increase in its

transmission power, and exhibits moderate immune evasion lead-

ing to a fairly fast transmission rate. The New York variant B.1.526

discovered in November 2020, whose mutation site is E484K or

S477N, also exhibits moderate immune evasion.

At present, the main variants concerned in the United States

include B1.1.7, B1.351, P.1, B.1.429/B.1.427. There is evidence

that these variants could lead to increased infectivity, more severe

disease, reduced effectiveness of treatments or vaccines, or di-

agnostic detection failures.63–65 At present, the proportion of

B1.1.7 has reached 44.1% and shows a significant trend of con-

tinuing to increase. Taking New York as an example, B1.1.7 ac-

counted for 11.9% in February, 26.2% in mid‐March, and 28.2% at

the end of March. At the same time, the proportion of the New

York native variant B.1.526 (E484K) is still as high as 27.9%. These

TABLE 3 The nucleotide mutation
rate (substitutions per site per year) of
different RNA virus

Group Family Virus Mutation rate Reference

ss(+)RNA Coronaviridae SARS‐CoV‐2 8 × 10−4 19

ss(+)RNA Coronaviridae SARS 3.01 × 10−3 17

ss(+)RNA Coronaviridae MERS‐CoV 1.12 × 10−3 15

ss(+)RNA Coronaviridae HCoV‐OC43 1.06 × 10−4 41

ss(+)RNA Coronaviridae HCoV‐229E 3.28 × 10−4 42

ss(+)RNA Coronaviridae Avian coronavirus 2.40 × 10−4 43

ss(+)RNA Coronaviridae Bovine coronavirus 5.37 × 10−4 44

ss(+)RNA Filoviridae EBOV 1.23 × 10−3 45

ss(+)RNA Picornaviridae Hepatitis A virus 9.76 × 10−4 46

ss(+)RNA Flaviviridae Hepatitis C virus 1.39 × 10−3 47

ss(−)RNA Orthomyxoviridae Influenza A virus 3.15 × 10−3 48

ss(+)RNA Flaviviridae Dengue virus 6.50 × 10−4 49

ss(+)RNA Picornaviridae Human enterovirus A 5.53 × 10−3 50

ss(+)RNA Picornaviridae Human enterovirus B 5.27 × 10−3 50

ss(+)RNA Picornaviridae Poliovirus 1 1.17 × 10−2 50

ss(−)RNA Paramyxoviridae Measles virus 6.02 × 10−4 51

ss(−)RNA Rhabdoviridae Rabies virus 3.32 × 10−4 52

dsRNA Reoviridae Human rotavirus A 1.87 × 10−3 53
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different variants have greatly affected the effectiveness of the

vaccine.

It is worth noting that the B.1.617 variant strain first appeared in

India and has now become one of the most popular strains in the

United States, and B.1.617 has a 110% higher affinity for human

ACE2 receptor, making it highly infectious.66,67

In conclusion, we clarify the evolutionary characteristics of

SARS‐CoV‐2 in the United States, providing a scientific basis for

future surveillance and prevention of virus variants. To control

SARS‐CoV‐2 and to restore people's normal life activities as soon

as possible, it is necessary to continue to monitor specific muta-

tions, which is still of great significance for further in‐depth study

of SARS‐CoV‐2 and the evaluation of the effectiveness of existing

vaccines.
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